
Complete type inference in Java 8

Martin Plümicke
Baden-Wuerttemberg Cooperative State University Stuttgart

Department of Computer Science
Florianstraße 15, D–72160 Horb

pl@dhbw.de

Abstract
Java will be extended in version eight by closures and func-
tional interfaces, whereupon functional interfaces are interfaces
with one method. Functional interfaces represent the types of clo-
sures, which are also called lambda expressions. The type inference
mechanism will be extended, such that the types of the parameters
of lambda expressions could be inferred. But types of complete
lambda expressions will still not be inferable. In this paper we give
a type inference algorithm for complete lambda expressions and
for methods. This means that fields, local variables, as well as pa-
rameters and return types of methods must not be typed explicitly.
We therefore define for a core of Java 8 an abstract syntax, we
formalize the functional interfaces and define a type system for
expressions and statements. Finally we give the type inference
algorithm and prove its correctness and completeness.

Categories and Subject Descriptors D.1.5 [Programming tech-
niques]: Object-oriented programming; D.2.2 [Software engineer-
ing]: Design tools and techniques—modules and interfaces; D.3.3
[Programming languages]: Language constructs and features—
data types and structures

General Terms Algorithms, Theory

Keywords Code generation, language design, program design and
implementation, type inference, type system

1. Introduction
In the Project lambda1 a new version (version 8) of Java has been
developed. The most important goal is to introduce programming
patterns that allow modeling code such as data [7]. The principal
includes the new features lambda expressions, functional interfaces
as target types, method and constructor references and default
methods. An essential enhancement is the introduction of lambda
expressions. With the example which is also described in [7], we
want to show the intention of our paper. The task of the example is
sorting a list of people by last name. As of today we write:

Collections.sort(people, new Comparator<Person>() {
public int compare(Person x, Person y) {

1 http://openjdk.java.net/projects/lambda

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPPJ ’12, September, 12-14, 2012. Grahamstown, South Africa
Copyright c© 2012 ACM . . . $10.00

return x.getLastName().compareTo(y.getLastName());
}});

With lambda expressions we can avoid the inelegant inline instan-
tiation of the implementing class:

Collections.sort(people,
(Person x, Person y) ->

x.getLastName().compareTo(y.getLastName()));

The type inference mechanism of Java 8 allows to omit the argu-
ment types:

Collections.sort(people,
(x, y) ->

x.getLastName().compareTo(y.getLastName()));

But the type of the complete lambda expression must be known.
In this case the type is given as the argument type of sort
Comparator<Person>. In Java 8 such types of lambda expres-
sions are called compatible target types. A target type of a lambda
expressions is a functional interface2.
The main purpose of our paper is to give a type inference algorithm
which determine compatible target types for lambda expressions.
Furthermore, we can simplify this example by introducing the
method comparing whereupon comparing takes a function for
mapping each value to a sort key and returns an appropriate com-
parator.

public <T, U extends Comparable<? super U>>
Comparator<T> comparing(Mapper<T, ? extends U> mapper)
{ ... }

interface Mapper<T,U> { public U map(T t); }

Collections.sort(people, comparing(p -> p.getLastName()));

The above mentioned lambda expression is only a forwarder to
the method getLastName. We can use the Java 8 feature method
references to reuse the existing method in place of the lambda
expression:

Collections.sort(people, comparing(Person::getLastName));

Method reference in Java 8 means referring to a method of an ex-
isting class or object whose typing is compatible with the corre-
sponding functional type.
Our type inference algorithm is able to infer for method references
the corresponding compatible target types, too.
Besides the type inference of the Java 8 extensions our algorithm
infers the types of Java methods. This means that overloading and
overriding must be considered, too.

2 In earlier publications (e.g. [1]) functional interfaces are called SAM-
types.

Source := class∗
class := Class(type, [extends(type),]IVarDecl∗,MethodDecl∗)
FieldDecl := Field([type,]var [, expr])
MethodDecl := Method([type,]mname, (var [: type])∗, block)
block := Block(stmt∗)
stmt := block | Return(expr) | While(bexpr , stmt) | LocalVarDecl([type,]var) | If(bexpr , stmt [, stmt]) | stmtexpr
lambdaexpr := Lambda(((var [: type]))∗, (stmt | expr))
methodref := MethodRefClass(type,Method) | MethodRefObject(iexpr,Method) | MethodRefNew(type)
stmtexpr := Assign(vexpr, expr) | MethodCall(iexpr , f, expr∗) | New(type, expr∗)
vexpr := LocalVar(var) | InstVar(iexpr , var)
iexpr = vexpr | stmtexpr | Cast(type, iexpr) | this | super
expr := lambdaexpr | methodref | iexp | bexp | sexp3

Figure 1. The abstract syntax of a core of Java 8

In summary our type inference algorithm allows to write Java 8
programs without any type annotation. They were inferred during
the compilation.
In [15] we presented an earlier version of Java also extended by
closures [6]. We called the language Javaλ. We gave also a type
inference algorithm for Javaλ.
With respect to type inference there are three main differences
between Javaλ and Java 8. While in Java 8 functional interfaces
are target types of lambda expressions, in Javaλ real function types
are the types of lambda expressions. This induces that subtyping of
types of lambda expressions is completely different in Java 8 and
Javaλ.
In Java 8 there is no eval–operator which applies a lambda expres-
sion to arguments. In Java 8 the application of a lambda expression
can only be done by a method call of the corresponding method in
the functional interface.
Additionally in Java 8 method and constructor references are
added.

The paper is structured as follows. In the next section we define
the abstract syntax for a reduced language of Java 8 and present a
formal definition for the inferred functional interfaces. In the third
section we give the type inference rules and we consider the type
inference algorithm. In the fourth section we consider related work.
Finally we close with a summary and an outlook.

2. The language
2.1 Abstract representation
The language (Figure 1) is an abstract representation of a core
of Java 8. It is an extension of our language in [13]. The addi-
tional features are the lambda expressions and the method ref-
erences. A lambda expression is an anonymous function and
consists of optionally typed variables and either a statement or
an expression. Method references play the same role as lambda
expressions. The function is given as a reference to an exist-
ing method. There are three different kinds of method refer-
ences: static methods, respectively instance methods of an arbi-
trary object of a particular class (MethodRefClass), methods of a
particular object (MethodRefObject) and constructor references
(MethodRefNew).
The concrete syntax in this paper of the lambda expressions is
oriented at [7].
The optional type annotations [type] are the types which can be in-
ferred by our type inference algorithm. In original Java 8 argument
types of the lambda expressions can already be inferred. Our con-

3 sexp and bexp stands for simple and boolean expressions, which are
expressions of the base types int and boolean, respectively.

tributions are the type inference of the types of fields, the types of
methods and the types of local variables.
For the type inference the language is restricted such that a type-
less declared method must not be overloaded and overridden re-
spectively and it must not overrides another method.

2.2 Functional interfaces and target types
In this section we will present the extensions of the Java 8 type
system in a formalized way, which is defined in [2, 7]. Then we will
extend Java 8 such that a type inference system can be defined.
The set of Java types Typ in a Java 8 program p is given as in [8],
Section 4.5 and in [13], Section 24.
For the type descriptions of methods the Java types are not expres-
sive enough. Therefore function types are defined:

Definition 2.1 (Function types). Let Typ be a set of Java types.
The set of function types FTyp is defined by

• Typ ⊆ Ftyp

• For ty, tyi ∈ Ftyp (ty1, . . . , tyn) → ty ∈ Ftyp

Function types are only used for the description of methods. They
are not used in Java 8 programs.

In Java 8 lambda expressions are not typed by function types as in
Javaλ. Instead functional interfaces are used.

Definition 2.2 (Functional interface). An interface I , which have
only one method, is called a functional interface.

Many common callback interfaces have this property, such as
Runnable and Comparator.

Definition 2.3 (Compatible). A lambda expression is compatible
with a type T , if

• T is a functional interface type
• The lambda expression has the same number of parameters as

T ’s method, and those parameters’ types are the same
• Each expression returned by the lambda body is compatible

with T ’s method’s return type
• Each exception thrown by the lambda body is allowed by T ’s

method’s throws clause5

The compatible condition we denote by Comp(lexp, T).

Example 2.4. Let the functional interfaces Fun1 and Add be given:

interface Fun1<R,T> { R apply(T arg); }

interface Add { Fun1<Integer,Integer> add (Integer a); }

4 In [13, 15] we called the Java types simple types STypeTS (BTV).
5 Exceptions are not considered in this paper.

The lambda expression

(Integer x) -> (Integer y) -> (x + y)

is compatible with Add, as the type of the argument a respectively
x is Integer and (Integer y) -> (x + y) is compatible with
Fun1<Integer,Integer> .

Example 2.5. As in [2] showed the same lambda expressions can
be compatible with different types in different contexts. E.g. the
lambda expression

() -> "done";

is in the contexts

Callable<String> c = () -> "done";
PrivilegedAction<String> a = () -> "done";

compatible with Callable<String> respectively Privileged-
Action<String>6.

Remark. The notion of compatible types is continued analogously
on method and constructor references. Additionally the condition
Comp(m : ty, T) is defined analogously for method and con-
structor references.

Now we will extend Java 8 for type inference, such that each
lambda expression has a unique type description, which will be
inferred by the type inference algorithm.
We give an additional definition, which defines two functional
interfaces as equivalent, if their methods are equal.

Definition 2.6 (Equivalent functional interfaces). Two functional
interfaces are equivalent (in sign: ∼fi) if for its single methods
holds:

• the number of arguments and its types are equal
• the result types are equal or equivalent

Lemma 2.7. The relation ∼fi is an equivalence relation.

Example 2.8. In Example 2.5 Callable<T> and Privileged-
Action<T> are equivalent.

Finally we will define a canonical functional interface for each
equivalence class. Therefore we consider again the interface

interface Fun1<R,T> { R apply(T arg); }

from Example 2.4. This interface stands for a functional interface
with a method with one argument. For each functional interface
with one argument there is an instance of Fun1, which is equivalent.
This instance can be considered as a canonical representation. In
the following we generalize this idea. We extend Java 8 by the
following set of interfaces.

Definition 2.9 (Interface FunN). The language Java 8 is extended
for all N ∈ N by

interface FunN <R,T1 , . . . , TN > {
R apply(T1 arg1 , . . . , TN argN);

}

This leads directly to the following theorem.

Theorem 2.10 (Canonical representation). For each functional
interface there is an unique N, such that an instance of FunN is an
equivalent functional interface.
This instance is called canonical representation of the equivalence
class of functional interfaces.

6 In [7] these type are called target types.

Example 2.11. The canonical representation of the compatible
types of the lambda expression () -> "done" from Example 2.5 is
Fun0<String>.

2.3 Example
We will close the section by an example. We gave similar examples
also in [13] and [15] for the respective Java versions. With this
example the development of the programming language Java can
be demonstrated.

Example 2.12. The following Java 8 program implements the
multiplication of matrices.

class Matrix extends Vector<Vector<Integer>> {

Fun1<Fun1<Matrix, Fun2<Matrix, Matrix,Matrix>>, Matrix>
op = (Matrix m) -> (Fun2<Matrix, Matrix,Matrix> f) ->

f.apply(this, m);

Fun2<Matrix, Matrix,Matrix>
mul = (Matrix m1, Matrix m2) -> {

Matrix ret = new Matrix ();
for(int i = 0; i < size(); i++) {

Vector<Integer> v1 = m1.elementAt(i);
Vector<Integer> v2 = new Vector<Integer> ();
for (int j = 0; j < v1.size(); j++) {

int erg = 0;
for (int k = 0; k < v1.size(); k++) {

erg = erg + v1.elementAt(k)
* (m2.elementAt(k)).elementAt(j);

}
v2.addElement(erg);

}
ret.addElement(v2);

}
return ret; }

public static void main(String[] args) {
Matrix m1 = new Matrix(...);
Matrix m2 = new Matrix(...);
(m1.op.apply(m2)).apply(m1.mul);}

}

op is a function defined by a lambda expression. First it takes a
matrix resulting in a function. This function takes another function
which has as arguments two matrices and returns another matrix.
The function op applies the function to its object (this) and its first
argument. The method mul is the ordinary matrix multiplication
in closure representation. Finally, in main the function op of the
matrix m1 is applied to the matrix m2 and the function mul of m1.

3. Type inference
The base of many type inference algorithms is the algorithm W
which was presented by Damas and Milner [4]. The fundamental
idea of the algorithm is the type determination by type term uni-
fication [16]. In [13] we presented a type inference algorithm for
Java 5.0 which bases on W and our type unification algorithm for
Java 5.0 types [14]. In [15] we presented a type inference algo-
rithm for Javaλ which bases on the type inference algorithm which
was presented by Fuh and Mishra [5] for a λ–calculus with subtyp-
ing but without overloading. Our contribution in this paper is a new
type inference algorithm for Java 8 including overloading.
First we give the type inference rules, which can by considered as
a specification for the algorithm.

3.1 Type inference rules
The type inference rules define how to derive the types for identi-
fiers, expressions and statements under given assumptions.

(O ∪ {xi : θi }, τ, τ ′) BStmt s : θ
[lambdastmt]

(O, τ, τ ′) BExpr Lambda((x1 :θ1, . . . , xN :θN), s) :γ
Comp(Lambda((x1 : θ1, . . . , xN : θN), s), γ)

(O ∪ {xi : θi }, τ, τ ′) BExpr e : θ
[lambdaexpr]

(O, τ, τ ′) BExpr Lambda((x1 :θ1, . . . , xN :θN), e) : γ
Comp(Lambda((x1 :θ1, . . . , xN :θN), e), γ)

(Oτ , τ, τ ′) BId m : ty
[MethodRefClass]

(O, τ, τ ′) BExpr MethodRefClass(τ , m) : γ
Comp(m : ty, γ)

(O, τ, τ ′) BExpr re : τ , (Oτ , τ, τ ′) BId m : ty
[MethodRefObject]

(O, τ, τ ′) BExpr MethodRefObject(re, m) : γ
Comp(m : ty, γ)

(Oθ, τ, τ ′) BId <init>θ : ty
[MethodRefNew]

(O, τ, τ ′) BExpr MethodRefNew(θ) : γ
Comp(<init>θ : ty, γ)

(O, τ, τ ′) BExpr ve : θ′, (O, τ, τ ′) BExpr e : θ
[Assign]

(O, τ, τ ′) BExpr Assign(ve, e) : θ′
θ≤∗ θ′

(O, τ, τ ′) BExpr re : θ, ∀16 i6n : (O, τ, τ ′) BExpr ei : θi,
(θ′1 . . . θ′n, θ) = lub(θ, f, (θ1, . . . , θn))

[MethodCall]
(O, τ, τ ′) BExpr MethodCall(re, f(e1, . . . , en)) : θ

∀16 i6n : (O, τ, τ ′) BExpr ei : θi, (θ′1 . . . θ′n, θ) = lub(θ, <init>θ, (θ1, . . . , θn))
[New]

(O, τ, τ ′) BExpr New(θ, (e1, . . . , en)) : θ

(Oτ , τ, τ ′) BId v : θ
[LocalVar]

(O, τ, τ ′) BExpr LocalVar(v) : θ

(O, τ, τ ′) BExpr re : τ , (Oτ , τ, τ ′) BId v : θ
[InstVar]

(O, τ, τ ′) BExpr InstVar(re, v) : θ

(O, τ, τ ′) BExpr e : θ
[Cast]

(O, τ, τ ′) BExpr Cast(θ, e) : θ

[This] (O, τ, τ ′) BExpr this : τ

[Super] (O, τ, τ ′) BExpr super : τ ′

Figure 2. Expression rules

For the type inference system we need some additional definitions:
A set of type assumptions O is a map indexed by class names,
which maps method and variable names to types (e.g. OMatix =
{ mul : Fun2<Matrix, Matrix, Matrix> }). The elements of the
respective sets Oτ are determined by the class declarations, the
inheritance and the visibility.
In the following σ denotes a substitution, which substitutes some
type variables by types.
First we need an implication BId . We write

(Oτ , τ, τ ′) BId f : ty,

if in the class τ , whose direct superclass is τ ′, for an identifier f
the type ty is derivable from the type assumptions of the class τ .
Additionally we need two implications BExpr and BStmt .

(O, τ, τ ′) BExpr exp : θ means that under the type assumptions
O in the class τ , whose direct superclass is τ ′, the expression exp
has the type θ.
(O, τ, τ ′) BStmt stmt : θ means that under the type assumptions
O in the class τ , whose direct superclass is τ ′ the statement stmt
has the type θ.

3.1.1 Ident–rules
The Ident–rules defines the typings of identifiers. The Ident–rules
differ, if an identifier is declared in the actual class τ or in another
class. If an identifier is declared in the actual class τ all type vari-
ables must not be instantiated. Otherwise any instance is allowed7.

7 In [4] this differentiation is given by type schemes and types.

(O, τ, τ ′) BExpr e : θ
[Return]

(O, τ, τ ′) BStmt Return(e) : θ

(O, τ, τ ′) BStmt stmt : θ
[BlockInit]

(O, τ, τ ′) BStmt Block(stmt) : θ

(O, τ, τ ′) BStmt s1 : θ, (O, τ, τ ′) BStmt Block(s2; . . . ; sn;) : θ′

[Block]
(O, τ, τ ′) BStmt Block(s1; s2; . . . ; sn;) : θ

θ ∈ MUB(θ, θ′)

(O, τ, τ ′) BStmt s1 : Void, (O, τ, τ ′) BStmt Block(s2; . . . ; sn;) : θ
[Blockvoid]

(O, τ, τ ′) BStmt Block(s1; s2; . . . ; sn;) : θ

O′
τ = Oτ\{ v : θ′ } ∪ { v : θ }

((O\Oτ) ∪O′
τ , τ, τ ′) BStmt Block(s2; . . . ; sn;) : θ

[BlockLoVarDecl]
(O, τ, τ ′) BStmt Block(LocalVarDecl(v, θ); s2; . . . ; sn;) : θ

(O, τ, τ ′) BStmt s1 : θ, (O, τ, τ ′) BStmt s2 : θ′

(O, τ, τ ′) BExpr e : boolean
[If]

(O, τ, τ ′) BStmt If(e, s1, s2) : θ
θ ∈ MUB(θ1, θ2)

(O, τ, τ ′) BExpr Assign(ve, e) : θ
[Assign]

(O, τ, τ ′) BStmt Assign(ve, e) : Void

(O, τ, τ ′) BExpr New(θ, (e1, . . . , en)) : θ
[New]

(O, τ, τ ′) BStmt New(θ, (e1, . . . , en)) : Void

(O, τ, τ ′) BExpr MethodCall(e, f(e1, . . . , en)) : θ
[MethodCall]

(O, τ, τ ′) BStmt MethodCall(e, f(e1, . . . , en)) : Void

Figure 3. Statement Rules

(f : ty) ∈ Oτ
[Ident]

(Oτ , τ, τ ′) BId f : ty

(f : ty) ∈ Oτ
[IdentGen]

(Oτ , τ, τ ′) BId f : (σ′ ◦ σ)(ty)
τ 6= τ

3.1.2 Expression rules
In Figure 2 the type inference rules for the important Java 8 ex-
pressions are given.
There are two lambda–rules, as the body of the lambda expression
can either be a statement or an expression. In both cases the types
of the lambda expressions are functional interfaces, which are com-
patible with the corresponding lambda expression.
The MethodRefClass/Object/New–rules are similar to the rules
for the lambda expressions. From the type of the respective method
a corresponding functional interface is derived.
The Assign-rule is canonically defined.
In the MethodCall–rule first the type θ of the receiver re is derived.
Then the types θi of the arguments ei are derived, which are
subtypes of the argument types θ′i of the method. The arity and
the result type of the method (θ′1, . . . , θ′n, θ) is the determined as
the least upper bound arity of the method greater than (θ1, . . . , θn)
by:

Definition 3.1. (lub (least upper bound)) The function
lub : Typ × Identifiers× Typ

∗ → Typ
∗ × Typ is defined by:

lub(θ, f, θ1 . . . θn) = (θ′1 . . . θ′n, θ),

if (θ′1 . . . θ′n) is the smallest tuple with

(θ1, . . . , θn)≤∗ (θ′1, . . . , θ′n) and Oθ BId f : (θ′1, . . . , θ′n) → θ.

In the New–rule <init>θ denotes a constructor of the class θ.
The rule is similar to the MethodCall–rule. Only the type for the
receiver is not derived and the result type is given as θ.
The LocalVar–rule derives the type of variables of the actual
method .
The Cast–rule casts the type of the given expression e to the given
type θ.
The InstVar–rule types identifiers which are defined in a class θ as
fields.
The This–rule types the expression this by its class τ .
The Super–rule types the expression super by its superclass τ ′.
For boolean expressions bexp and simple expressions sexp the rules
are defined analogously.

3.1.3 Statement rules
In Fig. 3 the type inference rules for the important Java 8 state-
ments are given.

The Return–statement determines the result type of a list of state-
ments, which is closed by the return-statement. Therefore the state-
ment gets the corresponding expression type. If there is no return-
statement, there is no result type. We infer in this case Void8.
The type of a block of statements is basically defined by the type of
its closing statement (rule BlockInit). Stepwise the type of a block
is given by the minimal upper bound (MUB) of the first statement
and the type of the block of the rest-statements (Block-rule). If the
type of the first statement is given as Void then the type of the
block is preserved (Blockvoid-rule). The BlockLoVarDeclBlock–
rule replaces the assumption of the declared typed variable in the
set of type assumptions. As the type of the LocalVarDecl statement
is Void the type of the block is unchanged.
The type of the If–statement is determined by the minimal upper
bound of the type of if- and the else-branch.
The statements Assign, New and MethodCall have the type Void,
as no result is returned.

3.2 Type inference algorithm
The type inference algorithm for Java 8 is a combination of our
approaches in [13] for Java 5.0 and in [15] for Javaλ. We adapt
the function TYPE from [15] by introducing the interfaces FunN
and overloading respective overriding for Java methods. We solve
the resulting constraints9 by the type unification of [14].
First we have to give two auxiliary definitions.

Definition 3.2 (Set of type assumptions TypeAssumptions). The
set of type assumptions contains three different forms of elements:

v : θ: Assumptions for fields or local variables of the actual class.
τ.v : θ: Assumptions for fields of the class τ .
τ.m : (θ1, . . . , θn) → θ: Assumptions for the methods of the class

τ .

Additionally we extend the set of constraints, such that for the alter-
native types of overloaded and overridden methods also constraints
can be given.

Definition 3.3 (Set of constraints ConstraintsSet). The set of
constraints consists of constraints of the form θ R θ′, where θ and
θ′ are Java types and R (R ∈ {l, l? ,

.
= })10 is a subtyping

condition. As method overloading and overriding are allowed two
new symbols ∨ and ‖ are introduced. These symbols stands for
alternatives in the set of constraints. The ∨–symbol is used for
constraints, which are deduced by overloaded methods and the ‖–
symbol is used for constraints, which are deduced by overridden
methods.

Both new symbols ∨ and ‖ can be considered as disjunctions.

In this paper we will present all algorithms again in a functional
style, like in Haskell. We use the let–construction and pattern
matching, which means that for each data-constructor in functions
an own equation is given.

3.2.1 The function TYPE
The function TYPE inserts type annotations, widely type variables
as placeholders, in the Java class and determines a set of type
constraints.
In TYPE the functions TYPEExpr and TYPEStmt determine the
constraints for the expressions and the statements respectively.

8 In [2] the inference of Void and the relation to the base type void is an
unresolved question.
9 In [15] the constraints were called coercions.
10 In [14] we introduced besides the usual subtyping condition l two other
subtyping conditions l? and .

= for subterm subtyping.

The function TYPE is given as:
TYPE: TypeAssumptions× Class

→ TClass× ConstraintsSet

TYPE(Ass, Class(τ, extends(τ ′), fdecls,mdecls)) = let
fdecls = [Field(f1, lexpr1), . . . , Field(fn, lexprn)]11

mdecls = [Method(me1, (v1, . . . , vm1), bl1), . . . ,
Method(mem, (v1, . . . , vmm), blm)]11

ftypeass = { this.fi : ai | ai fresh type variables }
∪ { this.mj : (bj1, . . . , bjmi) → bj

bj , bjk fresh type variables
∪ { this : τ, super : τ ′ }
∪ { visible types of methods and fields of τ ′ }

AssAll = Ass ∪ ftypeass
Forall 16 i6n

(lexpit : rtyFi, ConSFi) = TYPEExpr(AssAll, lexpri)
Forall 16j 6m

(bljt : rtyMj , ConSMj) = TYPEStmt(AssAll, blj)
fdeclst =

[Field(a1, f1, lexpr1t), . . . , Field(an, fn, lexprnt)]
mdeclst =

[Method(b1, me1, (v1 : b11), . . . , (vm1 : b1m1), bl1t)
, . . . ,
Method(bm, mem, (v1 : bm1), . . . , (vmm : bmmm), blmt)]

in
(Class(τ, extends(τ ′), fdeclst,mdeclst),
(
S

i ConSFi ∪ { (rTyFi l ai) | 16 i6n })∪S
i ConSMi ∪ { (rTyMi l bj) | 16j 6m })

In the following type variables of identifier’s types are refreshed,
if there are not members of the actual class. This is done such that
different instances of the type variables are possible12. The function
fresh refreshes the type variables.
The function ass(this) gives the type assumption of the actual
class (type assumption of this).

The function TYPEExpr is given as:

TYPEExpr: TypeAssumptions× Expr
→ TExpr× ConstraintsSet

TYPEExpr(Ass, Lambda((x1, . . . , xN), expr|stmt)) =
let

AssArgs = {xi : ai | ai fresh type variables }
(exprt : rty, ConS) = TYPEExpr(Ass ∪AssArgs, expr)
| (stmtt : rty, ConS) = TYPEStmt(Ass ∪AssArgs, stmt)

in
(Lambda((x1 :a1, . . . , xN :aN), exprt :rty|stmtt :rty) :a,
ConS ∪ { (FunN<rty, a1, . . . , aN> l a) }),

where a is a fresh type variable

TYPEExpr(Ass, MethodRefClass(τ, m)) =
(MethodRefClass(τ, m) : a,

{
W

τ.m:(θ1, . . . , θN) → θ∈Ass{ (FunN<θ̃, θ̃1, . . . , θ̃N>la)}}),
where θ̃ = θ and θ̃i = θi, if τ = ass(this),

otherwise θ̃ = fresh(θ), θ̃i = fresh(θi)
and a is a fresh type variable

TYPEExpr(Ass, MethodRefObject(re, m)) =
let (ret : rty, ConS) = TYPEExpr(Ass, re)
in (MethodRefObject(ret : rty, m) : a,

ConS ∪ {
W

τ.m:(θ1, . . . , θN) → θ∈Ass

{ (rty l τ), (FunN<θ̃, θ̃1, . . . , θ̃N> l a) } }),

11 We assume without loss of generality that all fields and methods are
declared typeless and that all fields are initialized by expressions.
12 In [4] this differentiation is given by type schemes and types.

where θ̃ = θ and θ̃i = θi, if τ = ass(this),

otherwise θ̃ = fresh(θ), θ̃i = fresh(θi)
and a is a fresh type variable

TYPEExpr(Ass, MethodRefNew(θ)) =
(MethodRefNew(θ) : a,
{

W
θ.<init>θ :(θ1, . . . , θN) → θ∈Ass

{ (FunN<θ̃, θ̃1, . . . , θ̃n> l a) } },
where θ̃ = θ and θ̃i = θi, if θ = ass(this),

otherwise θ̃ = fresh(θ), θ̃i = fresh(θi)
and a is a fresh type variable

TYPEExpr(Ass, Assign(ve, e)) =
let

(et : rty2, ConS2) = TYPEExpr(Ass, e)
(vet : rty1, ConS1) = TYPEExpr(Ass, ve)

in
(Assign(vet : rty1, et : rty2) : a,
CoesS1 ∪ CoesS2 ∪
{ (rty2 l rty1), (rty1 l a) }),
where a is a fresh type variable

TYPEExpr(Ass, MethodCall(re, m(e1, . . . , en))) =
let

(ret : rty, ConS) = TYPEExpr(Ass, re)
(eit : rtyi, ConSi) = TYPEExpr(Ass, ei), ∀16 i6n

in
(MethodCall(ret :rty, m(e1t :rty1, . . . , ent :rtyn)) :a,
ConS ∪

S
i ConSi ∪

{ overloading(m, Ass, (rty, (rty1, . . . , rtyn)), a) }
where a is a fresh type variable

where overloading is given as

overloading(m, Ass, (τ , (θ1, . . . , θn), a)) =
let

Assm = set of all type assumptions for m with n arguments
MAssm = set of all type assumptions in Assm where the

tupel (receiver, argtypes, rettype) is minimal
wrt.≤∗ .

in W
ass∈MAssm

(constraints(ass, (τ , (θ1, . . . , θn), a)) ‖f
ass′∈sargs(ass,Ass) constraints(ass′, (τ , (θ1, . . . , θn), a))

with
constraints(this.m : (θ1, . . . , θn) → θ, (τ , (θ1, . . . , θn), a)) =
{ τ l ass(this) } ∪ { θi l θi | 16 i6n } ∪ { θ l a }

constraints(τ.m : (θ1, . . . , θn) → θ, (τ , (θ1, . . . , θn), a)) =
let

(τ̃ , (θ̃1, . . . , θ̃n) → θ̃) = fresh(τ, (θ1, . . . , θn) → θ)
in

{ τ l τ̃ } ∪ { θi l θ̃i | 16 i6n } ∪ { θ̃ l a }
and
sargs(τ.m : (θ1, . . . , θn) → θ, Ass) =

{ τ.m : (θ′1, . . . , θ′n) → θ′′ ∈ Ass | θi �∗ θ′i, 16 i6n }
overloading determines for all possible overloadings and overrid-
ings of a method the constraints, where constraints itself forms
the constraints from the receiver type, the argument types, the re-
turn type and a given type assumption for the method. If it is a
method from a class, which is not the actual class (this), all type
variables are replaced by fresh type variables (fresh), as different
instances can occur. sargs determines all type assumptions of a
method, where the argument types are supertypes of a minimal type
assumption.
We give a small example for overloading:

Example 3.4. Let for the method m a set of type assumptions
Assm = { A.m : String→ String,

A.m : Integer→ Integer,
A.m : Object→ Object,
A′.m : Object→ Object,
B.m : Float→ Float }

be given, with A≤∗ A′, B 6≤∗ A and A 6≤∗ B. Then holds:

MAssm = { A.m : String→ String,
A.m : Integer→ Integer,
A′.m : Object→ Object,
B.m : Float→ Float }

overloading(m, Assm, (τ , (θ1), a)) =
{ τ l A, θ1 l String, String l a }
‖ { τ l A, θ1 l Object, Object l a }

∨{ τ l A, θ1 l Integer, Integer l a }
‖ { τ l A, θ1 l Object, Object l a }

∨{ τ l A′, θ1 l Object, Object l a }
∨{ τ l B, θ1 l Float, Float l a }

Let us continue the function TYPEExpr.

TYPEExpr(Ass, New(θ, e1, . . . , en)) =
let

(eit : rtyi, ConSi) = TYPEExpr(Ass, ei), ∀16 i6n
in

(New(θ, e1t : rty1, . . . , ent : rtyn) : a,S
i ConSi ∪
{ overloading(<init>θ, Ass, (θ, (rty1, . . . , rtyn)), a) }

TYPEExpr(Ass, InstVar(re, v)) =
let

(rty, ConS) = TYPEExpr(Ass, re)
in

(InstVar(re : rty, v) : a,

ConS ∪ {
W

τ.v:θ∈Ass{ (rty l τ), (θ̃ l a) } }
where θ̃ = θ, if τ = ass(this), otherwise θ̃ = fresh(θ)
and a is a fresh type variable

We omit the remaining cases of TYPEExpr for LocalVar, and
Cast. These are given analogously.

In the functions TYPE and TYPEExpr the function TYPEStmt
for the typing of statements is called. The function TYPEStmt is
given as:

TYPEStmt: TypeAssumptions× Stmt
→ TStmt× ConstraintsSet

TYPEStmt(Ass, Return(e)) =
let

(et : rty, ConS) = TYPEExpr(Ass, e)
in

(Return(et : rty) : a, ConS ∪ { (rty l a) })
where a is a fresh type variable

TYPEStmt(Ass, Block(s)) =
let

(st : rty, ConS) = TYPEStmt(Ass, s)
in

(Block(st : rty) : rty, ConS)

TYPEStmt(Ass, Block(LocalVarDecl(v, θ), s2, . . . , sn)) =
let

(Block(s2t , . . . , snt) : rty, ConS) =
TYPEStmt(Ass\ { v : θ′ } ∪ { v : θ },

Block(s2, . . . , sn))
in

(Block(LocalVarDecl(v, θ) :Void, s2t , . . . , snt) :rty,
ConS)

TYPEStmt(Ass, Block(s1, . . . , sn)) =
let

(s1t : rty1, ConS1) = TYPEStmt(Ass, s1)
(Block(s2t , . . . , snt) : rty2, ConS2) =

TYPEStmt(Ass, Block(s2, . . . , sn))
in

(Block(s1t : rty1, s2t , . . . , snt) : a,
ConS1 ∪ ConS2 ∪ { (rty1 l a), (rty2 l a) })

where a is a fresh type variable

TYPEStmt(Ass, if(e, s1, s2)) =
let

(et : rty0, ConS0) = TYPEExpr(Ass, e)
(s1t : rty1, ConS1) = TYPEStmt(Ass, s1)
(s2t : rty2, ConS2) = TYPEStmt(Ass, s2)

in
(if(et : rty0, s1t : rty1, s2t : rty2) : a,
ConS0 ∪ ConS1 ∪ ConS2 ∪
{ (rty0 l boolean), (rty1 l a), (rty2 l a) })

where a is a fresh type variable

For the statements Assign, New and MethodCall the function
TYPEStmt is given as:

TYPEStmt(Ass, stmt) =
let (stmt : rty, ConS) = TYPEExpr(Ass, stmt)
in (stmt : Void, ConS)

Example 3.5. We consider again the class Matrix from Example
2.12. Now we consider only the untyped function op.

class Matrix extends Vector<Vector<Integer>> {
op = (m) -> (f) -> f.apply(this, m); }

In TYPE the function TYPEExpr is called with the arguments
AssAll = { Fun2<R,T1,T2>.apply : (T1, T2) → R,

this.op : aop, this : Matrix } and
lexpr1 = Lam(m, Lam(f, MCall(LoVar(f),

apply(this, LoVar(m))))).

The result contains:
lexpr1t =

Lam(m : am,
Lam(f : af ,

MCall(LoVar(f) : af ,
apply(this : Matrix,

LoVar(m) : am)) : aapp) : aλf) : aλm

and the set of constraint:
{ (aλm l aop), (Fun1<aλf , am> l aλm),
(Fun1<aapp, af> l aλf), (af l Fun2<a3, a1, a2>),
(Matrix l a1), (am l a2), (a3 l aapp },

where the indices of the type variables are named by its subterms.

We give another example to show overloading respectively overrid-
ing.

Example 3.6. Let us consider the class

class Main {
r;
app m = r.m(1);

}

Let the set of type assumptions Assm be given as in Example 3.4.
With this.r : ar and this.app m : aapp m the constraints of the
result of TYPE are given as:

{ (Integer l a1), ar.m(1) l aapp m }
∪ { overloading(m, Assm, (ar, (a1), ar.m(1))) }

= { (Integer l a1), ar.m(1) l aapp m,
{ ar l A, a1 l String, String l ar.m(1) }
‖ { ar l A, a1 l Object, Object l ar.m(1) }

∨{ ar l A, a1 l Integer, Integer l ar.m(1) }
‖ { ar l A, a1 l Object, Object l ar.m(1) }

∨{ ar l A′, a1 l Object, Object l ar.m(1) }
∨{ ar l B, a1 l Float, Float l ar.m(1) } }

3.2.2 The function SOLVE
The function SOLVE determines the solutions of the set of con-
straints.
SOLVE: ConstraintsSet→ Constraints SubstSet×{ ok, ? }

SOLVE(CS) =
let (CSSet, chk) = FlatOverl(CS)
in (SOLVE1(CSSet), chk)

The result of SOLVE is a pair, where SOLVE1 determines the set
of solutions of the given constraint set and chk shows if the result
is safe (ok) or the result is unsafe (?) and must be checked again in
the algorithm TI (Section 3.2.3).
The function FlatOverl erases the disjunctions in the set of con-
straints by constructing a cartesian product of the possible con-
straints.

FlatOverl(CS ∪ { θ l θ′ }) =
let (CSs, chk) = FlatOverl(CS)
in (CSs × { θ l θ′ }, chk)

FlatOverl(CS ∪ { (
W

τ∈Ty(
f

ty∈FTy CS(τ,ty))) }) =
let (CSs, chk) = FlatOverl(CS)
in (CSs ×

S
τ∈Ty,ty∈FTy CS(τ,ty), ?)

FlatOverl(CS ∪ { (
W

τ∈Ty CSτ)) }) =
let (CSs, chk) = FlatOverl(CS)

in (CSs ×
[

τ∈Ty

CSτ , (chk ∧ ok))

FlatOverl(∅) = (∅, ok)

If in a set of constraints no overriding ‖ is given, the solution is safe
(ok). Otherwise the solution is unsafe (?), as in the function over-
loading all possible overridden types are assumed as alternatives.
Furthermore it holds ok ∧ ok = ok and otherwise x ∧ y = ?.
In SOLVE1 the type unification from [14] is called. There are
two cases of results of the type unification. Either the results are
in solved form, which means that all instances of the remaining
type variables are correct solutions. Otherwise besides the solutions
there are remaining constraints of the form a R a′, where a and a′

are type variables. In this case all instances of type variables are
correct, if they fulfill these constraints.

SOLVE1(CSSet) =
foreach cs ∈ CSSet

let subscs = TUnify(cs)
if (there are σ ∈ subscs in solved form) thenS

cs{ c ∈ subscs | c is in solved form }
if (there are σ ∈ subscs, which has the form
{ v R v′ | v, v′are type vars }

∪ { v
.
= θ | v is a type vars }) thenS

cs{ c ∈ subscs | c has the given form }

Finally both functions TYPE and SOLVE are combined to the type
inference algorithm by the function TI.

3.2.3 The type inference algorithm TI
The type inference algorithm for Java 8 TI calls first the function
TYPE. The function TYPE inserts type annotations, widely type
variables as placeholders, in the Java class and determines a set
of type constraints. Second the function SOLVE solves the type
constraints by type unification. Finally the set of substitutions,
which are results of SOLVE, are applied to the type annotated
Java class. The result of TI is a set of pairs of a remaining set
of constraints and a typed Java 8 class.
TI: TypeAssumptions× Class→ { (Constraints, TClass) }
TI(Ass, Class(τ, extends(τ ′), fdecls, mdecls)) =

let
(Class(τ, extends(τ ′), fdeclst, mdeclst), ConS) =

TYPE(Ass, Class(τ, extends(τ ′), fdecls, mdecls))
({ (cs1, σ1), . . . , (csn, σn) }, chk) = SOLVE(ConS)

in
{ (csi, σi(Class(τ, extends(τ ′), fdeclst, mdeclst)))

| 16 i6n }
The result of TI is a set of typed Java 8 classes with constraints.
As Java does not contain type constraints, we consider as results
all programs, where the instances of the type variables fulfill the
constraints. For overridden methods (chk = ?) the types of the
instances must be checked by the MethodCall–rule, as in the
function overloading all possible overridden types are assumed as
alternatives.

Example 3.7. We continue Example 3.5. The set of constraints is
given as:
CSSet = { { (aλm l aop), (Fun1<aλf , am> l aλm),

(Fun1<aapp, af> l aλf), (af l Fun2<a3, a1, a2>),
(Matrix l a1), (am l a2), (a3 l aapp) } }

For cs ∈ CSSet call of TUnify: With step 4 (TUnify) we get:

{{aλm l aop, aλm
.
= Fun1<aλf , am>,

aλf
.
= Fun1<aapp , af>, af

.
= Fun2<a3, a1, a2>,

a1
.
= Matrix, am l a2, a3 l aapp },

{aλm l aop, aλm
.
= Fun1<aλf , am>,

aλf
.
= Fun1<aapp , af>, af

.
= Fun2<a3, a1, a2>,

a1
.
= Vec<Vec<Int>>, am l a2, a3 l aapp } }

With step 5 (subst) and step 6 of TUnify we get:
{({am l a2, a3 l aapp },
{aop

.
= Fun1<Fun1<aapp , Fun2<a3, Matrix, a2>>, am>,

aλm
.
= Fun1<Fun1<aapp , Fun2<a3, Matrix, a2>>, am>,

aλf
.
= Fun1<aapp , Fun2<a3, Matrix, a2>>,

af
.
= Fun2<a3, Matrix, a2>, a1

.
= Matrix })

({am l a2, a3 l aapp },
{aop

.
= Fun1<Fun1<aapp , Fun2<a3, Vec<Vec<Int>>, a2>>, am>,

aλm
.
= Fun1<Fun1<aapp , Fun2<a3, Vec<Vec<Int>>, a2>>, am>,

aλf
.
= Fun1<aapp , Fun2<a3, Vec<Vec<Int>>, a2>>,

af
.
= Fun2<a3, Vec<Vec<Int>>, a2>, a1

.
= Vec<Vec<Int>> }) }

One result is given as the instances { am 7→ Matrix, a2 7→
Matrix, a3 7→ Matrix, aapp 7→ Matrix }. It is obvious that the
constraints are fulfilled. As there is no overriding (chk = ok) this
is a result. This result corresponds to the typing in Example 2.12.
But there is another result which is more general.
class Matrix<T2, T1 extends T2, T4, T3 extends T4>
extends Vector<Vector<Integer>> {

Fun1<Fun1<T4, Fun2<T3, Matrix,T2>>, T1>
op = (T1 m) -> (Fun2<T3, Matrix,T2> f) ->

f.apply(this, m); }

The corresponding instances are given as { am 7→ T1, a2 7→
T2, a3 7→ T3, aapp 7→ T4 }. The instances fulfill the constraints.

Example 3.8. We continue Example 3.6. First the function Flat-
Overl has to be applied, which leads to

CSSet= { { (Integer l a1), (ar.m(1) l aapp m),
(ar l A), (a1 l String), (String l ar.m(1)) }, (1)
{(Integer l a1), (ar.m(1) l aapp m),
(ar l A), (a1 l Object), (Object l ar.m(1)) }, (2)
{(Integer l a1), (ar.m(1) l aapp m),
(ar l A), (a1 l Integer), (Integer l ar.m(1)) }, (3)
{(Integer l a1), (ar.m(1) l aapp m),
(ar l A

′), (a1 l Object), (Object l ar.m(1)) }, (4)
{(Integer l a1), (ar.m(1) l aapp m),
(ar l B), (a1 l Float), (Float l ar.m(1)) } } (5)

chk = ?
In SOLVE1 the type unification TUnify is applied to each element
cs ∈ CSSet. The result of SOLVE1 is:
{ { (ar

.
= A), (a1

.
= Integer), (aapp m

.
= Object),

(ar.m(1)
.
= Object) }, (from(2))

{ (ar
.
= A), (a1

.
= Object), (aapp m

.
= Object),

(ar.m(1)
.
= Object) }, (from(2))

{ (ar
.
= A), (a1

.
= Integer), (aapp m

.
= Integer),

(ar.m(1)
.
= Integer) }, (from(3))

{ (ar
.
= A), (a1

.
= Integer), (aapp m

.
= Object),

(ar.m(1)
.
= Integer) }, (from(3))

{ (ar
.
= A′), (a1

.
= Object), (aapp m

.
= Object),

(ar.m(1)
.
= Object) }, (from(4))

{ (ar
.
= A′), (a1

.
= Integer), (aapp m

.
= Object),

(ar.m(1)
.
= Object) } (from(4))

}

As there are overridings (chk = ?) the results must be checked by
the MethodCall–rule. The correct results are then given as:
{{(ar

.
=A),(a1

.
=Integer),(aapp m

.
=Object),(ar.m(1)

.
=Object)},

{(ar
.
=A),(a1

.
=Integer),(aapp m

.
=Integer),

(ar.m(1)
.
=Integer)},

{(ar
.
=A),(a1

.
=Integer),(aapp m

.
=Object), (ar.m(1)

.
=Integer)},

{(ar
.
=A′),(a1

.
=Object),(aapp m

.
=Object),(ar.m(1)

.
=Object)}

{(ar
.
=A′),(a1

.
=Integer),(aapp m

.
=Object),(ar.m(1)

.
=Object)}

}

Theorem 3.9 (Correctness and Completeness). Let a set of type
assumptions Ass and a class τ be given. Then the following is
equivalent:

• Class(τ, extends(τ ′), fdeclsr,mdeclsr)) with
fdeclsr =

[Field(t1, f1, lexpr1r), . . . , Field(tn, fn, lexprnr)]
mdeclsr =

[Method(t′1, me1, (v1 : t′11), . . . , (vm1 : t′1m1), bl1r)
, . . . ,
Method(t′m, mem, (v1 : t′m1), . . . , (vmm : t′mmm), blmr)]

is a result of the type inference algorithm TI(Ass, τ), where
the type variables are instanced such they fulfill the constraints.

• There are equivalent types ti ∼fi ti, t
′
jk ∼fi t′jk and t

′
j ∼fi t′j

such that with Oθ = { id : ty | θ.id : ty ∈ Ass } for θ 6= τ and
Oτ = { fi : ti | 16 i6n } ∪ {mj : (t

′
j1, . . . , t′jmj

) → t
′
j | 16

j 6 m } holds for 1 6 i 6 n : (O, τ, τ ′) BExpr lexpri : ti

respectively (O, τ, τ ′) BStmt lexpri : ti and with Oτ =
{ fi : ti | 16 i6n }∪{mj : (t

′
j1, . . . , t

′
jmj

) → t
′
j | 16j 6m }

∪ { vk : t
′
jk | 1 6 j 6 m, 1 6 k 6 mj } holds for 1 6 j 6 m:

(O, τ, τ ′) BStmt blj : t
′
j .

Proof. We will give a sketch of the prove.

1. Step: By induction we prove that the solution of the resulting
constraints set of TYPE is equivalent to the derivation of the
types of the corresponding expressions respectively statements
by BExpr respectively BStmt .

2. Step: The algorithm TUnify is correct and complete and solve
the constraints set.

Two exceptions must be considered. On the one hand all overridden
methods are assumed as possible method calls (function overload-
ing). Therefore some derived types from the results of TI are not
type correct. These must be erased, which is done by checking with
the MethodCall–rule.
On the other hand results of the algorithm TUnify, which contains
pairs v R v′, where v and v′ are type variables, are considered in
SOLVE1. These pairs are not considered in [14]. We prove that in-
stances, which solve the constraints are type unifiers. Furthermore
we prove, that for all other results of TUnify, which are not in
solved form (all pairs of the form v

.
= θ), there is no type uni-

fier.

4. Related Work
The programming language Scala [11] allows functional program-
ming features similar to Javaλ. In Scala functions are also first-
class citizens. It supports lambda expressions as well as higher-
order functions. In addition to Java Scala allows real function types
as in Javaλ, currying and pattern-matching.
In comparison to our approach, Scala contains indeed a type–
inference system. But the type–inference system is restricted to lo-
cal type inference [12], which means that often type declarations
of variables and result types of methods can be omitted. For com-
plete lambda expressions and recursive methods, it is not possible
to infer the result types.
In C# (e.g. [17]) closures are also included. Function types are
given as delegates. Delegates are similar to function pointers in C
or C++. A delegate defines a type that encapsulates a method with
argument types and a return type. A delegate plays the role in C# as
a functional interfaces in Java 8. In C# there is no type inference.
The basis of all type inference systems is the approach of Hindley,
Damas and Milner [4, 9, 10]. They described a type inference
system for a lambda calculus with parameteric polymorphic types,
but without subtyping. There are many extensions of this Hindley-
Milner approach. One extension is the approach of Fuh and Mishra
[5], which we used in the type inference algorithm for Javaλ

[15]. Another extension is the approach of Aiken and Wimmer [3].
They consider type inclusion constraints, which are comparable to
our type constraints, but their type system contains additionally
intersection types, union types and function types.

5. Conclusion and future work
We have considered the Java 8 extensions closures and functional
interfaces. We defined first an equivalence relation on functional
interfaces and gave type inference rules for a core of Java 8. Fi-
nally we presented a type inference algorithm for Java 8, which
infers types for complete closures and methods. The algorithm is
an enhancement of the approaches of Fuh and Mishra [5] and of
our approaches [13, 14].
In the future, we will give a principal typing property [18] for
Java 8. That is why the type system must by extended, such that
type constraints on type variables are introduced. The constraints
can be introduced in Java as class parameters, similar as in Ex-
ample 3.7. Therefore it must be allowed to give a type variable
multiple times in the parameter list. Additionally, a class param-
eter inference can be introduced, where the class parameters are

given as the remaining type variables of the result of the type infer-
ence algorithm. Finally an IDE has to be developed, which supports
the user by automatic type inference, similar as we have done for
Java 5.0 [13].
Another approach could be the enhancement of the type inference
for Javaλ. The main difference between Javaλ and Java 8 is that
Javaλ has real function types. The idea is to use our type unifica-
tion [14] in the type inference algorithm for Javaλ [15]. It would
improve the results, such that they are not any longer unsignificant
well-typings, but unique types with some type constraints.

References
[1] Project lambda: Java language specification draft. 2010. Version 0.1.5.
[2] Lambda specification. 2011. URL http://jcp.org/aboutJava/

communityprocess/edr/jsr335/index.html. Version 0.4.2.
[3] A. Aiken and E. L. Wimmers. Type inclusion constraints and type

inference. In Functional Programming Languages and Computer
Architecture, pages 31–41, 1993.

[4] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. Proc. 9th Symposium on Principles of Programming Lan-
guages, 1982.

[5] Y.-C. Fuh and P. Mishra. Type inference with subtypes. Proceedings
2nd European Symposium on Programming (ESOP ’88), pages 94–
114, 1988.

[6] B. Goetz. State of the lambda. 10 October 2010. URL
http://cr.openjdk.java.net/˜Briangoetz/lambda/
lambda-state-3.html.

[7] B. Goetz. State of the lambda. December 2011. URL
http://cr.openjdk.java.net/˜Briangoetz/lambda/
lambda-state-4.html.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language
Specification. The Java series. Addison-Wesley, 3rd edition, 2005.

[9] R. Hindley. The principle type scheme of an object in combinatory
logic. Trans. Am. Math. Soc. 146, pages 29–60, December 1969.

[10] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–378, 1978.

[11] M. Odersky. The Scala language specication version 2.9.
http://www.scala-lang.org/docu/files/ScalaReference.pdf, May 2011.
Draft.

[12] M. Odersky, C. Zenger, and M. Zenger. Colored local type inference.
POPL 2001 Proc. 28th ACM Symposium on Principles of Program-
ming Languages, 36(3):41–53, 2001.

[13] M. Plümicke. Typeless Programming in Java 5.0 with wildcards. In
V. Amaral, L. Veiga, L. Marcelino, and H. C. Cunningham, editors, 5th
International Conference on Principles and Practices of Programming
in Java, volume 272 of ACM International Conference Proceeding
Series, pages 73–82, September 2007.

[14] M. Plümicke. Java type unification with wildcards. In D. Seipel,
M. Hanus, and A. Wolf, editors, 17th International Conference,
INAP 2007, and 21st Workshop on Logic Programming, WLP 2007,
Würzburg, Germany, October 4-6, 2007, Revised Selected Papers, vol-
ume 5437 of Lecture Notes in Artificial Intelligence, pages 223–240.
Springer-Verlag Heidelberg, 2009.

[15] M. Plümicke. Well-typings for Javaλ. In Proceedings of
the 9th International Conference on Principles and Practice of
Programming in Java, PPPJ ’11, pages 91–100, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0935-6. doi:
http://doi.acm.org/10.1145/2093157.2093171.

[16] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of ACM, 12(1):23–41, Jan. 1965.

[17] J. Skeet. C# in Depth. Manning Publications Co., second edition,
2010.

[18] S. van Bakel. Principal type schemes for the strict type assignment
system. Journal of Logic and Computing, 3(6):643–670, 1993.

