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ABSTRACT
This paper considers the realisation of lambda expressions in Java 8
on the basis of a global type inference algorithm, which we have

introduced in Java-TX. We demonstrate that the Java 8 approach has
indeed some benefits but also a number of drawbacks. In order to

eliminate the drawbacks, we take into consideration the approaches

in a former experimental Java version (strawman approach) and in

Scala. We show that an integration of these approaches eliminates

the drawbacks without losing the benefits of the Java 8 approach.
Additionally, we adapt our global type inference algorithm to this

extended language.
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1 INTRODUCTION
Java-TX (Java Type eXtended) is an extension of Java 8, in which

a global type inference algorithm is added. Since the end of the

nineties features from functional programming languages have

been transferred to object-oriented languages. One of the first ap-

proaches where PIZZA [9]. Three ideas had been incorporated into

PIZZA: parametric polymorphism, higher-order functions, and al-

gebraic data types. The parametric polymorphism extended by

wildcards, called generics, were then transfered to Java 5.0 [5].

Higher-order functions and lambda expression were introduced in

Java 8 [6]. Java 8 uses functional interfaces as target types of lambda

expressions in contrast to real function types used by PIZZA. In
Scala [17],C# [2], andC++ [20] generics and higher-order functions
are also introduced.
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The powerful feature type inference from functional programming

languages is incorporated into object-oriented languages only in

a restricted way called local type inference [10, 11]. Local type

inference allows certain type annotations to be omitted. It is, for

instance, often not necessary to specify the type of a variable. Type

parameters of classes in the new–statement can be left out. Return

types of methods can often also be omitted. Local type inference is

at its most pronounced in Scala. In contrast to global type inference,

local type inference allows types of recursive methods and lambda

expressions not to be omitted.

The Java-TX project contributes to the design of object-oriented

languages by developing global type inference algorithms for Java-
like languages. In [12] we presented a type inference algorithm

for a core Java 5.0 including wildcards. Further on we gave type

inference algorithms for the language of the strawman approach

[14] and for a core of Java 8 [16].
In this paper we will consider our Java-TX type inference algorithm

more in detail. We will recognise it infers indeed correct but some-

times less reasonable types. Furthermore, we will show, this is not

caused by the algoritm itself. This is due to a number of drawbacks

to the implementation of lambda expressions in Java 8.
Therefore, we consider the types of lambda expressions used by

Java 8 in detail. We carve out the benefits and the drawbacks. We

discuss different alternatives and offer a solution to the problems.

Finally, we present a changed type inference algorithm for the

changed language Java-TX.
The paper is structured as follows: In the next section we consider

lambda expressions in Java 8 in detail. We present the benefits and

show that direct application of lambda expressions and subtyping

of function types have some disadvantages. In the third section

we go on to present alternative approaches. We consider lambda

expressions in the strawman approach and in Scala. In the forth

section we present our type inference algorithm for the language of

the strawman approach and for a core of Java 8. In the fifth section

we discuss the different approaches and justify the decision to

introduce Scala-like function types into Java-TX. In the sixth section
we give a specification for this integration, involving an alteration

of the original Java 8 specification. In Section seven and eight we

present the adaptions of the type inference and the type unification

algorithm caused by the change of the language respectively. We

end with a conclusion and an outlook to future work.

2 LAMBDA EXPRESSIONS IN JAVA 8
With Java 8 we saw the introduction of Lambda expressions. After

lengthy discussion the decision was taken to introduce functional

interfaces as target types of lambda expression instead of real func-

tion types. There are a number of substantial arguments against

real function types, as expressed in [4]:
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• It would add complexity to the type system and further mix

structural and nominal types (Java is almost entirely nominally

typed).

• It would lead to a divergence of library styles – some libraries

would continue to use callback interfaces, while others would

use structural function types.

• The syntax could be unwieldy, especially when checked excep-

tions were included.

• It is unlikely that there would be a runtime representation

for each distinct function type, meaning developers would be

further exposed to and limited by erasure. For example, it would

not be possible (perhaps surprisingly) to overload methods

m(T->U) and m(X->Y).

In this section we will first give a short overview of lambda expres-

sions in Java 8 and we will show the benefit of using functional

interfaces as target types of lambda expressions. Subsequently we

will consider various difficulties the decision may pose. Further-

more, on the one handwewill consider direct applications of lambda

expressions and on the other hand we will consider the subtyping

property.

In this paper we denote types, representing classes and interfaces,

as class types, in contrast to which there are function types (e.g.
(θ1, . . . , θn ) → θ0) and base types (e.g. int, boolean, char, etc.)

2.1 Functional interfaces as target types of
lambda expressions

The Java language specification [6] defines the language, its syn-

tax and semantics. The Lambda expressions are defined in §25.27,

whereas the types of lambda expressions are defined in §15.27.3. In

the following we will cite the two most important definitions for

functional interfaces (defined in §9.8) and compatible target types (de-
fined in §15.27.3). For the other definitions we refer to the language

specification [6].

Definition 2.1 (Functional interface). For an interface I, letM be its

set of abstract methods that do not have the same signature as any

public method of the class Object. Then, I is a functional interface
if there exists a method m inM for which both of the following are

true:

• The signature of m is a subsignature of everymethod’s signature

inM .

• m is return-type-substitutable (§8.4.5 [6]) for every method in

M .

Example 2.2. An simple function interface is an interface with one

abstract method that does not have the same signature as any public

instance method of the class Object.

in te r face I {

in t compare(String o1, String o2);

}

A more complex example is presented here:

Example 2.3. Let the interfaces X, Y, and Z be given.

in te r face X { in t m(Iterable <String > arg); }

in te r face Y { in t m(Iterable <String > arg); }

in te r face Z extends X, Y {}

In addition to the interfaces X and Y, the interface Z is also a func-

tional interface. As both methods have the same signature, the

inherited methods logically represent a single method.

Definition 2.4 (Lambda expressions compatible with a target type).
A lambda expression is compatible in an assignment context, in-

vocation context, or casting context with a target type T if T is

a functional interface type and the expression is congruent with

the function type of the ground target type derived from T, which

means

• The function type has no type parameters.

• The number of lambda parameters is the same as the number

of parameter types of the function type.

• If the lambda expression is explicitly typed, its formal parameter

types are the same as the parameter types of the function type.

• If the lambda parameters are assumed to have the same types

as the function type’s parameter types, then:

– If the result of the function type is void, the lambda body is

either a statement expression (§14.8 [6]) or a void-compatible

block.

– If the result of the function type is a (non-void) type R, then
either

i the lambda body is an expression that is compatible with

R in an assignment context, or

ii the lambda body is a value-compatible block, and each

result expression (§15.27.2 [6]) is compatible with R in an

assignment context.

For the exact definitions of function type of the ground target type
we refer to [6]. In Section 6 we will extend this definition.

We will give an example that illustrates these definitions.

Example 2.5. Given the functional interfaces Function and Bi-
Function from the package java.util.function:

public in te r face Function <T,R> {

R apply(T t);

}

public in te r face BiFunction <T,U,R> {

R apply(T t, U u);

}

First of all, let the declaration

BiFunction <Integer , Integer , Integer >

f = (Integer x, Integer y) -> x * y;

be given. The ground target type is BiFunction<Integer,
Integer, Integer>. Its function type is

(Integer, Integer) -> Integer.

The lambda expression

(Integer x, Integer y) -> x * y;

is congruent with the function type as the function type as well as

the lambda expression have two parameters of the type Integer.
Furthermore, the function type’s result type is Integer and under

the assumptions that x’s and y’s type are Integer, the expression
x * y is compatible with Integer.

And secondly, let us consider a more complex example:
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Example 2.6. Let the typed lambda expression f be given.

Function <? super Integer ,

Function <? super Integer ,

? extends Integer >>

f = x -> y -> x * y;

The ground target type is

Function<Integer,
Function<? super Integer, ? extends Integer>>.

Its function type is

(Integer) ->
Function<? super Integer,? extends Integer>.

For the congruence of the lambda expression with the function type,

we have to show that the function type and the lambda expression

have the same number of arguments. This is obvious. Furthermore

we have to show that if the type of x is assumed as Integer, then
the lambda expression y -> x * y is compatible with the func-

tion’s type result type Function<? super Integer,? extends Int-
eger>. The ground target type of this type is Function<Integer,
Integer>. Its function type is (Integer) -> Integer. The num-

ber of arguments are equal. Finally we have to consider the lambda

body. This must be compatible with the function type’s result type.

Under the additional assumption that y’s type is Integer, too, x * y
is compatible with Integer.

The major benefit of introducing lambda expressions with compati-

ble target types is the possibility of implementing callback functions

in existing libraries by means of lambda expressions. In general,

callback functions are function parameters of libraries. In program-

ming languages such as C they are realised by function pointers.

Until version 7 in Java there had been nothing like function point-

ers, such that callback functions are implemented by interfaces with

one abstract method. This has often been implemented by anony-

mous inner classes. The following JavaFX example, borrowed from

Oracle’s get-started-tutorial, illustrates the situation:

import javafx.event.ActionEvent;

import javafx.event.EventHandler;

import javafx.scene.control.Button;

...

Button btn = new Button ();

btn.setText("Say␣'Hello␣World '");

btn.setOnAction(new EventHandler<ActionEvent>() {

@Override

public void handle(ActionEvent event) {

System.out.println("Hello World!");

}

});

The anonymous inner class, underlined in the code, implements

the event-handler. In Java 8 this callback function is implemented

by a lambda expression.

...

btn.setOnAction(

event -> System.out.println("Hello World!")

);

In summary then, introducing lambda expressions with compatible

target types allows callback function to be implemented by lambda

expressions without having to change the millions of Java libraries
in existence worldwide.

However, despite this benefit, there are some disadvantages of the

target typing. In the following sections we will present two prob-

lems, namely, both the direct applications of lambda expressions

and the subtyping of function types.

2.2 Direct application of lambda expressions
In the λ-calculus (e.g. [1]) β-conversion (direct application of a

lambda expression to its arguments) the following is possible:

(λ x .E)arд = E[x/arд].

In Java 8 this lambda term would have the following form;

(x -> h(x)).apply(arg);

Such expressions are not permitted. Lambda expressions are only

permitted in an assignment, invocation, or casting context (cp.

Def. 2.4), the reason being that lambda expressions themselves have

no types in Java 8. As there is no target type given, the correspond-
ing functional interface is unknown so that the name of the method

is unknown, too, or else the method apply could not be identified.

A target type can be introduced by a type-cast. Therefore the func-

tional interface Function from the package java.util.function
has to be used again:

((Function<T,R>)x -> h(x)).apply(arg);

Now the interface Function and the method apply are both known.
Generally speaking for the application of a function in the curried

representation

f : T1 → . . .→ TN → T0,

as type-cast a nested functional interface is needed:

((Function<T1, Function<T2, . . . Function<TN, T0>>> )
x1 -> x2 ->. . . -> xN -> h(x1,. . . ,XN))
.apply(a1).apply(a2).. . . .apply(aN)

Summarising then, the absence of lambda expressions’ types neces-

sitates type-casts for using direct lambda expression applications.

Indeed, the type-cast presents a possibility for implementing direct

lambda expression applications, but it is unhandy.

2.3 Subtyping of function types
Another important object-oriented feature is subtyping. Therefore

subtyping should be given for function types, too. We denote the

subtyping relation by ≤∗
.

In Java 8 subtyping can also be implemented by the functional

interfaces from the package java.util.function.
Mathematical functions have the property that the argument types

are contravariant and the return types are covariant. This means

for a subtype

(arд_type ′ → ret_type) ≤∗ (arд_type → ret_type ′)

the following is true:

arд_type ≤∗ arд_type ′ and ret_type ≤∗ ret_type ′.

As Java 8 allows no declaration-site variance, this property has to

be expressed by wildcards:

Function<arд_type ′, res_type> ≤∗

Function<? super arд_type, ? extends res_type ′>
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This is a possibility for implementing subtyping of function types,

but it is counterintuitive. Let us consider an example. The class

import java.util.function .*;

c l a s s MathStruc <A> {

A model;

Function <BiFunction <A,A,A>,

Function <MathStruc <A>,MathStruc <A>>>

innerOp = (o) -> (ms) ->

new MathStruc <>(o.apply( th i s .model ,ms.model ));

MathStruc(A m) { model =m; }

}

Figure 1: Class MathStruc in Java 8

MathStruc (Fig. 1) represents mathematical structures such as vec-

tor spaces, monoids, groups, etc. with an inner operation o. The
concrete model of the mathematical structure is given in the field

model. The inner operation o takes two arguments of the model’s

type and results in the model’s type. The field innerOp is the func-

tion that applies the operation o to two mathematical structures.

The function is given in a so-called curried representation. The

implementation is abstracted from a concrete operation o, which is

the first argument of the lambda expression. The lambda expres-

sion results in another lambda expression that takes the second

argument of o and results in the application of the operation o to
the model of this and the model of the second argument. In Fig. 2

an application for the structure (Integer,+) is given.

MathStruc <Integer > msi = new MathStruc <>(1);

MathStruc <Integer > res =

msi.innerOp.apply((i, j) -> i + j)

.apply(new MathStruc < >(3));

Figure 2: Application for the structure (Integer,+)

If we want to enable subtypes for the function types, we have to

change the type declaration of innerOp as given in Fig. 3.

Function <? super BiFunction <? super A,

? super A,

? extends A>,

? ext. Function <? super MathStruc <A>,

? ext. MathStruc <A>>>

innerOp = ...

Figure 3: Enabling subtypes in innerOp

Besides the illegible syntax, the application in Fig. 2 is no any longer

correct. As ? super BiFunction<...> is not a compatible target

type for (i, j) -> i + j, similar to hat we saw in Section 2.2, a

type-cast has to be introduced (Fig. 4). This is again counterintuitive.

MathStruc <Integer > msi = new MathStruc <>(1);

MathStruc <Integer > res =

msi.innerOp

.apply((BiFunction<Integer,Integer,Integer>)

(i, j) -> i + j)

.apply(new MathStruc < >(3));

Figure 4: Inserted type-casts

In this special case introducing a wildcard can be avoided. As in the

program in Fig. 1 only a subtype of o’s type BiFunction<? super
A,? super A,? extends A> is used, and no subtype of innerOp’s
type, the wildcard can be omitted so that the type of innerOp can

be given as in Fig. 5. Then, no additional type-cast is necessary as

was the case in Fig. 4.

Function <BiFunction <? super A,

? super A,

? ext. A>,

? ext. Function <? super MathStruc <A>,

? ext. MathStruc <A>>>

innerOp = ...

Figure 5: Reduced wildcards

In Java only use-site variance of type parameters is allowed. We

will now proceed to show that use-site variance, when applied to

the interface Function, leads to some less reasonable but correct

declarations.

Let us consider the example in Fig. 6. There are functions f, g1,
and g2. f are typed by Function<Sub,Sub> and g1 by Function<?
super Sub,? extends Super>. As explained above, f’s type is a sub-
type of g1’s, such that the assignment g1 = f is correct and the

application g1.apply(new Sub()) resulting in the type Super is
correct, too.

Otherwise, following Java’s use-site variance, it is possible to type

g2 by Function<? extends Super,? super Sub>. Function<Sub,
Sub> is also a subtype of Function<? extends Super,? super Sub>.
Therefore assigning f to g2 is type-correct, too. But g2 can not be

applied to objects of any declared type, especially not to any Sub. g2
can only be applied to null. This is in Java possible as all methods

are applicable to null. The result of this application can only be of

the type Object. This is in Java possible as every method’s result

type is Object.
To summarize: Subtyping of function types can be simulated in

Java 8 by functional interfaces from the package java.util.func-
tion. The contravariance of argument types and the covariance of

the result types have to be simulated by the super and the extends

wildcard, respectively. General, additional type-casts have to be

introduced for higher order functions (functions as arguments or

results of other functions), as wildcard-types are not target-types of

lambda expressions. Following the use-site variance of type param-

eters, it possible to declare less reasonable subtyping relations of
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c l a s s Super { }

c l a s s Sub extends Super { }

c l a s s Main {

void m() {

Function <Sub , Sub > f = x -> x;

// common subtyping

Function <? super Sub , ? extends Super > g1;

g1 = f;

Super sup = g1.apply(new Sub ());

//less reasonable subtyping

Function <? extends Super , ? super Sub > g2;

g2 = f;

//g2.apply(new Sub ()); // incorrect

g2.apply(null );
//sup = g2.apply(null); // incorrect

Object o = g2.apply(null );
}

}

Figure 6: Less reasonable subtyping in Java 8

function types. The approach to model function types by the inter-

faces of the package java.util.function is not quite beautiful,

but it works.

In this paper we will offer a proposal of how to preserve the benefits

of the target typing and to solve the problems presented here.

3 DIFFERENT APPROACHES TO LAMBDA
EXPRESSIONS IN JAVA-LIKE LANGUAGES

In this section we will take a look on two different approaches

to lambda expressions. First we will consider the strawman ap-

proach, that was an approach which dates back to the early phase

of Project Lambda
1
, but it was not realised. After that we consider

the approach of lambda expressions in Scala.

3.1 Strawman approach
In early stage of the Project Lambda undertaken by the Sun Mi-
crosystems, Inc. [7] plan was to introduce lambda expression and

real function types into Java. Furthermore, the idea that lambda

expressions could implement an interface with only one method

was also considered. We call this language in the following Javaλ .
The syntax of the lambda expressions in Javaλ was given by

# (t1 x1, . . . , tn xn ) → ( expression | block ).

The syntax of the corresponding function types was given by

#to (t1, . . . , tn ).

The syntax of the function type is given in the common Java-style,
whichmeans, the result type is given on the left side of the argument

types. The # symbol is also employed.

1
http://openjdk.java.net/projects/lambda

c l a s s MathStruc <A> {

A model;

##MathStruc <A>(MathStruc <A>)(#A(A,A))

innerOp = #(#A(A,A) o)->#(MathStruc <A> ms)->

new MathStruc <A>(o.( th i s .model ,ms.model ));
}

Figure 7: Class MathStruc in the strawman approach

Furthermore, the idea of implementing functional interfaces (in

[7] called SAM–types) by lambda expression is already given. This

means the strawman approach contains real function type as well

as functional interface as target types of lambda expressions.

The subtyping relation is given in the usual way:

#to (t
′
1
, . . . , t ′n ) ≤

∗
#t ′o (t1, . . . , tn ),

iff ti ≤
∗ t ′i , for 0⩽i⩽n.

The MathStruc example written in the language of strawman ap-

proach language Javaλ (Fig. 7) serves to illustrate some problems

in the design of the strawman’s language Javaλ .
There are two problems in particular: On the one hand the double

use of # is confusing and on the other hand the Java-style writing
of function types is often difficult to read. It is not obvious that the

type of innerOp

##MathStruc <A>(MathStruc <A>) (#A(A,A))

means the function type

((A,A)->A) -> (MathStruc <A> -> MathStruc <A>).

Furthermore, the use of “.” as apply-constructor is another overload-
ing of the dot operator. This makes no contribution to the clarity

of the language. Additionally, the language definition demands,

that all arguments of lambda expressions are explicitly typed. This

means a lambda expression such as #(o) -> #(ms) -> ... is not

allowed.

On the other hand the real function types allow the direct appli-

cation lambda expressions. No additional type-cast is necessary.

Furthermore there is simple approach to the subtyping of given

function types, whereby wildcard-arguments are not necessary.

In summary, the strawman approach allows real function types

alongside the possibility of implementing functional interfaces by

means of lambda expression. This integration is an advantage in

comparison to the loss of real function types in Java 8.
A big disadvantage is the reduced readability of the programs, as

the double use of # and the Java-style writing of function types. A

further disadvantage is that there is a mix of structural and nominal

types.

3.2 Scala
Scala contains lambda expressions (anonymous functions) and real

function types.

Anonymous functions are declared by

(x1[: t1], . . . , xn[: tn]) => ( expression | block ),
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where the types of the arguments can be omitted if they are defined

in the expected type.

Scala allows the variance of class parameters to be declared. This

means it could be declared whether a type parameter is covariant

or contravariant. For example, the covariant declaration

c l a s s C[+A] { ... }

means that C[T1]<:C[T2]2 iff T1<:T2 and the contravariant declara-

tion

c l a s s C[-A] { ... }

means that C[T2]<:C[T1] iff T1<:T2.

In Scala there are two variants of the syntax of function types.

(T1, ..., Tn) => U

is a shorthand for the class type

Functionn[-T1, ...,-Tn,+U],

where T1 , . . . , Tn are contravariant and U is covariant. This means

that the subtyping relation of function types in Scala are defined
as expected.

Similar to Java 8’s functional interface Function the class types

Functionn[T1, ..., Tn,U] contain the method apply.

In Scala, in general, function applications f (expr1, . . . , exprn ) are
possible. If f has a function type, the application is equivalent to

f .apply(expr1, . . . , exprn ).
Let us consider the class MathStruc in Scala (Fig. 8).

c l a s s MathStruc[A](var model : A) {

var innerOp:Function1[Function2[A,A,A],

Function1[MathStruc[A],

MathStruc[A]]] =

f => ms =>

new MathStruc[A](f( th i s .model ,ms.model ));}

Figure 8: Class MathStruc in Scala

In Scala both problems of lambda expressions in Java 8 that we have
highlighted are solved. Direct applications of lambda expressions

need no type-casts and subtyping of function types is allowed in

an normal way as the argument types are contravariant and the

result type is covariant.

In contrast to Java 8, in Scala lambda expressions can not be used

to implement functional interfaces.

Local type inference. In Scala local type inference [10, 11] is

implemented. Often it is not necessary to specify the type of a

variable. The type checker deduces the type from the expression.

In the above example the type can be omitted:

var innerOp = f => ms =>

new MathStruc[A](f( th i s .model ,ms.model ));

For recursive definitions of lambda expression (cp. letrec in [3]) the

type cannot be inferred.

The following example does not compile.

2
In Scala T1<:T2 means T1 is a subtype of T2.

val fact = (x) => i f (x <= 1) 1

e l se x * fact(x-1);

It is necessary to give an explicit type annotation.

val fact:Function1[Integer ,Integer] =

(x) => i f (x <= 1) 1

e l se x * fact(x-1);

The main feature of Java-TX is global type inference. This means

no type annotation is necessary. Especially recursive programs

like fact do not need any type annotations. We will present this

example with Java-TX global type inference at the end of Section 8.

4 OUR TYPE INFERENCE ALGORITHMS
For a core of the languages Javaλ of the strawman approach and

of Java 8 we gave global type inference algorithms [14–16, 19].

The principle of the algorithms is that first a set of constraints

(subtyping-inequations) are determined. Then these constraints are

solved by a type unification algorithm [13]. As the type unification

problem is not unitary but finitary, there are, in general, finitely

many results. To deal with the different results, we implemented

an Eclipse plugin [18].

In the next two sections we will consider the two algorithms in

more detail and offer an example to illustrate the algorithm.

4.1 Type inference algorithm for the strawman
approach

The algorithm [14] improved in [15] has three parts:

TYPE: The function TYPE introduces type annotations (fresh

type variables or known types) to each subterm of the input

expressions and determines the constraints.

MATCH: The functionMATCH determines all substitutes which

are function types and reduces all constraints to atomic con-

straints which consist only of class types or type variables.

TUnify: The functionTUnify unifies the atomic constraints. The

result is a set of unifiers and remaining contraints which consist

only of type variables.

In the algorithm we denote θ ⋖ θ ′ for two type terms, which

should be type unified such that σ (θ ) ≤∗ σ (θ ′ ) for a most gen-

eral unifier σ . During the unification algorithm ⋖ is replaced

by ⋖? and �, respectively. θ ⋖? θ
′
means that the two param-

eter types θ and θ ′ of type terms should be unified such that

X< . . . ,σ (θ ), . . . > is a subtype of X< . . . ,σ (θ ′ ), . . . > and � is

the usual unification.

Let us now consider again the Java program in Fig. 6 from Sec-

tion 2.3. Omitting all type annotations, first we determine the prin-

cipal type by our type inference algorithm. After that we instantiate

some type variable to get the analogous situation as in Section 2.3.

The shortened untyped program in Javaλ is given as:



Introducing Scala-like function types into Java-TX ManLang 2017, September 27–29, 2017, Prague, Czech Republic

void m() {

f = #(x) -> x;

var g;3

g = f;

}

Now we apply the type inference to this program. The result of the

function TYPE is given by the type annotated program

void m() {

f: α = (#(x: β ) -> x: γ ) : δ ;
var g: ϵ ;
g: ϵ = f: α ;

}

and the set of constraints: { #γ (β)⋖ δ , δ ⋖ α,α ⋖ ϵ }.
The functionMATCH determines the function type substitutes:

δ 7→ #γ1 (β1),α 7→ #γ2 (β2), ϵ 7→ #γ3 (β3)

and the set of atomic constraints:

{γ ⋖ γ1, β1 ⋖ β,γ1 ⋖ γ2, β2 ⋖ β1,γ2 ⋖ γ3, β3 ⋖ β2 }.

The function TUnify does nothing as all atomic constraints are in

solved form. This means the types of f and g are given as:

f : #γ2 (β2),
g : #γ3 (β3)

and it holds that #γ2 (β2) is a subtype of #γ3 (β3), as γ2 ≤
∗ γ3 and

β3 ≤
∗ β2.

As in the example in Section 2.3 we annote f by the type # Sub (Sub).
Then for the result type of g (namely γ3) we can instantiate Sub
as well as Super. But for the argument type of g (namely β3) only
Sub is allowed to be instantiated.

This means our type inference algorithm for the language of the

strawman approach Javaλ provides the desired result.

In the section that follows we will go on to consider the type infer-

ence algorithm for the approach with function interfaces.

4.2 Functional interfaces
In [16, 19] we presented a type inference algorithm for a core of

Java 8. The core language in [16] supports mostly all features of

Java 8 including generics and lambda expressions. Only methods

are simulated by lambda expressions of fields. This leads to the

restriction that overloading is impossible. In [19] methods including

overloading are added. In both approaches we extend Java 8 by

functional interfaces

R FunN<A1 , ... AN, R>4{

R apply(A1 arg1 , ... AN);

}

analogous to the traits FunctionN in Scala. But in Java 8 the pa-
rameters of the functional interfaces have use-site variance, while

in Scala the parameters have declaration-site variance. The type

inference algorithm determines these types for lambda expressions.

3
In Java-TX a local variable has to be declared before use. This is done by the keyword

var.
4
In [16] we gave the result type parameter as first parameter of FunN. In this presenta-

tion we moved it to the last parameter so that notation is more similar to the interfaces

for java.util.function.

The type inference algorithm TI consists of two functions TYPE
and SOLVE. The function TYPE has had one change made to it

compared to the above algorithm: The function types FunN are

already introduced into the code.

The function SOLVE unifies the constraints. A functionMATCH
is no any longer necessary as the type FunN are class types, too.

In Section 7 we give the functions TI in Fig. 10, TYPE in Fig. 11,

and SOLVE in Fig. 13, explicitly.

Let us consider the same example.

void m() {

f = (x) -> x;

var g;

g = f;

}

The result of the function TYPE is given by the analogous type

annotated program

void m() {

f: α = ((x: β ) -> x: γ ) : Fun1<β, γ >;
var g: ϵ ;
g: ϵ = f: α ;

}

and the set of constraints:

{ Fun1<β, γ>⋖ α,α ⋖ ϵ }.

The result, pairs of unifiers and the remaining atomic constraints,

is given as:

{ { ([α 7→ Fun1<β1, γ1>, ϵ 7→ Fun1<β2, γ2>],
{ β1⋖? β,γ ⋖? γ1, β2⋖? β1,γ1⋖? γ2 }) } }

As in the above examples we annotate f by the type Fun1<Sub,
Sub>. This means we instantiate Sub for β1 and γ1, too. Then are

allowed to be instantiated ? super Sub for β2 and ? extends Super
for γ2, as Sub ⋖? ? super Sub and Sub ⋖? ? extends Super. This
means the result constraints of the unification are fulfilled.

This type corresponds to the inferred type in the example of the

strawman approach. This means the desired result can also be

inferred by this algorithm.

But is allowed to be instantiated ? extends Super for β2 and ? super
Sub forγ2, as in this case the result constraints of the unification are
fulfilled, too. This result corresponds to the less reasonable typing

in Fig. 6.

This example illustrates that the type inference for Java 8 infers
the desired types, but it is also possible to infer less reasonable

typings. This result is not surprising, as these typings are correct

Java 8 typings and the type inference algorithm has been proven

to be sound and complete.

5 DISCUSSION AND DECISION
We considered the realisation of lambda expressions in Java 8 (Sec-
tion 2), in the strawman approach’s language Javaλ (Section 3.1),

and in Scala (Section 3.2). In addition we considered our type in-

ference algorithms for a core of Javaλ (Section 4.1) and a core of

Java 8 (Section 4.2). Implementing function types in Java 8 needs
additional type-casts for implementing direct lambda expression

applications and for declaring types of higher-order functions (Sec-

tion 2.2). Furthermore, the implementation in Java 8 allows less
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reasonable subtyping relations between function types (Section 2.3).

The biggest benefit of implementation in Java 8 is the possibility of

operating existing callback functions by lambda expressions (Sec-

tion 2.1). The problems highlighted are solved in Javaλ retaining the
possibility to implement callback functions by lambda expressions.

In contrast, Javaλ contains nominal types and structural function

types that add complexity to the type system. However, Scala solves
the type system complexity by introducing declared-site variance

function traits (interfaces) as function types such that no mixture of

structural function types and nominal types are contained in Scala.
On the other hand, Scala allows no implementation of callback

functions by lambda expressions.

These arguments led us to the decision to add Scala declaration-site
variance function types to Java-TX so as to retain the possibility of

implementing callback functions by lambda expressions. Further-

more, we adapted the type inference algorithm, such that global
type inference is added. In other words, Java-TX is the language

Javaλ , where we replaced the structural function types with Scala
function types and added a type inference algorithm.

In the subsequent sections we will describe the implementation

in Java-TX. First, in Section 6, we will portray the integration of

functional interfaces as target types of lambda expressions and

the Scala function types. Then, in Section 7, we will describe the

adaptation of the type inference algorithm. The main adaptation

has to be untertaken in the type unification, a process which we

will detail in Section 8.

6 INTEGRATION OF FUNCTIONAL
INTERFACES AND SCALA-LIKE FUNCTION
TYPES

We extended Java 8 by two sets of special functional interfaces

FunN*<-A1 , ... -AN, +R>{

R apply(A1 arg1 , ... AN);

}

FunVoidN*<-A1, ... -AN>{

R apply(A1 arg1 , ... AN);

}

As in Scala the “+”– and “-”–symbols declare the variance of the

type parameters. “+” represents covariance and “-” represents con-
travariance. For FunN* and FunVoidN* types respectively, no use-

site variance, i.e. wildcards, are allowed.

The following two definitions adds the special functional interfaces

to the Java specification. First, we defined the type of a lambda

expression. Then we extended the definition of compatibility with

a target type.

These definitions extend the specification of Java 8 for lambda ex-

pressions (§15.27.3 [6]).

Definition 6.1 (Type of a lambda expression). Let a lambda expression

with N formal parameters be given.

• If the lambda expression’s parameters are explicitly typed, let

its formal parameter types be given as θ1, . . . , θN .

• If the lambda parameters are assumed to have the types θ1 , . . . ,
θN , then:

– If the lambda body is either a statement expression (§14.8

[6]) or a void-compatible block, then the type of a lambda
expression is defined as FunVoidN*<θ1, . . . , θN >.

– If either the lambda body is an expression and has the type

θ0, or the lambda body is a value-compatible block, and each

result expression (§15.27.2 [6]) has the type θ0, then the type
of the lambda expression is defined as FunN∗<θ1, . . . , θN ,θ0>.

This definition solves the problems described in Section 2.2 and 2.3.

For direct lambda expression applications type-casts are no longer

necessary. The example from Section 2.2 can be written without

type-casts:

(x1 -> x2 ->. . . -> xN -> h(x1,. . . ,XN))
.apply(a1).apply(a2).. . . .apply(aN)

The problem presented in Section 2.3 has also been solved. In

Fig. 9 f typed by Fun2∗<Number, Number,Integer> is assigned to

c l a s s MathStruc <A> {

A model;

Fun1*<Fun2*<A,A,A>,

Fun1*<MathStruc <A>,MathStruc <A>>>

innerOp = (o) -> (ms) ->

new MathStruc <>(o.apply( th i s .model ,ms.model ));

Fun2*<Number ,Number ,Integer > f = ...

MathStruc(A m) {

model =m;

}

void m() {

MathStruc <Integer > msi = new MathStruc <>(1);

MathStruc <Integer > res =

msi.innerOp.apply(f)

.apply(new MathStruc < >(3));

}

}

Figure 9: MathStruc with Scala-like function types

innerOp’s parameter owhich is typed by Fun2∗<Integer, Integer,
Integer> . The type of f is a subtype of the type of o.
Introducing function types allows us to define the compatibility of

any expression typed by a FunN*–type with a target type. This is

an extension compared to Def. 2.4, where only lambda expression

can be compatible with target types.

Definition 6.2 (Expressions compatible with a target type).
An expression, which has the type FunVoidN*<θ1, . . . , θN > and

FunN∗<θ1, . . . , θN ,θ0> respectively, is compatible in an assignment,

invocation, or casting context with a target type T if T is a functional

interface type and the expression is congruent with the function

type of the ground target type derived from T, which means

• The function type has no type parameters.
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• The number of parameter types of the function type is N.
• The parameter types of the function type are θ1, . . . , θN .

• If the result of the function type is void, then the type of lambda

expression is FunVoidN*<θ1, . . . , θN >.
• If the result of the function type is a (non-void) type θ0, then
the type of lambda expression is FunN∗<θ1, . . . , θN ,θ0>.

This definition has an interesting consequence, as in the next ex-

ample serves to illustrate.

Example 6.3. We will now consider again the JavaFX example from

the end of Section 2.1. An additional local variable helloworld
is assigned a lambda expression, which implements the callback

function.

Fun1*<ActionEvent , String > helloworld

= event -> System.out.println("Hello␣World!");

Button btn = new Button ();

btn.setText("Say␣'Hello␣World '");

btn.setOnAction(helloworld );

The method setOnAction is called with argument helloworld and
no longer with the lambda expression as its argument. As the type

of helloworld is Fun1∗<ActionEvent,String> , helloworld is

compatible with the target type EventHandler<ActionEvent>.
In Java 8 the local variable helloworld has to be typed by Event-
Handler<ActionEvent>.

7 ADAPTION OF THE TYPE INFERENCE
ALGORITHM

Fig. 10 presents the main function TI of the type inference algo-
rithm. As in [16] we have left methods out of consideration, as the

emphasis in this paper is on lambda expressions. For a consideration

of methods please refer to [19].

In TI first the function TYPE determines a set of constraints (sub-

typing-inequations). Furthermore, types (at most fresh type vari-

ables) are inserted into the abstract syntax tree. In the function

SOLVE these constraints are solved.

TI: (TypeAssumptions, Class) → { (Constraints, TClass) }

TI( Ass,Class(τ , extends(τ ′ ), fdecls ) ) =
let (Class(τ , extends(τ ′ ), fdeclst ),ConS) =

TYPE(Ass,Class(τ , extends(τ ′ ), fdecls ) )
{ (cs1,σ1), . . . , (csn,σn ) } = SOLVE(ConS )

in { (csi ,σi (Class(τ , extends(τ ′ ), fdeclst ) ))| 1⩽i⩽n }

Figure 10: Type inference algorithm’s main function

The function TYPE (Fig. 11) calls for each expression, which is as-

signed to a field, the function TYPEExpr. For each sub-expression

of the respective expressions, TYPEExpr builds the contraints and
inserts its types into the abstract syntax tree. For each form of

possible expression, a function declaration of TYPEExpr is given,
each of which are selected during runtime by pattern matching.

These functions are unchanged in comparison to [14] except the

declaration for the lambda expression. The new declaration is given

in Fig. 12. The FunN functional interfaces are replaced by new FunN*

5
Without loss of generality we assume that all fields are declared typeless and that all

fields are initialized by expressions.

TYPE: (TypeAssumptions, Class)
→ (TClass, ConstraintsSet)

TYPE(Ass,Class(τ , extends(τ ′ ), fdecls ) ) = let
fdecls = [Field( f1, lexpr1 ), . . . , Field( fn, lexprn )]5

ftypeass = { this. fi : ai | ai fresh type variables }
∪ { this : τ , super : τ ′ } ∪ { visible types fields of τ ′ }

AssAll = Ass ∪ ftypeass
Forall 1⩽i⩽n : (lexpit : rtyFi ,ConSFi ) =

TYPEExpr(AssAll, lexpri )
fdeclst = [Field(a1, f1, lexpr1t : rtyF1 )

, . . . ,

Field(an, fn, lexprnt : rtyFn )]
in
(Class(τ , extends(τ ′ ), fdeclst ),
(
⋃
i ConSFi ∪ { (rtyFi ⋖ ai ) | 1⩽i⩽n }))

Figure 11: The function TYPE

TYPEExpr(Ass, Lambda( (x1, . . . , xN ), expr |stmt ) ) =
let AssA = { xi : ai | ai fresh type variables }
(exprt : rty,ConS) = TYPEExpr(Ass ∪AssA, expr )

| (stmtt : rty,ConS) = TYPEStmt(Ass ∪AssA, stmt )

in if (rty == void) then
(Lambda( (x1 :a1, . . . , xN :aN ), stmtt :rty )
:FunVoidN*<a1, . . . ,aN >,ConS)

else
(Lambda( (x1 :a1, . . . , xN :aN ), exprt :rty |stmtt :rty )
:FunN∗<a1, . . . ,aN ,a>,ConS ∪ { rty ⋖ a }),
where a is a fresh type variable

Figure 12: TYPEExpr for lambda expressions

and FunVoidN* interfaces.
We consider now two examples to illustrates the TYPE algorithm.

First we present the MathStruc example. This example shows the

the great benefit in code readability if there is type inference.

Example 7.1. Let the program be given as follows.

c l a s s MathStruc <A> {

A model;

innerOp = o -> ms ->

new MathStruc <A>(o.apply( th i s .model ,
ms.model ));

MathStruc(A m) { model=m; }

}

If we compare this declaration of innerOp especially with the decla-
ration in Fig. 3we recognize that type inference increases readability

of programs enormously. The TYPE function inserts the following

types
6

innerOp:α =

(o:β -> (ms:γ ->

(new MathStruc <A>(o.apply( th i s .model:A,
ms.model:δ ):ϵ

6
We leave out some obvious type annotations.
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)): MathStruc <A>): Fun1*<γ ,η>
):Fun1*<β ,ζ >;

and determines the following set of constraints:

{ Fun1∗<β ,ζ >⋖ α, Fun1∗<γ ,η>⋖ ζ , MathStruc<A>⋖ η,
γ ⋖ MathStruc<δ>, ϵ ⋖ A, β � Fun2∗<ι,κ,ϵ>, A⋖ ι, δ ⋖ κ }.

The second example shows global type inference.

Example 7.2. Given the faculty function that we considered in Sec-

tion 3.2 for Scala,

c l a s s Faculty {

s t a t i c fact7;

m () {

fact = x -> i f (x <= 1) return 1

e l se return x * fact.apply(x-1);}

}

The TYPE algorithm inserted the following types
8

c l a s s Faculty {

s t a t i c fact:α ;

β m () {

fact:α =

(x:γ ->

( i f (x:γ <= 1: Integer ): Boolean

( return 1): Integer

e l se
( return (x:γ *

(fact:α .apply(x-1)):δ ): Integer
): Integer

): Integer

):Fun1*<γ ,ϵ >;
}

}

and determines the following set of constraints:

{ Fun1∗<γ ,ϵ>⋖ α, Integer⋖ ϵ, γ ⋖ Integer, δ ⋖ Integer,
α � Fun1∗<ϕ,δ>, Integer⋖ ϕ }.

At the end of the next section we will present the application of

the function SOLVE for both the above examples.

The function SOLVE is presented in Fig. 13. In SOLVE the type

unification TUnify is called. The result of TUnify is a set of con-

straint pairs. In SOLVE the result pairs are filtered. Either pairs,

which are in solved form (all pairs consist of v � θ where v is

type variable) or else additional pairs v Rv ′
, where v ′

is also a type

variable, are correct. For all other results the algorithm fails.

In comparison to [13] the type unification is extended. This exten-

sion will be considered in the next section.

8 ADAPTION OF THE UNIFICATION
The type unification problem for Java 8 types is given as: For a set

of type term pairs

{ θ1 ⋖ θ ′
1
, . . . , θn ⋖ θ ′n }

7
As Java 8 self-referencing in an initializer is disabled and a local variable which is

assigned a lambda expression must be effectively final, fact is declared as a field.

8
We leave out again some obvious type annotations.

SOLVE: ConstraintsSet → { ConstraintsSet × Subst }

SOLVE(ConS ) = let subs = TUnify(ConS ) in
if (there are c ∈ subs in solved form) then

{ (∅, {v 7→ θ })) | (v � θ ) ∈ c, c ∈ subs is in solved form }

if (there are c ∈ subs , which has the form

{v Rv ′ | v,v ′
are type vars } ∪

{v � θ | v is a type var })

then
{ ({v Rv ′}, {v 7→ θ }) | (v Rv ′) ∈ c, (v � θ ) ∈ c,

c ∈ subs has the given form }

else fail

Figure 13: The function SOLVE

a substitution σ , called unifier, is necessary, such that

σ (θi ) ≤
∗ σ (θ ′i ), ∀1⩽i⩽n.

In [13] we proved that for Java types with wildcards but without

multiple inheritance the unification problem is indeed not unitary

but finitary. This means there is a finite number of most general

unifiers.

In this paper we extend the type unification by the new function

types FunN* and FunVoidN*. The rules for FunN* are presented in

Fig. 14. The corresponding FunVoidN* rules are given analogously,

where the respective result types θ0, θ
′
o , b0, and b

′
0
are left out.

Theorem 8.1. The type unification algorithm from [13], extended by
the unification rules for the FunN* and the FunVoidN* function types
is sound and complete.

Proof. As we have proved the soundness and completeness of the

type unification algorithm in [13], for all new rules we now have

to show the property: If and only if a substitution is a most general

unifier before applying a type unification rule, is it also a most

general unifier after applying the type unification rule.

redFunN* rule. From the subtyping definition of the FunN* func-

tion types follows, for a unifier σ

σ ( FunN∗<θ ′
1
, . . . , θ ′n ,θo> ) ≤

∗ σ ( FunN∗<θ1, . . . , θN ,θ ′
0
> )

is valid if and only if σ (θo ) ≤
∗ σ (θ ′

0
) is valid and for 1⩽ i ⩽N :

σ (θi ) ≤
∗ σ (θ ′i ) is valid. Thismeans if and only ifσ is amost general

unifier before applying the redFunN* rule it is also a most general

unifier after applying the rule.

grFunN* rule.

σ ( FunN∗<θ ′
1
, . . . , θ ′N ,θo> ) ≤

∗ σ (a )

is valid if and only if

σ ∈ { a 7→ τ | FunN∗<θ ′
1
, . . . , θ ′N ,θo> ≤

∗ τ }.

As FunN∗<θ ′
1
, . . . , θ ′N ,θo> ≤

∗ τ is valid if and only if τ =

FunN∗<θ1, . . . , θN ,θ ′o> with θ0 ≤
∗ θ ′

0
and for 1 ⩽ i ⩽ N : θi ≤

∗ θ ′i ,
this is equivalent to

σ ∈ { a 7→ FunN∗<b1, . . . ,bN ,b ′o>,
b ′o 7→ θ ′

0
,b1 7→ θ1, . . . ,bN 7→ θN

| θ0 ≤
∗ θ ′

0
, θi ≤

∗ θ ′i , for 1⩽i⩽N . }
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(redFunN*)

Eq ∪ { FunN∗<θ ′1, . . . , θ
′
N,θo> ⋖ FunN∗<θ1, . . . , θN,θ

′
o> }

Eq ∪ { θ0 ⋖ θ ′
0
, θ1 ⋖ θ ′

1
, . . . , θN ⋖ θ ′N }

(grFunN*)

Eq ∪ { FunN∗<θ ′
1
, . . . , θ ′N ,θo> ⋖ a }

Eq ∪ { a � FunN∗<b1, . . . ,bN ,b ′o>, θ0 ⋖ b ′
0
,bi ⋖ θ ′i , for 1⩽i⩽N }

where b ′
0
,b1, . . . ,bN are fresh type variables

(smFunN*)

Eq ∪ { a ⋖ FunN∗<θ1, . . . , θN ,θ ′o> }

Eq ∪ { a � FunN∗<b ′
1
, . . . ,b ′N ,bo>,b0 ⋖ θ ′

0
, θi ⋖ b ′i , for 1⩽i⩽N }

where b0,b
′
1
, . . . ,b ′N are fresh type variables

Figure 14: Java type unification rules for the FunN* function types

And this is equivalent to: For all σ

σ (a ) = σ ( FunN∗<b1, . . . ,bN ,b ′o> ),σ (θ0 ) ≤
∗ σ (b ′

0
), and

σ (bi ) ≤
∗ σ (θ ′i ) for 1⩽i⩽N

is valid. This means if and only if σ is a most general unifier before

applying the grFunN* rule it is also a most general unifier after

applying the rule.

smFunN* rule. For the smFunN* rule the condition follows anal-

ogous to the grFunN* rule. □

We would like to end this section with three further examples. First

of all, we will present the solution for the example from Section 4.2.

Then we will present the applications of SOLVE for Examples 7.1

and 7.2.

Example 8.2. For the example from Section 4.2 the result of TYPE
is the program with inserted types

void m() {

f: α = ((x: β ) -> x: γ ) : Fun1*<β, γ >;
var g: ϵ ;
g: ϵ = f: α ;

}

and the set of type constraints:

{ Fun1<β, γ>⋖ α,α ⋖ ϵ }.

Applying the type unification rule grFunN* twice, we get

{ α � Fun1*<β1, γ1>, ϵ � Fun1*<β2, γ2>
β1 ⋖ β,γ ⋖ γ1, β2 ⋖ β1,γ1 ⋖ γ2 }

From this follows as result of SOLVE:

{ { ([α 7→ Fun1*<β1, γ1>, ϵ 7→ Fun1*<β2, γ2>],
{ β1 ⋖ β,γ ⋖ γ1, β2 ⋖ β1,γ1 ⋖ γ2 }) } }

Once again we annotate f by the type Fun1<Sub, Sub>. This means

we instantiate Sub for β1 and γ1, too. Now, we are allowed to in-

stantiate Sub for β2 and Sub as well as Super for γ2, such that the

result constraints of the unification are fulfilled. This means that for

g only the expected types Fun1∗<Sub,Sub> and Fun1∗<Sub,Super>
are allowed.

Example 8.3. In the following we complete Example 7.1 by applying

SOLVE. At first, the type unification rule grFunN* is applied twice:

{ α � Fun1∗<β1,ζ1>, β1 ⋖ β, ζ ⋖ ζ1
ζ � Fun1∗<γ1,η1>, γ1 ⋖ γ , η ⋖ η1,
MathStruc<A>⋖ η,γ ⋖ MathStruc<δ>,
ϵ ⋖ A, β � Fun2∗<ι,κ,ϵ>, A⋖ ι, δ ⋖ κ }.

In the following we will condense some steps of substitutions and

sub- and supertype constructions. In these steps the set of inequa-

tions are multiplied. Then further on, we will consider just one

representative of this set, where no wildcards are inferred.

{ α � Fun1∗<Fun2∗<A, δ ,A>,ζ1>,
Fun1∗<MathStruc<δ>,MathStruc<A>>⋖ ζ1
ζ � Fun1∗<MathStruc<δ>,MathStruc<A>>,
η � MathStruc<A>, γ � MathStruc<δ>,
ϵ � A, β � Fun2∗<A, δ ,A> }9.

Finally, the inequation Fun1∗<MathStruc<δ>,MathStruc<A>>⋖ ζ1
is solved by the grFunN* rule. With some sub- and supertype

constructions and some substitutions we get the result of SOLVE:

(∅, [α 7→ Fun1∗<Fun2∗<A, δ ,A>,
Fun1∗<MathStruc<δ>,MathStruc<A>>>,

ζ 7→ Fun1∗<MathStruc<δ>,MathStruc<A>>,
η 7→ MathStruc<A>, γ 7→ MathStruc<δ>,
ϵ 7→ A, β 7→ Fun2∗<A, δ ,A>])9.

We infer a free type variable δ that becomes another type parameter

of the class MathStruc. In Fig. 15 we present the program with the

inserted types.

It is possible to avoid the free type variables δ . For this ms to have

been explicitly typed:

innerOp = o -> (MathStruc <A> ms) -> ...

Finally, we will present the result of the faculty example.

Example 8.4. Now let us turn to completing Example 7.2. With the

substitution of α in Fun1∗<γ ,ϵ> ⋖ α . by α � Fun1∗<ϕ,δ> we get

Fun1∗<γ ,ϵ>⋖ Fun1∗<ϕ,δ>. with the redFunN* rule, we get ϕ ⋖ γ
and ϵ ⋖ δ . With some sub- and supertype constructions and some

substitutions we get

{ (∅, [γ 7→ Integer, ϕ 7→ Integer, ϵ 7→ Integer,
δ 7→ Integer, α 7→ Fun1∗<Integer,Integer>, ]) }

.

9
We have omitted all substituted and all type variables that are never again required.
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c l a s s MathStruc <A,Delta > {

A model;

Fun1*<Fun2*<A,Delta ,A>,

Fun1*<MathStruc <Delta >,MathStruc <A>>

innerOp = (Fun2*<A,Delta ,A> o ->

(MathStruc <A, Delta > ms) ->

new MathStruc <A,Delta >(o.apply( th i s .model ,
ms.model ));

}

Figure 15: Inserted inferred types

9 CONCLUSION AND FUTUREWORK
In this study we considered the introduction of Scala-like func-

tion types into Java-TX. The main additional feature of Java-TX in

comparison to Java 8 is global type inference. Until now Java-TX
had a type inference algorithm, which infers all correct typings

for a typeless Java 8 program. We showed that any indeed correct

typings are less reasonable.

In order to solve this problem we considered the approach of func-

tional interfaces as target types of lambda expression, given in

Java 8, in detail. We showed its main benefit, i.e. the possibility of

implementing callback functions in many existing libraries. But we

also demonstrated the disadvantages of this approach, which are the

unbeautiful realisation of direct lambda expression applications and

subtypes of function types. Furthermore, we considered two other

approaches, the strawman approach and the approach of function

types in Scala. And, finally we discussed the different approaches

and showed that it is indeed a good idea to retain the possibility of

implementing callback functions by lambda expressions and add

Scala-like function types.

To this purposewe have redefined the language specification through

the introduction of real function types for lambda expressions. In

addition, we extended the definition of compatibility with target

types.

As a final last step, we adapted our type inference algorithm. The

main adaptation had to be undertaken in the type unification, where

three new rules are introduced in order to handle the added function

types.

If we compare our approach of function types in Java with the

arguments of [4] against real function types in Java 8 (cp. Section 2),
we will see that three of the four given arguments, are in fact no

longer given. More specifically, there is no mixture of structural

and nominal types, as the function types are special functional

interfaces. As we allow lambda expressions to implement callback

functions futher on, no divergence in library styles arises, i.e. some

libraries would continue to use callback interfaces, while others

would use structural function types. Moreover, the syntax is not

unwieldy as it had been in the strawman approach.

Only the runtime representation of function types is limited by

type erasure so that it would not be possible to overload methods

m(T->U) and m(X->Y).

In future work we will circumvent this problem. In the program-

ming language PIZZAwe saw two different translation approaches,

a homogenous and a heterogenous [8]. In Java only the homogenous

translation has been introduced so as to erase the type parameters.

We will renew the heterogenous approach in order to avoid type

erasures so that overloading in the above style will become possible.

Furthermore, we will optimize the function SOLVE, especially the

type unification. At the present time there are somes cases being

computed where it is unnecessary.
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