added Bytecode documentation
This commit is contained in:
parent
2c928ad69b
commit
fa9f8c3425
69
doc/bytecode.md
Normal file
69
doc/bytecode.md
Normal file
@ -0,0 +1,69 @@
|
||||
# Bytecodegenerierung
|
||||
|
||||
Die Bytecodegenerierung ist letztendlich eine zweistufige Transformation:
|
||||
|
||||
`Getypter AST -> [ClassFile] -> [[Word8]]`
|
||||
|
||||
Vom AST, der bereits den Typcheck durchlaufen hat, wird zunächst eine Abbildung in die einzelnen ClassFiles vorgenommen. Diese ClassFiles werden anschließend in deren Byte-Repräsentation serialisiert.
|
||||
|
||||
## Serialisierung
|
||||
|
||||
Damit Bytecode generiert werden kann, braucht es Strukturen, die die Daten halten, die letztendlich serialisiert werden. Die JVM erwartet den kompilierten Code in handliche Pakete verpackt. Die Struktur dieser Pakete ist [so definiert](https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html).
|
||||
|
||||
Jede Struktur, die in dieser übergreifenden Class File vorkommt, haben wir in Haskell abgebildet. Es gibt z.B die Struktur "ClassFile", die wiederum weitere Strukturen wie z.B Informationen über Felder oder Methoden der Klasse. Alle diese Strukturen implementieren folgendes TypeClass:
|
||||
|
||||
```
|
||||
class Serializable a where
|
||||
serialize :: a -> [Word8]
|
||||
```
|
||||
|
||||
Die Struktur ClassFile ruft für deren Kinder rekursiv diese `serialize` Funktion auf. Am Ende bleibt eine flache Word8-Liste übrig, die Serialisierung ist damit abgeschlossen.
|
||||
|
||||
## Codegenerierung
|
||||
|
||||
Für die erste der beiden Transformationen (`Getypter AST -> [ClassFile]`) werden die Konzepte der "Builder" und "Assembler" eingeführt. Sie sind wie folgt definiert:
|
||||
```
|
||||
type ClassFileBuilder a = a -> ClassFile -> ClassFile
|
||||
type Assembler a = ([ConstantInfo], [Operation], [String]) -> a -> ([ConstantInfo], [Operation], [String])
|
||||
```
|
||||
|
||||
Die Idee hinter beiden ist, dass sie jeweils zwei Inputs haben, wobei der Rückgabewert immer den gleichen Typ hat wie einer der inputs. Das erlaubt es, eine Faltung durchzuführen. Ein ClassFileBuilder z.B bekommt als ersten Parameter den AST, und als zweiten Parameter (und Rückgabewert) eine ClassFile. Soll nun eine Klasse gebaut werden, wird der ClassFileBuilder mit dem AST und einer leeren ClassFile aufgerufen. Der Zustand dieser anfangs leeren ClassFile wird durch alle folgenden Builder/Assembler durchgeschleift, was es erlaubt, nach und nach kleinere Transformationen auf sie anzuwenden.
|
||||
|
||||
Der Nutzer ruft beispielsweise die Funktion `classBuilder` auf. Diese wendet nach und nach folgende Transformationen an:
|
||||
|
||||
```
|
||||
|
||||
methodsWithInjectedConstructor = injectDefaultConstructor methods
|
||||
methodsWithInjectedInitializers = injectFieldInitializers name fields methodsWithInjectedConstructor
|
||||
|
||||
classFileWithFields = foldr fieldBuilder nakedClassFile fields
|
||||
classFileWithMethods = foldr methodBuilder classFileWithFields methodsWithInjectedInitializers
|
||||
classFileWithAssembledMethods = foldr methodAssembler classFileWithMethods methodsWithInjectedInitializers
|
||||
```
|
||||
|
||||
Zuerst wird (falls notwendig) ein leerer Defaultkonstruktor in die Classfile eingefügt. Anschließend wird der AST so modifiziert, dass die Initialisierungen für alle Klassenfelder in allen Konstruktoren stattfinden. Nun beginnen die Faltungen:
|
||||
|
||||
1. Hinzufügen aller Klassenfelder
|
||||
2. Hinzufügen aller Methoden (nur Prototypen)
|
||||
3. Hinzufügen des Bytecodes in allen Methoden
|
||||
|
||||
Die Unterteilung von Schritt 2 und 3 ist deswegen notwendig, weil der Code einer Methode auch eine andere, erst nachher deklarierte Methode aufrufen kann. Nach Schritt 2 sind alle Methoden der Klasse bekannt. Wie beschrieben wird auch hier der Zustand über alle Faltungen mitgenommen. Jeder Schritt hat Zugriff auf alle Daten, die aus dem vorherigen Schritt bleiben. Sukkzessive wird eine korrekte ClassFile aufgebaut.
|
||||
|
||||
Besonders interessant ist hierbei Schritt 3. Dort wird das Verhalten jeder einzelnen Methode in Bytecode übersetzt. In diesem Schritt werden zusätzlich zu den `Buildern` noch die `Assembler` verwendet (Definition siehe oben.) Die Assembler funktionieren ähnlich wie die Builder, arbeiten allerdings nicht auf einer ClassFile, sondern auf dem Inhalt einer Methode: Sie verarbeiten jeweils ein Tupel:
|
||||
|
||||
`([ConstantInfo], [Operation], [String])`
|
||||
|
||||
Dieses repräsentiert:
|
||||
|
||||
`(Konstantenpool, Bytecode, Lokale Variablen)`
|
||||
|
||||
In der Praxis werden oft nur Bytecode und Konstanten hinzugefügt. Prinzipiell können Assembler auch Code/Konstanten entfernen oder modifizieren. Als Beispiel dient hier der Assembler `assembleExpression`:
|
||||
|
||||
```
|
||||
assembleExpression (constants, ops, lvars) (TypedExpression _ NullLiteral) =
|
||||
(constants, ops ++ [Opaconst_null], lvars)
|
||||
```
|
||||
|
||||
Hier werden die Konstanten und lokalen Variablen des Inputs nicht berührt, dem Bytecode wird lediglich die Operation `aconst_null` hinzugefügt. Damit ist das Verhalten des gematchten Inputs - eines Nullliterals - abgebildet.
|
||||
|
||||
Die Assembler rufen sich teilweise rekursiv selbst auf, da ja auch der AST verschachteltes Verhalten abbilden kann. Der Startpunkt für die Assembly einer Methode ist der Builder `methodAssembler`. Dieser entspricht Schritt 3 in der obigen Übersicht.
|
4
doc/generate.sh
Executable file
4
doc/generate.sh
Executable file
@ -0,0 +1,4 @@
|
||||
#!/usr/bin/sh
|
||||
|
||||
pandoc bytecode.md -o bytecode.docx
|
||||
pandoc bytecode.md -o bytecode.pdf
|
Loading…
Reference in New Issue
Block a user