93

CHAPTER 4

ThedassHleFoma

THISchapter describesthe Javavirtual machinecl ass fileformat. Eachcl ass file containsthe definition

of asingle class or interface. Although a class or interface need not have an external representation literally
contained in a file (for instance, because the class is generated by a class loader), we will colloquialy
refer to any valid representation of a class or interface as being in the class file format.

A class file consists of a stream of 8bit bytes. All 16-bit, 32-bit, and 64bit quantities are
constructed by reading in two, four, and eight consecutive &it bytes, respectively. Multibyte data items
are always stored in big-endian order, where the high bytes come first. In the Java and Java 2
platforms, this format is supported by interfaces j ava.io. Datal nput and java.i o. Dat aCut put and
classes such asjava.io.DatalnputStream and java.io.DataOutput St r eam
This chapter defines its own set of data types representing cl ass filedata: The types ul, u2,
and u4 represent an unsigned one-, two-, or four-byte quantity, respectively. In the Javaand Java
2 platforms, these types may be read by methods such as readUnsi gnedByte, readUnsi
gnedShort, andreadlnt of theinterface|java.i o. Datal nput.

This chapter presents the dass file format using pseudostructures written in a C-like structure notation.

To avoid confusion with the fields of classes and class instances, etc., the contents of the structures

describing the cl ass file format are referred to as items. Successive items are stored in the cl ass file
sequentially, without padding or alignment.

Tables, consisting of zero or more variable sized items, are used in several class file structures.
Although we use C-like array syntax to refer to table items, the fact that tables are streams of varying-sized
structures means that it is not possible to trandate a table index directly to a byte offset into the table.

94

Wherewerefer to adatastructure asan array, it consists of zero or more contiguous fixed-gzed itemsand
can be indexed like an array.

4.1 The Class File Structure

A class file consists of asingle Class File structure;

ClassFile {
u4 magic;
u2 minor version; u2 major-version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class; u2 super_class;
u2 interfaces _count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info Fields[fields_count];
u2 methods_count;
method-info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

Theitemsin the ClassFile structure are as follows:

magic
The magi ¢ item supplies the magic number identifying the class fileformat; it hasthe value
Ox CAFEBABE.

minor version,major version
The values of the minor_version and major_version items are the minor and mgjor version
numbers of this class file.Together, a major and a minor version number determine the
version of the class file format. If a class file has mgor version number M and minor
version number m, we denote the version of its class

95

file format as Mm. Thus, class file format versions may be ordered lexicographically,
for example, 1.5<20< 2.1

A Java virtual machine implementation can support a class file format of version v if
and only if v liesin some contiguous range Mi.0 <= v <= Mj.m. Only Sun can specify
what range of versions a Java virtual machine implementation conforming to a certain
release level of the Java platform may support.|

constant_pool_count

The value of the constant _pool _count item is equal to the number of entries in the
const ant _pool table plusone. A constant _pool index isconsidered valid if it is greater

than zero and less than constant_pool _count, with the exception for constants of type
long and Double noted in §4.4.5.

constant_pool[]

The constant_pool is atable of structures (84.4) representing various string constants,
class and interface names, field names, and other constants that are referred to within the Class
File structure and its substructures. The format of each constant_pool table entry is
indicated by itsfirst "tag" byte.

The const ant _pool tableisindexed from 1 to

constant_pool_count-1.

access_flags

The vaue of the access_flags itemisamask of flags used to denote access permissions to
and properties of this class or interface. Theinterpretation of each flag, when set, isasshownin
Table 4.1.

! The Java virtua machine implementation of Sun's JDK release 1.0.2 supports class file format
versions 45.0 through 45.3 inclusive. Sun's JDK releases 1.I.X can support class file formats of
versions in the range 45.0 through 45.65535 inclusive. Implementations of version 1.2 of the Java 2
platform can support class file formats of versions in the range 45.0 through 46.0 inclusive.

96

Table 4.1 Class access and pr operty modifiers

Flag Name \Value Inter pretation

ACC_PUBLI C 0x0001 Declared public; may be accessed from
outside its package.

ACC_FI NAL 0x0010 Declared final; no subclasses allowed.

ACC_SUPER 0x0020 Treat superclass methods specially when
invoked by the invokespecial instruction.

ACC | NTERFACE [0x0200 Is an interface, not a class.

ACC_ABSTRACT [0x0400 Declared abstract; may not be instanti
ated.

An interface is distinguished by its ACC | NTERFACE flag being set. If its ACC | NTERFACE
flag is not set, thiscl ass file defines a class, not an interface.
If the ACC | NTERFACE flag of this cl ass fileis set, its ACC_ABSTRACT flag must also be set (82.13.1)
and its ACC_PUBLI C flag may be set. Such a class file may not have any of the other flags in Table 4.1
Set.
If the ACC_ | NTERFACE flag of this class fileis not set, it may have any of the other flagsin Table 4.1 set.
However, such acl ass file cannot have both its ACC_ A NAL and ACC_ABSTRACT flags set (§2.8.2).
The setting of the ACC_ SUPER flag indicates which of two aternative semantics for its invokespecial
instruction the Java virtual machine is to express, the ACC_SUPER flag exists for backward compatibility for
code compiled by Sun's older compilers for the Java programming language. All new implementations of the
Java virtual machine should implement the semantics for invokespecial documented in this specification.
All new compilers to the instruction set of the Java virtual machine should set the ACC_SUPER flag. Sun's
older compilers generated QdassFile flags with ACC SUPER unset. Sun's older Java virtua machine
implementations ignore the flag if it is set.
All bits of the access_f 1 ags item not assigned in Table 4.1 are reserved for future use. They should be set
to zero in generated class files and should be ignored by Java virtual machine implementations.

97

This_cl ass
The value of the this class item must be a valid index into the const ant pool table. The
constant _pool entry at that index must be aCONSTANT_Cl ass_i nfo (84.4.1) structure representing
the class or interface defined by thiscl ass file.

super _cl ass

For a class, the value of the super _cl ass item either must be zero or must be avalid index into the
const ant _pool table. If thevalueof thesuper _cl ass itemisnonzero, theconst ant _pool eatryatha
index must be aCONSTANT_Cl ass_i nf o (84.4.1) structure representing the direct superclass of the class
defined by this cl ass file. Neither the direct superclass nor any of its superclasses maybe a fi nal
class.

If the value of the super _cl ass item is zero, then thiscl ass file must represent the classbj ect ,
the only class or interface without a direct superclass.

For an interface, the value of the super_c1 ass item must always be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Cl ass_i nf o structure representing the class j ect .

I nterfaces_count
The value of the interfaces count item gives the number of direct superinterfaces of this class or
interface type.

interfaces|[]
Each value in the interfaces array must be a valid index into the const ant _pool table. The
constant _pool entry ateachvalueofi nterfaces [i], where®Si < interfaces_count, musthea
CONSTANT_Cl ass_i nf o (84.4.1) structure representing an interface that is adirect superinterface of this
class or interface type, in the left-to-right order given in the source for the type.

fields_count
Thevalue of the fi el ds_count item gives the number of
field_info structuresinthefiel ds table. Thefiel d_info (84.5) structuresrepresent all fields, both
class variables and instance variables, declared by this class or interface type.

98

fields[]
Each value in the fiel ds table must be a field_info (84.5) structure giving a
complete description of afield in this class or interface. Thefi el ds tableincludes
only thosefields that are declared by this class or interface. It does not include items
representing fields that are inherited from superclasses or superinterfaces.

met hods_count
The value of the methods_count item gives the number of method_info
structuresinthe met hods table

met hods|[]
Eachvalueinthemet hods tablemust beanet hod_i nfo (§4.6) structuregivinga
complete description of a method in this class or interface. If the method is not
native Of abstract, the Java virtuad machine instructions implementing the
method are also supplied.

The et hod_i nfo structures represent all methods declared by this class or
interface type, including instance methods, class (static) methods, instance
initidlization methods (83.9), and any class or interface initiadlization method
(83.9). The net hods table does not include items representing methods that are
inherited from superclasses or superinterfaces.

attri butes_count
Thevaueof theat t ri but es_count item givesthe number of attributes(§4. 7) in
theattributes table of thisclass.

attributes[]
Each vadue of the at t ri but es table must be an attribute structure (84.7).

The only attributes defined by this specification asappearingintheat t ri but es
table of a Cl assFi 1e structure are the SourceFi le attribute (§4.7.7) and the
Deprecated (§4.7.10) attribute.

A Java virtua machine implementation is required to silently ignore any or all
atributes in the attributes table of a ClassFile structure that it does not
recognize. Attributes not defined in this specification are not alowed to affect the

99

semantics of the class file, but only to provide additional descriptive information (84.7.1).

42ThelInternal Form of Fully Qualified Classand Interface Names

Class and interface names that appear in class file structures are always represented in a fully
qualified form (82.7.5). Such names are always represented as GONSTANT_Uf8 info (84.4.7)
structures and thus may be drawn, where not further constrained, from the entire Unicode character
set. Class names and interfaces are referenced both from those CONSTANT NameAndType_info
(84.4.6) dtructures that have such names as part of their descriptor (84.3) and from al
CONSTANT_Class_info (84.4.1) structures.

For historical reasons the syntax of fully qualified class and interface names that appear in class file
structures differs from the familiar syntax of fully qualified names documented in 8§2.7.5. In this internal
form, the ASCII periods (' .') that normally separate the identifiers that make up the fully qualified
name are replaced by ASCII forward slashes (/).). For example, the normal fully qualified name of class
Thread is java.lang.Thread. In the form used in descriptorsintheclass fileformat, areferenceto the
name of class Thread is implemented using a CONSTANT_Utf8_info structure representing the string

"java/Zlang/Thread".

4.3 Descriptors

A descriptor is a string representing the type of a field or method. Descriptors are represented in the
class fileformat using UTF-8 strings (84.4.7) and thus may be drawn, where not further constrained, from
the entire Unicode character set.

4.3.1 Grammar Notation

Descriptors are specified using agrammar. Thisgrammar isaset of productions that describe how sequences
of characters can form syntactically correct descriptors of varioustypes. Termina symbols of the
grammar are shown in bold fixed-width font. Nonterminal symbols are shown in italic type. The
definition of a nontermina is introduced by the name of the nonterminal being defined, followed by a
colon.

100

One or more alternative right-hand sides for the nonterminal then follow on succeeding lines. For example,
the production:
FieldType:
BaseType
ObjectType
ArrayType

states that a FieldType may represent either a BaseType, an Object Type, or an ArrayType.

A nonterminal symbol on the right-hand side of a production that is followed by an asterisk (*)
represents zero or more possibly different values produced from that nonterminal, appended without any
intervening space. The production:

MethodDescriptor:
(Parameter Descriptor*) ReturnDescriptor

states that a MethodDescriptor represents a left parenthesis, followed by zero or more Parameter Descriptor
values, followed by aright parenthesis, followed by a ReturnDescriptor.

4.3.2 Field Descriptors
Afield descriptor represents the type of a class, instance, or local variable. It is a series of characters
generated by the grammar:
FieldDescriptor:
FieldType
Component Type:
FieldType
FieldType:
BaseType
Object Type
ArrayType
BaseType:

—TMoOw

101

J

S

z
Object Type:

L<cl assnane>;
ArrayType:

[ComponentType

The characters of BaseType, the L and ; of ObjectType, and the [of ArrayType are al ASCII
characters. The <classhame> represents a fully qualified class or interface name. For historical reasonsit is

encoded in interna form (84.2).
The interpretation of the field typesis as shown in Table 4.2.

Tabled2Inter pretation of BaseType characters

BaseType Char acter Interpretation
B byte signed byte
char Unicode character
D doubl e Double_precision floating-point value
fl oat sngle-precision floating-point value
| int integer
I ong long integer
L<cl assname>; reference an instance of class <classnane>
S short signed short
Z bool ean true orfal se
(ref erence one array dimension

For example, the descriptor of an instance variable of type i nt is simply |I. The descriptor of an
instance variable of type ject is Ljava/l ang/ (j ect;. Note that the internal form of the fully qualified
name for classobj ect isused. The descriptor of aninstance variable that isamultidimensiona doubl e aray,

double d[][][];

[[[D

102

4.3.3 Method Descriptors
A method descriptor represents the parameters that the method takes and the value that it returns:
MethodDescriptor:

(Parameter Descriptor*) ReturnDescriptor

A parameter descriptor represents a parameter passed to a method:
Parameter Descriptor:
FieldType
A return descriptor represents the type of the value returned from a method. It is a series of characters
generated by the grammar:

ReturnDescriptor:
FieldType
Y,

The character V indicates that the method returns no value (its return type is
voi d) .

A method descriptor is valid only if it represents method parameters with a total length of 255 or
less, where that length includes the contribution for t hi s inthe case of instance or interface method invocations.
Thetotal length is calculated by summing the contributions of the individual parameters, where a parameter
of type tong OF double contributes two units to the length and a parameter of any other type contributes

one unit.
For example, the method descriptor for the method

Obj ect nynethod(int i, double d, Thread t)

(IDLjava/lang/Thread;)Ljava/lang/Object;
Note that internal forms of the fully qualified names of thread and wject are used in the method descriptor.

The method descriptor for nynethod is the same whether nymet hod is a class or an instance
method. Although an instance method is passed this, a reference to the current class instance, in
addition to its intended parameters, that fact is not reflected in the method descriptor. (A reference to
this is NOt passed to a class method.) The reference to this is passed implicitly by the method

103

invocation instructions of the Java virtual machine used to invoke instance methods.

4.4 The Constant Pool

Java virtual machine instructions do not rely on the runtime layout of classes, interfaces, class
instances, or arrays. Instead, instructions refer to symbolic information in the constant_pool table.

All constant_pool table entries have the following general format:
cp_info {
ul tag;
ul info[];
}

Eachitemintheconst ant _pool tablemust beginwith a1-bytetag indicating the kind of cp_info entry. The
contents of theinfo array vary with the value of t ag. Thevalid tagsand their valuesarelisted in Table 4.3.
Each tag byte must be followed by two or more bytes giving information about the specific constant. The format
of the additional information varies with the tag value.

Table 4.3 Constant pool tags

Condant 1'ype Value

CONSTANT_Class 7
CONSTANT_Fieldref 9
CONSTANT_Methodref 10
CONSTANT_InterfaceMethodref 11
CONSTANT_String 8
CONSTANT_Integer 3
CONSTANT_Float 4
CONSTANT_Long 5
CONSTANT_Double 6
CONSTANT_NameAndType 12

CONSTANT_UtT8 1

104

The GONSTANT_Q ass_i nfo structure is used to represent a class or an interface:
CONSTANT_d ass-info {
ul tag;
u2 name_i ndex;

The items of the GONSTANT_Q ass_i nfo structure are the following:

t ag
Thetag item hasthe value GNSTANT Q ass (7).
name_i ndex

The value of the nane_index item must be a valid index into the const ant _pool table.
The constant_pool entry at that index must be a CONSTANT_Wf8_info (84.4.7)
structure representing a valid fully quaified class or interface name (82.8.1) encoded in
internal form (84.2).

Because arrays are objects, the opcodes anewarray and multianewarray can reference array "classes'
VIiaCONSTANT_d ass-i nfo (84.4.1) structuresintheconst ant _pool table. For such array classes, the
name of the class is the descriptor of the array type. For example, the class name representing atwo-
dimensiona int array type

int [] []

[[1
The class name representing the type array of class Thr ead

Thread]]

[Lj aval/ | ang/ Thr ead;

An array type descriptor is valid only if it represents 255 or fewer dimensions.

105

4.4 The CONSTANT _Fiedref info, CONSTANT _Methodref info, and
CONSTANT _InterfaceMethodref_info Structures

Fields, methods, and interface methods are represented by similar structures:

CONSTANT_Fi el dref _info {
ul tag;

u2 cl ass_i ndex;
u2 nane_and_t ype_i ndex;

}

CONSTANT_Met hodref _info { ul tag;

u2 cl ass_i ndex;
u2 nane_and_t ype_i ndex;

CONSTANT _I nterfaceMet hodref _info { ul tag;
u2 cl ass_i ndex;
u2 nane_and_t ype_i ndex;

The items of these structures are as follows:

tag
Thetag item of a CONSTANT Fiel dref i nfo structure has the value GONSTANT Fiel dref (9).
The tag item of a OCONSTANT Methodref_info structure has the value
CONSTANT_Met hodr ef (10).
The tag item of a CONSTANT InterfaceMethodref info structure has the value
CONSTANT_I nt er f aceMet hodref (11).

cl ass_i ndex

The value of the class index item must be a vaid index into the const ant _pool table. The
constant _pool entry at that index must be a CONSTANT_CO ass_info (84.4.1) structure

representing the class or interface type that contains the declaration of the field or method.

106

The class index item of a CONSTANT Met hodr ef _i nf o structure must be a class
type, not an interface type. The class_index item of a
CONSTANT _I nt er f aceMet hodref _i nfo structure must be an interface type. The
class_i ndex item of a QONSTANT_Fi el ddref _i nfo structure may be either a class type or
an interface type.

name_and_t ype_i ndex

The value of the name_and_type index item must be a valid index into the
constant _pool table. The constant_pool entry at that index must be a QN
STANT_NaneAndType_info (84.4.6) structure. This constant _pool entry indicates the
name and descriptor of the field or method. In a GONSTANT Fi el dref_info the indicated
descriptor must be a field descriptor (84.3.2). Otherwise, the indicated descriptor must be a
method descriptor (84.3.3).

If the name of the method of a CONSTANT_Met hodr ef _i nf o structure beginswith a <'
(* \u003c'), then the name must be the special name <init>, representing an instance
initializetion method (§3.9). Such a method must return no value.

4.4.3 The CONSTANT_String_info Structure

The GONSTANT_String_i nfo structure is used to represent constant objects of the type St ri ng:

CONSTANT_String_info {
ul tag;
u2 String_index;

The items of the QONSTANT_String_i nf o structure are as follows:

tag

The tag item of the GONSTANT String info structure has the value QONSTANT String
(8).

String_i ndex

The value of the Sring_index item must be a valid index into the constant _pool
table. The const ant _pool entry at that

107

index must be a CONSTANT_Ut f 8_i nfo (84.4.7) structure representing the sequence of
characters to which the s ring object isto be initidized.

4.4.4 The CONSTANT I nt eger-i nfor and CONSTANT_Fl oat _i nfo Structures

The CONSTANT I nteger_info and GONSTANT Hoat_info structures represent 4byte numeric (int and
Hoat) constants:
CONSTANT _I nteger-info {

ul tag;
u4 bytes;
}
CONSTANT_Fl oat _i nfo {
ul tag;
u4 bytes;

The items of these structures are as follows:

tag
The tag item of the OCONSTANT Integer info structure has the value
CONSTANT_I nt eger (3).
The tag item of the QONSTANT Hoat_info structure has the value QONSTANT A oat
(4).
byt es

The bytes item of the GONSTANT |nteger_info structure represents the value of the
int constant. The bytes of the value are stored in big-endian (high byte first) order.

The byt es item of the QONSTANT_A oat _i nfo structure represents the value of the
Fl oat constant in IEEE 754 floating point single format (83.3.2). The bytes of the
single format representation are stored in big-endian (high byte first) order.

The value represented by the GONSTANT_A oat _i nf o structure is determined as follows.

The bytes of the value are first converted into an int constant bits. Then:
If bits is 0x7f 800000, the Fl oat value will be postive infinity.

If bits is Oxf f 800000, the Fl oat value will be negative infinity.

108

- If bits is in the range 0x7f800001 through Ox7FFFFFFF oOr in the range OxFF800001 through
OxFFFFFFFF, the Float vauewill be NaN.
- In all other cases, let s, e, and m be three values that might be computed from bits:
int s = ((its » 31) ==0) ?1:-1; int e = (bits » 23) &
OxfF) ; int m=(e == 0) ?
(bits & OX7FFFFF) « 1

(bits & OX7FFFFF) 10x800000;
Then the Float value equals the result of the mathematical expressionseme2e -
150

4.45 The CONSTANT_ Long_ info and CONSTANT Double_info Structures

The CONSTANT_Long_info and CONSTANT_Double_info represent 8-byte numeric (1 ong and Double)
constants:
CONSTANT_Long_info {
ul tag;
u4 high-bytes;
u4 low_bytes;

CONSTANT_Double_info {
ul tag;
u4 high-bytes;
ud4 low_bytes;

All 8-byte constants take up two entries in the const ant _pool table of the class file. If a
CONSTANT_Long_info or CONSTANT_Double_info structure is theitemintheconst ant _pool tableat
index n, then the next usable item in the pool is located at index n +2. The constant_pool index n+1

must be valid but is considered unusable.?
The items of these structures are as follows:

2 |n retrospect, making 8-byte constants take two constant pool entries was a poor choice

109

Thetag item of the CONSTANT Long_i nf o structure has the value CONSTANT Long (5).
Thetag item of the GONSTANT_Doubl e_i nfo structure has the value GONSTANT_Doubl e(6) .

hi gh_byt es, | ow_bytes

The unsigned high_bytes and | ow bytes items of the CONSTANT_Long_i nfo structure together
represent the value of the I ong constant ((long) high bytes << 32) + I owbytes, where the
bytes of each of hi gh_bytes andiow byt es are stored in big-endian (high byte first) order.

The high bytes and lowbytes items of the GONSTANT Double info structure together
represent the Doubl e value in IEEE 754 floating-point double format (83.3.2). The bytes of each
item are stored in big-endian (high byte first) order.

The vaue represented by the CONSTANT Doubl e_info structure is determined as
follows. The hi gh_bytes and
I ow bytes; items are first converted into the | ong constant bits, which is equal to ((I ong)
hi gh bytes « 32) + | ow bytes. Then:

If bits is O7ff0000000000000L, the double vaue will be postive
infinity.

If bitsi s Oxfff0000000000000L, the doubl e vaue will be negative infinity.

If bits is in the range 0Ox7ff0000000000001L through
oxx7iffffffffffffffL or in the range Oxfff0000000000001L through
OxffffffffffffffifL, theDouble vauewill be NaN.

In all other cases, let s, e, and m be three values that might be computed
from bits:
int s = ((bits» 63) == 0) ? 1 : -1; int e = (int) ((its» 52) &
ox7ffL) ; long m=(e == 0) ?

(bits & OXFFFFFFFFFFFFFL) « 1

(bits & OxFFFFFffffffffL) 10x10000000000000L;

110

Then the floating-point value equals the double value of the mathematical
expression s* mr 2 e -1075

4.4.6 The CONSTANT NaneAndType i nfo Structure

The CONSTANT_NanmeAndType_i nf o structure is used to represent afield or method, without indicating which
class or interface type it belongs to:
CONSTANT_NaneAndType_i nfo {
ul tag;
u2 name_i ndex;
u2 descri ptor_index;

The items of the QN STANT_NaneAndType_i nf o structure are, as follows:

tag
The tag item of the CONSTANT NaneAndType info structure has the vaue
CONSTANT_NaneAndType (12).

nane_i ndex
The value of the nane_ i ndex item must be a valid index into the const ant _pool table.
The constant _pool entry at that index must be a CONSTANT_Wf8_info (84.4.7)
structure representing either avalid field or method name (82.7) stored as a smple name
(82.7.1), that is, as a Java programming language identifier (82.2) or asthe special method
name <init> (§3.9) .

descri pt or _i ndex
The value of the descriptor_index item must be a valid index into the const ant _pool
table. The const ant _pool entry at that index must be a CONSTANT_Ut f8_i nfo (84.4.7)
structure representing a valid field descriptor (84.3.2) or method descriptor (84.3.3).

4.4.7 The CONSTANT_W f8_i nfo Structure

The CONSTANT_Ut f 8_i nf o structure is used to represent constant string values. UTF-8 strings are encoded so
that character sequences that contain only nonnull ASCII characters can be represented using only 1 byte per
character, but char-

111

acters of up to 16 can be represented.All charactersin the range * \uOOOL' to*u007F arerepresented
by asingle byte:

| 0| bits 6-0

The 7 bits of data in the byte give the value of the character represented. The null character (* \u0000") and
charactersin the range "\u0080' to ' \uO7FF" are represented by apair of bytesx and y:

x|111]0| bits10-6 |y.|1]0] bits 5-0 |

The bytes represent the character with the value ((x & Ox1f) « 6) + (y & 0x3f). Charactersin the range ' \u0800'
to ' \uFFFF are represented by 3 bytesx, y, and z:

x:|[1[1]1]o] bits15-12 |y:[1] 10| bits11-6 |z|1]0] bis°50 |

The character with the value ((x& Oxf) « 12) + ((y& Ox3f) « 6) + (z& Ox3f) is represented by the bytes.

The bytes of multibyte characters are stored in the class file in big-endian (high byte first) order.

There are two differences between thisformat and the "standard" UTF-8format. First, thenull byte(byte) Ois
encoded using the 2-byte format rather than the 1-byte format, so that Javavirtual machine UTF-8gringsnever
have embedded nulls. Second, only the 1-byte, 2-byte, and 3-byteformatsareused. The Javavirtuad machinedoes
not recognize the longer UTF-8 formats.

For more information regarding the UTF-8 format, see File System Safe UCS Transformation Format
(FSS_UTF), X/Open Preliminary Specification (X/Open Company Ltd., Document Number: P316). This
information aso appearsin ISO/ |EC 10646, Annex P.

The CONSTANT_W f8_info structure is
CONSTANT_WUtf8_info {
ul tag;
u2 | ength;
ul bytes[length];
}
The itens of the CONSTANT _Wf8 info structure

are the foll ow ng:

112

The tag item of the CONSTANT Utf8 info structure has the vaue CONSTANT Utf8
Q).

length
The value of the length item gives the number of bytesin the byt es array (not the length
of the resulting string). The strings in the CONSTANT Utf8 info structure are not null-
terminated.

bytes []
The byt es array contains the bytes of the string. No byte may have the value (byte) 0
or liein the range (byte) Oxfo - (byte)OxfF.

4.5 Fields

Each field is described by a Field_info structure. No two fields in one class file may have the same
name and descriptor (84.3.2). The format of this structure is

field_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes _count;
attribute_info attributes[attributes_count];

The items of the Field_info structure are as follows:

access_fTlags

The value of the "% jtem s a mask of flags used to denote access permission to
and properties of thisfield. The interpretation of each flag, when set, isas shown in Table
4.4.

Fields of classes may set any of the flagsin Table 4.4. However, a specific field of aclass may
have at most one of its ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC flags set (82.7.4) and
may not have both its ACC FI NAL and ACC_VOLATILE flags set (82.9.1).

113

Table 4.4 Field access and property flags

Flag Name Value Inter pretation

ACC_PUBLIC 0x0001 | Declared publ i c; may be accessed from
outside its package.

ACC_PRIVATE 00002 | Declared private; usable only within

the defining class.

ACC_PROTECTED 00004 | Declared protected; maybe accessed
within subclasses.

ACC_STATIC OX0008 Declared static.

ACC_FINAL Ox0010 | Declared Final ; no further assignment
dfter initialization.

ACC_VOLATTLE 0x0040 Declared volatile; cannot be cached.

ACC_TRANSIENT 00080 Declared transi ent; not written or read
by a persistent object manager.

Fields of classes may set any of the flags in Table 4.4.
However, a specific field of a class may have at most one of its ACC_PRIVATE, ACC_PROTECTED,
and ACC_PUBLIC flags set (8§2.7.4) and may not have both its ACC_ FINAL and ACC_VOLATILE flags
set (82.9.1).

All fields of interfaces must have their ACC PUBLI C, ACC STATIC, and ACC FI NAL
flags set and may not have any of the other flagsin Table 4.4 set (§2.13.3.1).

All bits of the access_fl ags item not assigned in Table 4.4 are reserved for future use.

They should be set to zero in generated class files and should be ignored by Java virtual
machine implementations.

name_index
The value of the nane_i ndex item must be a vaid index into the constant_pool table.
The constant_pool entry at that index must be a CONSTANT_UtF8_info (84.4.7) structure
which must represent avalid field name (82.7) stored asasimple name (82.7.1), thatis, asaJava
programming language identifier (82.2).

114

descri pt or _i ndex
The vaue of the descri ptor_i ndex item must be a valid index into the const ant _pool
table. The const ant _pool entry at that index must be a CONSTANT_Utf8_i nfo (84.4.7)
structure that must represent a valid field descriptor (84.3.2).

attri but es_count

The vaue of the attributes_count item indicates the number of additional attributes
(84.7) of thisfield.

attributes[]
Each value of the attri but es table must be an attribute structure (84.7). A field can have
any number of attributes associated with it.

The attributes defined by this specification as appearing in the
attributes table of a field info structure are the ConstantVal ue (84.7.2), Synthetic
(84.7.6), and Deprecated (84.7.10) attributes.

A Java virtua machine implementation must recognize and correctly read
Qonstant Val ue (84.7.2) attributes found in the attributes table of a field.info
structure. A Java virtual machine implementation is required to silently ignore any or all
other attributes in the attributes table that it does not recognize. Attributes not
defined in this specification are not allowed to affect the semantics of the class file, but
only to provide additional descriptive information (84.7.1).

4.6 Methods

Each method, including each instance initialization method (83.9) and the class or interface initiaization
method (83.9), is described by a met hod_i nf o structure. No two methods in one class file may have the
same name and descriptor (84.3.3).

The structure has the following format:

met hod-info {
u2 access_fl ags;
u2 nane_i ndex;
u2 descri ptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

115

The items of the method_info structure are as follows:

access_fTlags
The value of the access_flags item is a mask of flags used to denote access
permission to and properties of this method. The interpretation of each flag, when set, is
as shown in Table 4.5.

Tabled5Method access and property flags

Flag Name Value Interpretation
ACC_PUBLIC 0x0001 | Declared public; may be accessed
from outside its package.
ACC_PRIVATE 0x0002 | Declared private; accessible only
within the defining class.
accessed within subclasses.
ACC_FINAL O0x0010 | Declared final; may not be overrid
den.

ACC_SYNCHRONIZED 0x0020 Declared synchronized; invocation
is wrapped in a monitor lock.

ACC_NATIVE O0x0100 | Declared native; implementedin a
language other than Java.

ACC_ABSTRACT 0x0400 | Declared abstract; no implementa
tion is provided.

ACC_STRICT 0x0800 | Declared strictfp; floating-point

mode is FP-strict

Methods of classes may set any of the flags in Table 4.5. However, a specific method of a class
may have at most one of its
ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC flags set
(82.7.4). If such a method has its ACC_ABSTRACT flag set it may not have any of its
ACC FINAL, ACC_NATIVE, ACC_PRIVATE, ACC_STATIC, ACC_STRICT, or
ACC_SYNCHRONIZED flags set (§2.13.3.2).
All interface methods must have their ACC_ABSTRACT and ACC PUBLI C flags set
and may not have any of the other flagsin Table 4.5 set (8§2.13.3.2).

116

A specific instance initialization method (83.9) may have a most one of its ACC PRI VATE,
ACC_PROTECTED, and ACC PUBLI C flags set and may also have its ACC_STRI CT flag set, but may not
have any of the other flags in Table 4.5 set.

Class and interface initialization methods (83.9) are called implicitly by the Java virtua machine;
the value of their access flags item isignored except for the settings of the ACC_STRI CT flag.

All bits of the access flags item not assigned in Table 4.5 are reserved for future use. They should
be set to zero in generated class files and should be ignored by Java virtual machine implementations.

name_i ndex
The vaue of the name_i ndex item must be a valid index into the constant pool table. The
const ant _pool entry at that index must be a CONSTANT_Wt f8_i nfo (84.4.7) structure representing
either one of the specia method names (83.9), <init> or <clinit> or avaid method name in the
Java programming language (82.7), stored as a simple name (82.7.1).

descri ptor_i ndex
The value of the descriptor_index item must be a valid index into the constant _pool table. The
const ant _pool entry at that index must be a CONSTANT_Ut f 8_i nf o (84.4.7) structure representing a
valid method descriptor (84.3.3).

attributes_count
The value of the attributes_count item indicates the number of additional attributes (84.7) of this
method.

attributes[]
Each value of the attributes table must be an attribute structure (84.7). A method can have any number
of optional attributes associated with it.

The only attributes defined by this specification as appearing in the attributes table of anethod_i nfo
structure are the Code (84.7.3), FExceptions (84.7.4), Synthetic (84.7.6), and
Depr ecat ed (84.7.10) attributes.

117

A Java virtual machine implementation must recognize and correctly read Code (84.7.3) and Exceptions
(84.7.4) attributes found in the attributes table of a nethod_info structure.
A Java virtua machine implementation is required to silently ignore any or al other attributes in the
attributes table of a method_i nfo structure that it does not recognize. Attributes not defined in this
specification are not alowed to affect the semantics of the class file, but only to provide additional
descriptive information (84.7.1).

4.7 Attributes

Attributes are used inthe Class Fi | e (8§4.1), field info (§4.5), nethod-info (§4.6), and

Code-attribute (84. 7. 3) structures of the cl ass file format. All
attributes have the following general format:

attribute_info {
u2 attribute_nanme_index;
u4 attribute_l ength;
ul info[attribute_length];

For all attributes, the attribute_name_i ndex must be avalid unsigned 16bit index into the constant
pool of the class. The constant _pool entry atattribute_name_i ndex mustbeaCONSTANT_Wf8_info
(84.4.7) structure representing the name of the attribute. The value of the attribute_l ength item
indicates the length of the subsequent information in bytes. The length does not include the initial six
bytes that contain the attribute_name_i ndex andattribute_|ength items.

Certain attributes are predefined as part of the class file specification. The
predefined attributes are the Sou rceFi | e (§4.7.7), ConstantVal ue (§4.7.2), Code (8§4.7.3),
Exceptions (84.7.4), InnerClasses (84.7.5), Synthetic (84.7.6), LineNunberTable (84.7.8),
Local Vari abl eTabl e (§4.7.9), and Dep
recated (§4.7.10) attributes. Within the context of their use in this specification, that is, in the
attributes tables of the class file structures in which they appear, the names of these predefined
attributes are reserved.

Of the predefined attributes, the Code, Constantval ue, and Exceptions attributes must be
recognized and correctly read by a class file reader for correct

118

interpretation of the class file by a Java virtua machine implementation. The InnerClasses and
Synthetic attributes must be recognized and correctly read by a class file reader in order to properly
implement the Java and Java 2 platform class libraries (§3.12). Use of the remaining predefined attributes
isoptional; acl ass filereader may use the information they contain, or otherwise must silently ignore those
attributes.

4.7.1 Defining and Naming New Attributes

Compilers are permitted to define and emit class files containing new attributes in the attri but es tables
of cl ass file structures. Java virtual machine implementations are permitted to recognize and use new
attributes found inthe at t ri but es tables of class file structures. However, any attribute not defined as part
of this Java virtual machine specification must not affect the semantics of class or interface types. Java
virtual machine implementations are required to silently ignore attributes they do not recognize.

For instance, defining a new attribute to support vendor-specific debugging is permitted. Because Java
virtua machine implementations are required to ignore attributes they do not recognize, cl ass files
intended for that particular Java virtua machine implementation will be usable by other
implementations even if those implementations cannot make use of the additional debugging
information that the class files contain.

Java virtual machine implementations are specifically prohibited from throwing an exception or
otherwise refusing to use class files smply because of the presence of some new attribute. Of course,
tools operating on class files may not run correctly if given class files that do not contain al the attributes

they require.

Two attributes that are intended to be distinct, but that happen to use the same attribute name and are of the
same length, will conflict on implementations that recognize either attribute. Attributes defined other
than by Sun must have names chosen according to the package naming convention defined by The Java
Language Specification. For instance, a new attribute defined by Netscape might have the name "com.
Netscape. new-attribute™. 3

Sun may define additional attributes in future versions of this class file specification.

°The first edition of The Java Language Specification required that "com" be in uppercase in this example. The second edition will
reverse that convention and use lowercase.

119

4.7.2 The ConstantValue Attribute

The ConstantVa ue attribute is a fixed-length attribute used in the attributes table of the field info
(84.5) structures. A ConstantVal ue attribute representsthe vaue of acongant field that must be (explicitly
or implicitly) static; that is, the ACC STATIC hit (Teble 44) in the fl ags item of the fidd info Sructure must
be set. There can be no more than one ConstantVa ue attribute in the attributes table of a given
field info structure. The constant field represented by the field info structure is assigned the
value referenced by its ConstantVal ue attribute as part of the initiaization of the class or interface
declaring the constant fidd (82174). This oocours immediatdy prior to the invocation of the dass or intaface
intidization method (83.9) of thet dassor intaface

If a field info structure representing a non-static field has a ConstantValue attribute, then that
attribute must silently beignored. Every Javavirtua machineimplementation must recognize ConstantVal
ue attributes.

The ConstantVal ue attribute has the following format:
ConstantValue_attribute {

u2 attribute_name_index;
u4 attribute_length;
u2 constantvalue_index;

The items of the ConstantVa ue_attribute structure are as follows:
attribute_name_index

The vaue of the attribute name index item must be a vaid index into the

constant_pool table. The constant pool entry a tha indx mut be a

CONSTANT_Utf8 info (844.7) srudturerepresenting the string "ConstantVal ue".
attribute_length

The vaue of the attribute length item of a CongtantVal ue attribute
structure must be 2.

constantvalue_index

The value of the congtantval ue index item must be a valid index into the
constant_pool table. The constant_pool entry at that index gives the constant value
represented by this attribute. The constant_pool entry must be of a type appropriate to
the field, as shown by Table 4.6.

120

Table46Constant value attribute types

Field Type Entry Type

Cong CONSTANT Long

FToat CONSTANT_FToat
Double CONSTANT_DoubTe
int, short, char, byte, booll CONSTANT_Tnteger |
g%?u ng CONSTANT_S€ring

4.7.3 The Code Attribute

The Code attribute is avariable length attribute used in the att ri but es table of method-info structures. A
Code attribute contains the Java virtual machine instructions and auxiliary information for a single method,
instance initialization method (83.9), or class or interface initialization method (83.9). Every Java virtual
machine implementation must recognize Code attributes. If -the method is either native or abstract, its
method_info structure must not have a Code attribute. Otherwise, its method info structure must have
exactly one Code attribute.

The Code attribute has the following format:

Code-attribute f
u2 attribute_name_index;
ud4 attribute_length;
u2 max_stack;
u2 max_locals;
ud4 code_length;
ul code[code_length];
u2 exception_table_length;
{ u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;
} exception_table[exception_table_length];
u2 attributes count;
attribute_info attributes[attributes_count];

The items of the Code attribute structure are as follows:

121

attribute_nane_i ndex
The value of the attribute_nanme_index item must be a valid index into the constant _poo
table. The constant _pool entry at that index must be a CONSTANT_W f8_i nfo (84.4.7) structure
representing the string " Code".

attribute_| ength

The value of the attribute | ength item indicates the length of the attribute, excluding the initial six
bytes.

max_st ack
The value of the max_st ack item gives the maximum depth (83.6.2) of the operand stack of this
method at any point during execution of the method.

max_| ocal s
The value of the max-1 ocal s item gives the number of loca variablesin the locd variable array alocated
upon invocation of this method, including the local variables used to pass parameters to the method on its
invocation.
The greatest local variable index for a value of type long or doubl e i s nax- 1 ocal s-2. The greatest
local variable index for a value of any other type is nax-1 ocal s-i .

code_l ength
The value of the code_| engt h item gives the number of bytes in the code array for this method.
The value of ©®-*"" must be greater than zero; the code array must not be empty.

code[]
The code array gives the actual bytes of Java virtual machine code that implement the method.

When the code array is read into memory on a byteaddressable machine, if the first byte of the array is
aligned on a 4-byte boundary, the tableswitch and lookupswitch 32-bit offsets will be 4-byte aligned. (Refer
to the descriptions of those instructions for more information on the consequences of code array
alignment.)

The detailed constraints on the contents of the code array are extensive and are given in a separate
section (84.8).

122

exception_table_|l ength
The value of the exception_table |ength item gives the number of entries in the
exception tabl e table.

exception_tabl e[]
Each entry in the exception_table array describes one exception handler in the code
array. The order of the handlers in the exception tabl e array is significant. See Section
3.10 for more details.
Each exception_tabl e entry contains the following four items:

start_pc, end_pc

The values of the two items start_pc and end_pc indicate the ranges in the code
array at which the exception handler is active. The value of start_pc must be a
valid index into the code array of the opcode of an instruction. The value of end_pc
either must be a valid index into the code array of the opcode of an instruction or
must be equal to code_|l ength, the length of the code array. The vaue of
start_pc must be less than the value of end_pc.

The start_pc is inclusive and end pc is exclusive; that is, the exception
handler must be active while the program counter is within the interval [start_pc,
endJ)c).4

handl er _pc
The vaue of the handl e r_pc item indicates the start of the exception handler. The
value of the item must be avalid index into the code array and must be the index of the
opcode of an instruction.

catch_type
If the value of the catch_type item is nonzero, it must be a valid index into the
const ant _pool table. The

* The fact that end_pc isexclusive is a historical mistake in the design of the Java virtual machine: if the Java virtual machine code
for amethod is exactly 65535 bytes long and ends with an instruction that is 1 byte long, then that instruction cannot be protected by an
exception handler. A compiler writer can work around this bug by limiting the maximum size of the generated Java virtual
machine code for any method, instance initialization method, or static initializer (the size of any code array) to 65534 bytes.

123

constant_pool entry at that index must be a

CONSTANT_Class info (84.4.1) structure representing a class of exceptions that
this exception handler is designated to catch. This class must be the class Throwable
or one of its subclasses. The exception handler will be caled only if the thrown
exception is an instance of the given class or one of its subclasses.

If the value of the catch_type item is zero, this exception handler is called
for all exceptions. This is used to implement finaly (see Section 7.13,
"Compiling finaly").

attri butes_count

Thevaueof the attributes_count item indicates the number of attributes of the
Code attribute.

attributes][]
Each value of the attributes table must be an attribute structure (84.7). A Code
attribute can have any number of optional attributes associated with it.
Currently, the Li neNunber Tabl e (§4.7.8) and

Local Vari abl eTabl e (84.7.9) attributes, both of which contain debugging
information, are defined and used with the Code attribute.

A Java virtua machine implementation is permitted to silently ignore any or
all attributes in the attributes table of a Code attribute. Attributes not defined in
this specification are not allowed to affect the semantics of the class file, but only
to provide additional descriptive information (84.7.1).

474 TheExceptions Attribute

The Except i ons dtribute is a variable_|ength attribute used in the attri but es table of a met hod_i nfo
(84.6) structure. The Excepti ons attribute indicates which checked exceptions a method may throw.

There may be at most one Except i ons attribute in each met hod_i nf o structure.
The Except i ons attribute has the following format:

124

Exceptions-attribute {
u2 attribute_nane_i ndex;
u4 attribute_| ength;
u2 nunber _of - excepti ons;

u2 exception_i ndex_t abl e[nunber _of _excepti ons];

The items of the Excepti ons_attribute structure are as follows:
attri but e_name_i ndex

The value of the attribute name index item must be a valid index into the
const ant _pool table. The constant_pool entry at that index must be the
QONSTANT_U 8 info (84.4.7) structure representing the string " Except i ons".
attribute_l ength
The value of the attribute_l ength item indicates the attribute length, excluding the
initia six bytes.
nunber _of - excepti ons

The value of the nunber _of _exceptions item indicates the number of entriesin the
exception_i ndex_tabl e.

exception_i ndex_t abl e[]

Each value in the exception_index_table array must be a valid index into the
const ant _pool table. The constant_pool entry referenced by each table item

must be a GINSTANT_d ass_i nfo (84.4.1) structure representing a class type that this
method is declared to throw.

A method should throw an exception only if at least one of the following three criteriais met:

- The exception is an instance of Runti neExcepti on or one of its subclasses.

- The exception is an instance of Error or one of its subclasses.

- The exception is an instance of one of the exception classes specified in the excepti on_i ndex_t abl e just
described, or one of their subclasses.

These requirements are not enforced in the Java virtual machine; they are enforced only at
compile time.

125

4.7.5 The Inner Classes Attribute

The Inne rQ asses attribute® is a variable length attribute in the attributes table of the d assFile (84.1)
structure. If the constant pool of a class or interface refersto any class or interface that is not amember of a
package, its A ass Fil e structure must have exactly one I nner d asses atribute initsattri butes table.
The I nnerd asses attribute has the following format:
I nnerC asses_attribute {
u2 attribute_nane_i ndex;
u4 attribute_ |l ength; u2 nunber_of -cl asses;
{ u2 inner_class_info_index;
u2 outer_cl ass_i nf o_i ndex;
u2 inner_nane_i ndex;
u2 inner_cl ass_access_fl ags;
} cl asses[nunber _of _cl asses];

The items of the I n nerd asses-attribute structure areas follows:

attri but e_name_i ndex

The value of the attribute nane index item must be a vaid index into the
constant _pool table. The constant_pool entry a that index must be a
CONSTANT_Ut f8_i nfo (84.4.7) structure representing the string "I nner d asses".

attribute_l ength

The value of the attribute | ength item indicates the length of the attribute, excluding
theinitia six bytes.

nunber _of - cl asses

The vaue of the nunber_of _cl asses item indicates the number of entries in the
classes array.

cl asses[]

Every QONSTANT_Q ass_i nfo entry in the const ant _pool table which represents a
class or interface C that is not a package

° The InnerClasses attribute was introduced in JOL 1.1 to support nested classes and interfaces

126

member must have exactly one corresponding entry in the cl asses array.

If a class has members that are classes or interfaces, its constant_pool table (and hence its
Innerd asses attribute) must refer to each such member, even if that member is not otherwise mentioned
by the class. These rules imply that a nested class or interface member will havel nne rd asses information

for each enclosing class and for each immediate member.
Each classes array entry contains the following four items:

i nner_cl ass_i nfo_i ndex
The vaue of the inner_class_info_index item must be zero or a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a QINSTANT_d ass_info
(84.4.1) structure representing C. The remaining items in the classes array entry give information
about C.

outer _class_info_i ndex
If Cisnot amember, the value of the
outer_class_i nfo_i ndex item must be zero. Otherwise, the value of the oute r_cl ass_i nfo_i ndex item
must be a vaid index into the constant_pool table, and the entry at that index must be a
QONSTANT_Q ass_i nfo (84.4.1) structure representing the class or interface of which C is a member.

i nner _nane_i ndex
If C is anonymous, the value of the i nne r_nane_i ndex item must be zero. Otherwise, the value of the
i nner _nane_i ndex item must be a valid index into the constant _pool table, and the entry at that
index must be a CONSTANT_Ut f 8_i nf o (84.4.7) structure that represents the original smple name of C,
as given in the source code from which thiscl ass file was compiled.

i nner_cl ass_access_f I ags
The value of the inner_class_access fl ags item is a mask of flags used to denote access

permissions to and properties of class or interface C as declared in the source

code from which this class file was compiled. It is used by compilers to recover
the origina information when source code is not available. The flags are shown in

Table 4.7.
Table4.7 Nested class access and property flags
Flag Name Value Meaning
ACC_PUBLI C 0x0001 Marked or implicitly publ i ¢ in
source.
ACC_PRI VATE 0x0002 Marked pri vat e in source.
ACC_PROTECTED |0x0004 Marked pr ot ect ed in source.
ACC_STATI C 0x0008 Marked or implicitly stati c in
source.
ACC_FI NAL 0x0010 Marked final in source.
ACC_I NTERFACE [0x0200 Wasaninterface insource.
ACC_ABSTRACT 0x0400

Marked or implicitly abst ract in
source.

All bits of the inner_cl ass_access_f | ags item not assignedin Table 4.7 are reserved
for future use. They should be set to zero in generated class files and should beignored by
Javavirtua machine implementations.

127

The Java virtual machine does not currently check the consistency of the I nne rd asses attribute

with any class file actually representing a class or interface referenced by the attribute.

4.7.6 The Synt heti ¢ Attribute

The Synthetic attribute® is a fixed-length attribute in the attributes table of QassFle (84.1),
field_info (84.5), andmethod-info(84.6) structures. A class member that does not appear in the source
code must be marked using a Syntheti c attribute.

128

The Synt heti ¢ attribute has the following format:

Synthetic-attribute {
u2 attribute_name_i ndex;
ud attribute_l ength;

The items of the Synt hetic_attri bute structure are as follows:

attribut e_nane_i ndex
The vaue of the attribute name_index item must be a vaid index into the
constant _pool table. The constant_pool entry a that index must be a
CONSTANT_W f 8_i nfo (84.4.7) structure representing the string " Synt heti c".

attribute_l ength
Thevaueof theattribute | ength itemiszero.

4.7.7 The Sou rceFile Attribute

The SourceFil e attribute is an optiond fixed-length attribute in the attributes table of the d ass
Fi | e (84.1) structure. There can be no more than one Sour ceFi | e attributeinthe attri butes tableof a
given d assFi | e structure.

The Sou rceFi | e attribute has the following format:

SourceFile_attribute {
u2 attribute_name_i ndex;
ud attribute_l ength;
u2 sourcefil e_index;

Theitemsof theSource File attribute structure are as follows:

attribute_nane_i ndex
The vaue of the attribute nane_index item must be a vaid index into the
constant _pool table. The constant_pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the string " Sour ceFi | e".

attribute_| ength
The value of the attribute length item of a
SourceFil e_attribute structure must be 2.

129

sourcefil e_i ndex
The value of the sou rceFile_index item must be a vaid index into the
constant _pool table. The constant pool entry at that index must be a
CONSTANT_Ut f 8_i nfo (84.4.7) structure representing a string.

The string referenced by the SourceFi | e_i ndex item will be interpreted as indicating
the name of the source file from which this class file was compiled. It will not be
interpreted as indicating the name of a directory containing the file or an absolute path name
for the file; such platform-specific additional information must be supplied by the runtime
interpreter or development tool & the time the file name is actually used.

4.7.8 The Li neNurber Tabl e Attribute

The Li neNunber Tabl e attribute is an optional variable length attribute in the attributes table of a Code
(84.7.3) attribute. It may be used by debuggers to determine which part of the Java virtual machine code
array corresponds to a given linenumber inthe origind sourcefile If Li neNunber Tabl e attributes are present in
the attri but es table of agiven Code attribute, then they may appear in any order. Furthermore, multiple

Li neNunber Tabl e attributes may together represent a given line of a source file; that is, Li neNunber Tabl e
attributes need not be one-toone with source lines.

The Li neNunber Tabl e attribute has the following format:

Li neNunber Tabl e_attri bute {
u2 attribute_nane_i ndex;
u4 attribute_l ength;
u2 line_nunber_table_length; { u2 start_pc;
u2 |ine_nunber;
} line_nunber_table[line_nunber_table_ | ength];

The items of the Li neNunber Tabl e_attri bute structure are as follows:

attribute nane_i ndex
The value of the attribute nane index item must be a valid index into the
const ant _pool table. The const ant _pool entry

130

a that index must be a CONSTANT_Uf8_info (84.4.7) structure representing the
string " Li n eNunber Tabl e".

attribute_length
The value of the attribute_| ength item indicates the length of the attribute, excluding the
initia six bytes.

i ne_nunber _table_length

The value of the 1ine nunbe r_table | ength item indicates the number of entries in the
|'i ne_nunber _tabl e array.

li ne_nunber _tabl e[]
Each entry in the line_nunber _t abl e array indicates that the line number in the origina
source file changes at agiven point inthecode array. Eachline_nunber _tabl e entry must
contain the following two items:

start_pc
The value of the start_pc item must indicate the index into the code array at
which the code for a new line in the origina source file begins. The value of
start_pc must belessthanthevalueof thecode | ength itemofthecode attribute
of which thisLi neNunber Tabl e is an attribute.

I'i ne_nunber
The value of the line_nunber item must give the corresponding line number
in the original source file.

4.7.9 The LocalVariableT able Attribute

The Local Vari abl eTabl e attributeisan optional variable length attribute of acode (§4. 7. 3) attribute. It may
be used by debuggers to determine the value of a given local variable during the execution of a method. If
Local Vari abl eTabl e attributes are present in the attributes table of agiven code attribute, then they
may appear in any order. There may be no more than one Local Vari abl eTabl e attribute per loca variable in
the code attribute.

The Local Vari abl eTabl e attribute has the following format:

131

Local Vari abl eTabl e_attribute {

u2 attribute_nane_i ndex;

u4 attribute_l ength;

u2 | ocal _variabl e_tabl e_| engt h;

{ u2 start_pc;
u2 | ength;
u2 nane_i ndex;
u2 descri ptor_i ndex;
u2 i ndex;

} local _variable_table[local _variable_table_|ength];

}

Theitemsof the Local Vari abl eTabl e_attri bute structure areasfollows:. attri but e_name_i ndex
The value of the attribute nane i ndex item must be a valid index into the constant _pool
table. The constant_pool entry at that index must be a CONSTANT U8 info (84.4.7)
structure representing the string " Local Var i abl eTabl e".

attribute_length
The vaue of the attribute | ength item indicates the length of the attribute, excluding the
initial six bytes.

| ocal _variabl e_table_|length

The value of the 1 ocal _Vari abl e_tabl e_| engt h item indicates the number of entriesin the
| ocal _Variabl e table array.

| ocal _variable_table[1l
Each entry inthe | ocal _Vari abl e_t abl e array indicates arange of code array offsets within

which alocal variable hasavalue. It also indicates theindex into thelocal variable array of thecurrent
frame at which that local variable can be found. Each entry must contain the following five items:

132

start _pc, |l ength

The given local variable must have avalue at indicesinto thecode array intheinterval
[start_pc, start_pc+l ength], that is, between start_pc and
start_pc+l ength inclusive. The value of start_pc must be a valid index into
the code array of this Code attribute and must be the index of the opcode of an
instruction. Either the value of start_pc+l ength must be a valid index into the
code array of this Code attribute and be the index of the opcode of an instruction, or
it must be the first index beyond the end of that code array.

name_i ndex, descri pt or _i ndex
The vaue of the name_i ndex item must be a valid index into the const ant _pool
table. The constant _pool entry at that index must contain a QONSTANT_W {8 info

(84.4.7) structure representing a valid local variable name stored as a simple name
(82.7.2).

The value of the descriptor_index item must be a vaid index into the
constant _pool table. The constant _pool entry at that index must contain a
CONSTANT_Wf8_ info (84.4.7) structure representing a field descriptor (84.3.2)
encoding the type of aloca variable in the source program.

i ndex

The given local variable must be at index intheloca variable array of the current

frame. If the local variable at index is of type Double or long, it occupies both
index and i ndex+1.

4.7.10 The Deprecated Attribute
The Deprecated dtribute is an optiona fixed-length attribute in the attributes table of QassFile
(84.1), field_info (84.5), and method-info (84.6) structures. A class, interface, method, or field

may be marked using a Depr ecat ed attribute to indicate that the class, interface, method, or field has been
superseded. A

133

runtime interpreter or tool that reads the class file format, such as a compiler, can use this marking to
advise the user that a superseded dass, interface, method, or field is being referred to. The presence of a
Depr ecat ed attribute does not alter the semantics of a class or interface.

The Deprecat ed attribute has the following format:

Deprecated-attribute {
u2 attribute_nane_i ndex;
u4 attribute_l ength;

Theitemsof the Dep recated_attribute structureare as follows:

attribut e_nane_i ndex
The vaue of the attribute nanme_index item must be a vaid index into the
constant _pool table. The constant_pool entry a that index must be a
CONSTANT_Ut f8_i nfo (84.4.7) structure representing the string " Depr ecat ed" .

attribute_length
Thevaueof theattribute | ength itemiszero.

4.8 Congtraintson Java Virtual Machine Code

The Java virtuad machine code for a method, instance initialization method (83.9), or class or
interface initialization method (83.9) is stored in the code array of the Code attribute of a net hod_i nfo
structure of a class file. This section describes the constraints associated with the contents of the
(ode_attribute structure.

4.8.1 Static Constraints

The static constraints on a class file are those defining the well-formedness of the file. With the exception
of the static constraints on the Java virtual machine code of the class file, these constraints have been givenin
the previous section. The static constraints on the Java virtual machine codein aclass file specify how Java
virtual machine instructions must be laid out in the code array and what the operands of individua
instructions must be.

134

The static constraints on the instructions in the code array are as follows:

- The code array must not be empty, so the code_| ength item cannot have the value 0.
- The value of the code_length item must be less than 65536.

- The opcode of the first instruction in the code array begins at index O.

- Only instances of the instructions documented in Section 6.4 may appear inthecode array. Instances of
instructions using the reserved opcodes (86.2) or any opcodes not documented in this specification may
not appear in the code array.

- For each instruction in the code array except the last, the index of the opcode of the next instruction
equalstheindex of the opcode of the current instruction plusthe length of that instruction, including dl its
operands. The wide instruction is treated like any other instruction for these purposes; the opcode
specifying the operation that @ wide instruction is to modify is treated as one of the operands of that
wide instruction. That opcode must never be directly reachable by the computation.

- Thelast byte of the last instruction in the code array must be the byte at index code_length-1.

The static constraints on the operands of instructions in the code array are as follows:

- The target of each jump and branch instruction (jsr, jsr w, goto, goto w, ifeq, ifne, ifle, iflt, ifge,
ifgt, ifnull, ifnonnull, if icmpeq, if icmpne, if icmple, if icmplt, if icmpge, if icmpgt, if acmpeq, if
acmpne) must be the opcode of an instruction within this method. The target of a jump or branch
instruction must never be the opcode used to specify the operation to be modified by a wide
instruction; ajump or branch target may be the wide instruction itself.

- Each target, including the default, of each tableswitch instruction must be the opcode of an
instruction within this method. Each tableswitch instruction must have a number of entries in its
jump table that is consistent with the value of its low and high jump table operands, and its low
value must be less than or equa to its high value. No target of a tableswitch instruction may be the
opcode used to specify the operation to be modified by a wide instruction; a tableswitch target may
be awide instruction itself.

135

» Each target, including the default, of each lookupswitch instruction must be the
opcode of an instruction within this method. Each lookupswitch instruction must have
a number of match-offset pairs that is consistent with the value of its npairs operand.
The match-offset pairs must be sorted in increasing numerical order by signed match
value. No target of a lookupswitch instruction may be the opcode used to specify the
operation to be modified by a wide instruction; a lookupswitch target may be a wide
instruction itself.

The operand of each Idc instruction must be a valid index into the constant_pool
table. The operands of each Idc w instruction must represent avaid index into the
constant_pool table. In both cases the constant pool entry referenced by that index
must be of type CONSTANT _Integer, CONSTANT _Float, or CONSTANT_String.
The operands of each Idc2 w instruction must represent a valid index into the
constant_pool table. The constant pool entry referenced by that index must bedf type
CONSTANT Long or CONSTANT Doudle In addtion, the subssquent constant pool
index must also be a valid index into the constant pool, and the constant pool entry at
that index must not be used.

The operands of each getfield, putfield, getstatic, and putstatic instruction must
represent avalid index into the constant_pool table. The constant pool entry referenced
by that index must be of type CONSTANT _Fielddref.

The indexbyte operands of each invokevirtual, invokespecial, and invokestatic
instruction must represent a valid index into the constant_pool table. The constant
pool entry referenced by that index must be of type CONSTANT Methodrdf.

Only the invokespecial instruction is allowed to invoke an instance initialization method
(83.9). No other method whose name begins with the character ' <' (" \u003c') may be
called by the method invocation instructions. In particular, the class or interface
initialization method specially named <clinit> is never called explicitly from Java virtua
machine instructions, but only implicitly by the Java virtual machine itself.

The indexbyte operands of each invokeinterface instruction must represent a valid index
into the constant_pool table. The constant pool entry referenced by that index must be of

type CONSTANT InterfaceMethodref. The value of the count operand of each
invokeinterface instruction must reflect the number of local variables necessary to store

136

the arguments to be passed to the interface method, as implied by the descriptor of the
QN STANT NareAndType info structure referenced by the CONSTANT I nterfaceMet hodr ef
constant pool entry. The fourth operand byte of each invokeinterface instruction must have the value
zero.

- The operands of each instanceof, checkcast, new, and anewarray instruction and the indexbyte

operands of each multianewarray instruction must represent a valid index into the

constant _pool table. The constant pool entry referenced by that index must be of type
QONSTANT_Q ass.

- No anewarray instruction may be used to create an array of more than 255 dimensions.
- No new instruction may reference a QONSTANT Q ass constant_pool table entry representing an

array class. The new instruction cannot be used to create an array. The new instruction also cannot be
used to create an instance of an interface or an instance of an abst ract class.

- A multianewarray instruction must be used only to create an array of atype that has at least as many

dimensions as the value of its dimensions operand. That is, while a multianewarray instruction is
not required to create all of the dimensions of the array type referenced by its indexbyte operands, it
must not attempt to create more dimensionsthan arein the array type. The dimensions operand of each
multianewarray instruction must not be zero.

- The atype operand of each newarray instruction must take one of the values T_BOOLEAN (4),

T CHAR (5), T _FLOAT (6), T _DOUBLE (7), T BYTE (8), T SHORT (9), T_INT (10), or
T _LONG (11).

- The index operand of each iload,fload, aload, istore, fstore, astore, iinc, and retinstruction must be a

nonnegative integer no greater than nax_| ocal s- 1.

- The implicit index of each iload <n>, fload <n>, aload <n>, istore <n>, fstore <n>, and astore<n>

instruction must be no greater than the value of nax_| ocal s- 1.

- The index operand of each Road, dload, istore, and dstore instruction must be no greater than the

value of nax_| ocal s- 2.

- The implicit index of each lload <n>, dload <n>, istore <n>, and dstore <n> instruction must be no

greater than the value of nax_| ocal s-2.

- The indexbyte operands of each wide instruction modifying an iload, fload, aload, istore, fstore,

astore, ret, or iinc instruction must represent a nonnegative

137

integer no greater than max_I ocal s- 1. The indexbyte operands of each wide instruction modifying an
lload, dload, Istore, or dstore instruction must represent a nonnegative integer no greater than
max_|l ocal s- 2.

4.8.2 Structural Constraints

The structural constraints on the code array specify constraints on relationships between Java virtual
machine instructions. The structural constraints are as follows:

Each instruction must only be executed with the appropriate type and number of argumentsin the
operand stack and local variable array, regardless of the execution path that leadsto itsinvocation. An
instruction operating on values of typeint i s also permitted to operate on values of typebool ean,
byte, char, and short. (As noted in §3.3.4 and 8§3.11.1, the Java. virtud machine internally
converts values of typesbool ean, byte, char, andshort totypeint.)

If aninstruction can be executed along several different execution paths, the operand stack must have
the same depth (83.6.2) prior to the execution of the instruction, regardless of the path taken.

At no point during execution can the order of the local variable pair holding a value of typel ong or
doubl e bereversed or the pair split up. At no point canthelocal variables of such apair be operated
on individudly.

No local variable (or local variable pair, in the case of avalue of typel ong or doubt e) canbeaccessed
before it is assigned avaue.

At no point during execution can the operand stack grow to a depth (83.6.2) greater than that implied
by the max_st ack item.

At no point during execution can more values be popped from the operand stack than it contains.
Each invokespecial instruction must name an instance initialization method (83.9), a method in the
current class, or a method in a superclass of the current class.

When the instance initialization method (83.9) is invoked, an uninitialized class instance must be in
an appropriate position on the operand stack. An instance initialization method must never be
invoked on an initiaized class instance.

138

* When any instance method is invoked or when any instance variable is accessed, the class
instance that contains the instance method or instance variable must aready be initialized.

There must never be an uninitialized class instance on the operand stack or in aloca variable
when any backwards branch is taken. There must never be an uninitialized class instance in a
loca variable in code protected by an exception handler. However, an uninitialized class
instance may be on the operand stack in code protected by an exception handler. When an
exception is thrown, the contents of the operand stack are discarded.

Each instance initialization method (83.9), except for the instance initialization method derived
from the constructor of class Object, must call either another instance initialization method of
this or an instance initialization method of its direct superclass super before its instance
members are accessed. However, instance fields of this that are declared in the current class may
be assigned before calling any instance initialization method.

The arguments to each method invocation must be method invocation compatible (82.6.8) with
the method descriptor (84.3.3).

The type of every class instance that is the target of a method invocation instruction must be
assignment compatible (82.6.7) with the class or interface type specified in the instruction.

Each return instruction must match its method's return type. If the method returns a bool ean,
byte, char, short, or int, only the ireturn instruction may be wed. If the method returns a Float,
long, or double, only an freturn, Ireturn, or dreturn instruction, respectively, may be used. If the
method returns a reference type, it must do so using an areturn instruction, and the type of the
returned value must be assignment compatible (82.6.7) with the return descriptor (84.3.3) of the
method. All instance initidization methods, class or interface initialization methods, and
methods declared to return voi d must use only the return instruction.

If getfield or putfield is used to access a protected field of a superclass, then the type of the class
instance being accessed must be the same as or a subclass of the current class. If invokevirtual or
invokespecial is used to access a protected method of a superclass, then the type of the class
instance being accessed must be the same as or a subclass of the current class.

139

The type of every class instance accessed by a getfield instruction or modified by a putfield
instruction must be assignment compatible (82.6.7) with the class type specified in the instruction.

The type of every vaue stored by a putfield or putstatic instruction must be compatible with the
descriptor of the field (84.3.2) of the classinstance or classbeing stored into. If the descriptor typeis
bool ean, byte, char, short, orint, thenthevaluemustbeanint. If the descriptor typeisFH oat,
long, Ordoubl e, thenthevaluemustbearl oat, |ong, Ordoubl e, repectivdy.Ifthedesriptor
typeisa reference type, then the value must be of atype that is assignment compatible (82.6.7)
with the descriptor type.

The type of every value stored into an array of type ref erence by an aastore instruction must be
assignment compatible (82.6.7) with the component type of the array.

Each athrow instruction must throw only values that are instances of classThr owabl e or of subclasses
of Throwabl e.

Execution never falls off the bottom of the code array.

No return address (a value of type ret ur nAddr ess) may be loaded from a locd variable.

The instruction following each jsr or jsr w instruction maybe returned to only by a single ret
instruction.

No jsr or jsr winstruction may be used to recursively call a subroutine if that subroutine is already
present in the subroutine call chain. (Subroutines can be nested when usingt ry-final Iy condructsfrom
withinafi nal | y clause. For more information on Java virtual machine subroutines, see §4.9.6.)
Each instance of typer et u rnAdd ress canbereturned to at most once. If aret ingtruction returnsto
a point in the subroutine call chain above the ret instruction corresponding to a given instance of
typer et ur nAddr ess, then that instance can never be used as a return address.

140

also certify code that other compilers can generate, as well as code that the current compiler could not
possibly generate. Any class file that satisfies the structural criteria and static constraints will be
certified by the verifier.
The classfile verifier is aso independent of the Java programming language. Programs written in other
languages can be compiled into the class file format, but will pass verification only if al the same
constraints are satisfied.

4.9.1 The Verification Process

The class file verifier operates in four passes.
Pass1: When a prospective class file is loaded (82.17.2) by the Java virtual machine, the Java
virtual machine first ensures that the file has the basic format of a class file. Thefirst four bytes must
contain the right magic number. All recognized attributes must be of the proper length. The class file
must not be truncated or have extra bytes at the end. The constant pool must not contain any
superficialy unrecognizable information.

While cl ass file verification properly occurs during class linking (82.17.3), this check for
basic class file integrity is necessary for any interpretation of the cl ass file contents and can be
considered to be logically part of the verification process.

Pass 22 When the class file is linked, the verifier performs all additional verificaion that can be done

without looking at the code array of the Code attribute (84.7.3). The checks performed by this pass
include the following:

- Ensuring that fi nal classes are not subclassed and that fi nal methods are not overridden.
- Checking that every class (except hj ect) has a direct superclass.

- Ensuring that the constant pool satisfies the documented static constraints: for example, that each
CONSTANT_d ass_i nfo structure in the constant pool contains in its nane_index item a vaid
constant pool index for a CONSTANT _Ut f8_i nfo structure.

Checking that all field references and Methodreferences in the constant pool have valid names,
valid classes, and a valid type descriptor.

Note that when it looks at field and Methodreferences, this pass does not check to make sure that the
given field or method actually exists in the given class, nor does it

141

also certify code that other compilers can generate, as well as code that the current compiler could not
possibly generate. Any class file that satisfies the structural criteria and static constraints will be
certified by the verifier.
The classfile verifier is aso independent of the Java programming language. Programs written in other
languages can be compiled into the class file format, but will pass verification only if al the same
constraints are satisfied.

4.9.1 The Verification Process

The class file verifier operates in four passes.
Pass1: When a prospective class file is loaded (82.17.2) by the Java virtual machine, the JJava
virtual machine first ensures that the file has the basic format of a class file. Thefirst four bytes must
contain the right magic number. All recognized attributes must be of the proper length. The class file
must not be truncated or have extra bytes at the end. The constant pool must not contain any
superficialy unrecognizable information.

While cl ass file verification properly occurs during class linking (82.17.3), this check for
basic class file integrity is necessary for any interpretation of the cl ass file contents and can be
considered to be logically part of the verification process.

Pass 22 When the class file is linked, the verifier performs all additional verificaion that can be done

without looking at the code array of the Code attribute (84.7.3). The checks performed by this pass
include the following:

- Ensuring that fi nal classes are not subclassed and that fi nal methods are not overridden.
- Checking that every class (except hj ect) has a direct superclass.

- Ensuring that the constant pool satisfies the documented static constraints: for example, that each
CONSTANT_d ass_i nfo structure in the constant pool contains in its nane_index item a vaid
constant pool index for a CONSTANT _Ut f8_i nfo structure.

Checking that all field references and Methodreferences in the constant pool have valid names,
valid classes, and a valid type descriptor.

Note that when it looks at field and Methodreferences, this pass does not check to make sure that the
given field or method actually exists in the given class, nor does it

142

check that the type descriptors given refer to real classes. It checks only that these items are well formed.
More detailed checking is delayed until passes 3 and 4.
Pass 3: During linking, the verifier checks the code array of the Code attribute for each method of the
class file by performing data-flow analysis on each method. The verifier ensures that at any given

point in the program, no matter what code path is taken to reach that point, the following is true:

The operand stack is always the same size and contains the same types of values.
No local variable is accessad unlessit is known to contain a value of an appropriate type.
Methods are invoked with the appropriate arguments.

Fields are assigned only using values of appropriate types.
All opcodes have appropriate type arguments on the operand stack and in the locd variable array.

For further information on this pess, see Section 4.9.2, " The Bytecode Vetdfier.”
Pass 4: For efficiency reasons, certain tests that could in principle be performed in Pass 3 are delayed
until thefirst time the code for the method is actudly invoked. In so doing, Pass 3 of the verifier avoidsloading
classfiles unless it has to.

For example, if a method invokes another method that returns an instance of class A, and that
instance is assigned only to a field of the same type, the verifier does not bother to check if the class
A actually exists. However, if it is assigned to a field of the type B, the definitions of both A and B
must be loaded in to ensure that A is a subclass of B.

Pass 4 isavirtual pass whose checking is done by the appropriate Javavirtua machine instructions.
The first time an instruction that references a type is executed, the executing instruction does the
following:

Loads in the definition of the referenced type if it has not aready been loaded.

Checks that the currently executing type is alowed to reference the type.

The first time an instruction invokes a method, or accesses or modifies a field, the executing instruction
does the following:
Ensures that the referenced method or field exists in the given class.

143

Checks that the referenced method or field has the indicated descriptor.
Checks that the currently executing method has access to the referenced method or field.

The Java virtual machine does not have to check the type of the object on the operand stack. That
check has already been done by Pass 3. Errors that are detected in Pass 4 cause instances of
subclasses of Li nkageError to be thrown.

A Javavirtual machine implementation is alowed to perform any or all of the Pass4 sepsaspart of Pass
3; see 2.17.1, "Virtua Machine Start-up" for an example and more discussion.

In one of Sun's Java virtual machine implementations, after the verification has been
performed, the instruction in the Java virtual machine code isreplaced with an alternative
form of the instruction. This alternative instruction indicates that the verification needed by
this instruction has taken place and does not need to be performed again. Subsequent
invocations of the method will thus be faster. It isillegal for these alternative instruction
forms to appear in class files, and they should never be encountered by the verifier.

4.9.2 The Bytecode Verifier
Asindicated earlier, Pass 3 of the verification process is the most complex of the four passesofcl ass
file verification. This section looks at the verification of Java virtual machine code in Pass 3 in more
detail.

The code for each method is verified independently. First, the bytes that make up the code are broken
up into a sequence of instructions, and the index into the code array of the start of each instruction
is placed in an array. The verifier then goes through the code a second time and parses the
instructions. During this passa data structure is built to hold information about each Java virtual
machine instruction in the method. The operands, if any, of each instruction are checked to make sure
they are valid. For instance:

Branches must be within the bounds of the code array for the method.

The targets of all control-flow instructions are each the start of an instruction. Inthe case of awide
instruction, the wide opcode is considered the start of the instruction, and the opcode giving the
operation modified by that wide instruction is not considered to start an instruction. Branches into
the middle of an instruction are disallowed.

144

No instruction can access or modify a local variable at an index greater than or
equa to the number of local variables that its method indicates it alocates.

All references to the constant pool must be to an entry of the appropriate type. For example: the
instruction Idc can be used only for data of typeint or Fl oat or for instances of classstring; the
instruction getfield must reference afield.

The code does not end in the middle of an instruction.

Execution cannot fall off the end of the code.

For each exception handler, the starting and ending point of code protected by thehandler must beat the
beginning of an instruction or, in the case of the ending point, immediately past the end of the code.
The starting point must be before the ending point. The exception handler code must start at a
valid instruction, and it may not start at an opcode being modified by the wide instruction.

For each instruction of the method, the verifier records the contents of the operand stack and the
contents of the local variable array prior to the execution of that instruction. For the operand stack, it
needs to know the stack height and the type of each value on it. For each local variable, it needs to know
either the type of the contents of that local variable or that the local variable contains an unusable or
unknown value (it might be uninitialized). The bytecode verifier does not need to distinguish between
the integral types (e.g., byte, short, char) when determining the value types on the operand stack.
Next, a data-flow analyzer isinitialized. For the first instruction of the method, the local variables that
represent parameters initially contain values of the types indicated by the method's type descriptor; the
operand stack is empty. All other local variables contain an illega vaue. For the other
instructions, which have not been examined yet, no information is available regarding the
operand stack or local variables.
Finaly, the data-flow analyzer is run. For each instruction, a "changed" bit indicates whether this
instruction needs to be looked at. Initialy, the "changed" bit is set only for the first instruction. The
data-flow analyzer executes the following loop:

1. Select a virtual machine instruction whose "changed” bit is set. If no instruction remains whose

"changed" bit is set, the method has successfully been verified. Otherwise, turn off the "changed” bit of the
selected instruction.

145

2. Model the effect of the instruction on the operand stack and local variable array by doing the following:

- If theinstruction uses values from the operand stack, ensure that there are a sufficient number of values
on the stack and that the top values on the stack are of an appropriate type. Otherwise, verification fails.
If the instruction uses a local variable, ensure that the specified local variable contains a value of the
appropriate type. Otherwise, verification fails.
If theinstruction pushes va ues onto the operand stack, ensure that there is sufficient room on the operand
stack for the new values. Add the indicated types to the top of the modeled operand stack.
If the instruction modifies alocal variable, record that the local variable now containsthe new type.

3. Determine the instructions that can follow the current instruction. Successor instructions can be one
of the following:

- Thenextinstruction, if the current instruction is not an unconditional control transfer instruction (for
instance goto, return, or athrow). Verification failsif it is possible to "fall off' the last instruction of
the method.

The target(s) of a conditional or unconditional branch or switch.
Any exception handlers for this instruction.

4. Merge the state of the operand stack and local variable array at the end of the execution of the current
instruction into each of the successor instructions. In the special case of control transfer to an
exception handler, the operand stack is set to contain a single object of the exception type indicated by the
exception handler information.

If this is the first time the successor instruction has been visited, record that the operand stack and
local variable values calculated in steps 2 and 3 are the state of the operand stack and locdl variable aray
prior to executing the successor instruction. Set the "changed” bit for the successor instruction.

146

5.

If the successor instruction has been seen before, merge the operand stack and local variable values
calculated in steps 2 and 3 into the vaues aready there. Set the "changed" bit if thereis any modificaion
to the values.

Continue at step 1.

To merge two operand stacks, the number of values on each stack must be identica. The
types of values on the stacks must also be identical, except that differently typed ref erence values
may appear at corresponding places on the two stacks. In this case, the merged operand stack
contains a reference to an instance of the first common superclass of the two types. Such a
reference type always exists because the type ject is asuperclass of al class and interface types.
If the operand stacks cannot be merged, verification of the method fails.

To mergetwo local variable array states, corresponding pairs of local variablesarecompared. If thetwo
types are not identical, then unless both contain r ef er ence values, the verifier records that the local
variable contains an unusable value. If both of the pair of local variables containr ef er ence vaues, the
merged state contains ar ef er ence to an instance of the first common superclass of the two types.

If the data-flow analyzer runs on a method without reporting a verification failure, then the
method has been successfully verified by Pass 3 of the class file verifier.

Certain instructions and data types complicate the data-flow analyzer. We now examine each of
these in more detail.

4.9.3 Values of Types! ong and doubl e

Values of the long and dou bl e types are treated specially by the verification process.

Whenever a value of type long or double is moved into a local variable at index n, index n + 1 is
specially marked to indicate that it has been reserved by the value at index n and may not be used as a
locd variable index. Any value previously at index n + 1 becomes unusable.

Whenever avaue is moved to aloca variable at index n, theindexn - 1 is examined to seeif it
is the index of a value of type long or doubl e. If so, thelocal variableat index n - 1 ischanged to
indicate that it now contains an unusable value. Since the loca variable a index n has been
overwritten, the local variable at index n - 1 cannot represent a value of type 1 ong Or Doubl e.

147

Dealing with values of types long or double on the operand stack is simpler; the verifier treats
them as single values on the stack. For example, the verification code for the dadd opcode (add two
double values) checks that the top two items on the stack are both of type doubt e. When calculating
operand stack length, values of type long and double have length two.

Untyped instructions that manipulate the operand stack must treat values of type double and
long as atomic (indivisible). For example, the verifier reports a falure if the top value on the stack
is a double and it encounters an instruction such as pop or dup. The instructions pop2or dup2 must
be used instead.

4.9.4 Instance I nitialization M ethods and Newly Created Objects

Creating a new class instance is a multistep process. The statement new myClass(i, j, k);
new myClass(i, j, K);

can be implemented by the following:

new #1 //Allocate uninitialized space for myClass
dup //Duplicate object on the operand stack
iload 1 /IPush i

iload 2 // Push

iload 3 // Push k

invokespecial #5 /Il nvoke myClass. <init>

This instruction sequence leaves the newly created and initialized object on top of the operand stack.
(Additional examples of compilation to the instruction set of the Java virtual machine are given in
Chapter 7, "Compiling for the Java Virtual Machine.")
The instance initiaization method (83.9) for class myClass sees the new uninitialized object as its this
argument in local variable 0. Before that method invokes another instance initidization method of
myClass or its direct superclass on this, the only operation the method can perform on this is assigning
fields declared within myClass.

When doing dataflow analysis on instance methods, the verifier initializes loca variable O to contain
an object of the current class, or, for instance initiaization

148

methods, local variable O contains a special type indicating an uninitidlized object. After an
appropriate instance initialization method is invoked (from the current class or the current
superclass) on this object, all occurrences of this special type on the verifier's model of the operand
stack and in the local variable array are replaced by the current class type. The verifier rejects code
that uses the new object before it has been initidized or that initiadlizes the object more than once.
In addition, it ensures that every normal return of the method has invoked an instance initidization
method either in the class of this method or in the direct superclass.

Similarly, a specia type is created and pushed on the verifier's model of the operand stack as the
result of the Java virtual machine instruction new. The special type indicates the instruction by which the
class instance was created and the type of the uninitialized class instance created. When an instance
initialization method is invoked on that class instance, al occurrences of the specia type are
replaced by the intended type of the class instance. This change in type may propagate to
subsequent instructions as the dataflow analysis proceeds.

The instruction number needs to be stored as part of the special type, as there may be multiple not-
yet-initialized instances of a class in existence on the operand stack at one time. For example, the Java
virtual machine instruction sequence that implements

new | nput St rean{ new Foo(), new | nput Streanm("foo"))

may have two uninitialized instances of | nput St r eam on the operand stack at once. When an instance
initialization method is invoked on a class instance, only those occurrences of the special type on the
operand stack or in the local variable array that are the same object as the class instance are replaced.

A valid instruction sequence must not have an uninitialized object on the operand stack or in a
local variable during a backwards branch, or in a local variable in code protected by an exception
handler or afinal Iy clause. Otherwise, a devious piece of code might fool the verifier into thinking it
had initialized a class instance when it had, in fact, initialized a class instance created in a previous pass
through aloop.

4.9.5 Exception Handlers

Javavirtual machine code produced by Sun's compiler for the Java programming language always generates
exception handlers such that:

149

Either the ranges of instructions protected by two different exception handlersaways are completely
digoint, or else one is a subrange of the other. There is never a partial overlap of ranges.

The handler for an exception will never be inside the code that is being protected.

The only entry to an exception handler isthrough an exception. It isimpossible tofdl through or "goto”
the exception handler.

Theserestrictions are not enforced by the class file verifier since they do not pose a threat to theintegrity of the
Javavirtual machine. Aslong as every nonexceptiona path to the exception handler causesthereto beasingle
object on the operand stack, and aslong asall other criteriaof the verifier are met, the verifier will pass the code.

4.9.6 Exceptionsand fi nal | y Giventhe code fragment

try {
start Faucet () ;
wat er Lawn() ;
} finally { stopFaucet();

the Java programming language guarantees that st opFaucet isinvoked (the faucet is turned off) whether
we finish watering the lawn or whether an exception occurs while starting the faucet or watering the lawn.
That is, the final Iy clause is guaranteed to be executed whether its t ry clause completes normally or
completes abruptly by throwing an exception.

To implement the try-final Iy construct, Sun's compiler for the Java programming language uses the
exception_handling facilities together with two specia instructions: jsr (“jump to subrouting”) and ret
("return from subroutine”). The final Iy clause is compiled as a subroutine within the Java virtua
machine code for its method, much like the code for an exception handler. When a jsr instruction that
invokes the subroutine is executed, it pushes its return address, the address of the instruction after the jsr

that is being executed, onto the operand stack as a value of type returnAddress. The code for the
subroutine stores the

150

return address in a local variable. At the end of the subroutine, a ret instruction fetches the return
address from the local variable and transfers control to the instruction at the return address.

Control can be transferred to the finally clause (the finally subroutine can be invoked) in
several different ways. If thet ry clause completes normally, the fi nal Iy subroutineisinvokedviaa
jsr instruction before evaluating the next expression. A break Or conti nue insdethetry clause
that transfers control outsidethet ry clause executes ajsr to the code for thefinal Iy clausefirst. If

thetry clauseexecutesareturn, thecompiled code does the following:
1. Savesthereturn value (if any) in aloca variable.

2. Executesajsr tothe codefor the finally clause.
3. Uponreturn fromthe final Iy clause, returns the value saved in the local variable.

The compiler sets up a special exception handler, which catches any exception thrown by thet ry
clause. If an exceptionisthrowninthet ry clause, this exception handler does the following:

Saves the exception in alocal variable.
Executes a jsr to the finaly clause.

3. Upon return fromthe final Iy clause, rethrows the exception.

For more information about the implementation of the try-finaly construct, see Section 7.13,
"Compiling findly."

The code for the finally clause presents a specia problem to the verifier. Usualy, if a
particular instruction can be reached via multiple paths and a particular local variable contains
incompatible vaues through those multiple paths, then the local variable becomes unusable.
However, a final ly clause might be caled from several different places, yielding severa different
circumstances:

The invocation from the exception handler may have acertain loca variable that contains an exception.
The invocation to implement return may have some local variable that contains the return value.
The invocation from the bottom of the t ry clause may have an indeterminate value in that same
local variable.

151

The code for the findly clause itself might pass verification, but after completing the updating all
the successors of the ret instruction, the verifier would note that the local variable that the exception
handler expects to hold an exception, or that the return code expects to hold a return value, now

contains an indeterminate value.
Verifying code that contains a findly clause is complicated. The basic idea is the following:

Each instruction keepstrack of thelist of jsr targets needed to reach that instruction. For mogt code, this
list isempty. For instructionsinside code for the finally clause, it is of length one. For multiply nested
finally code (extremely rare!), it may be longer than one.
For each instruction and each jsr needed to reach that instruction, abit vector ismaintained of al loca
variables accessed or modified since the execution of the jsr instruction.
When executing the ret ingtruction, which implements areturn from asubroutine, there must be only one
possi bl e subroutine from which theinstruction can be returning. Two different subroutines cannot "merge’
their execution to a single ret instruction.
To perform the data-flow analysison aret instruction, aspecid procedureisused. Sincethe verifier knows
the subroutine from which theinstruction must bereturning, it canfind all thejsr instructionsthat cdl the
subroutine and merge the state of the operand stack and local variable array at the time of the ret
instruction into the operand stack and local variable array of the instructionsfollowing thejsr. Merging
uses a special set of values for local variables:

For any local variable that the bit vector (constructed above) indicates has been accessed or

modified by the subroutine, use the type of the local variable at the time of the ret.

For other local variables, use the type of the local variable before the jSr instruction.

152

4.10 Limitations of the Java Virtual M achine

The following limitations of the Java virtua machine are implicit in the class fileformat:
The per-class or per-interface constant pool islimited to 65535 entries by the 16-bit condtant_pool _count
field of the ClassFile structure (84.1). Thisactsasaninterna limit on the total complexity of asingleclass
or interface.
The amount of code per non-native, non-abstract method is limited to 65536 bytes by the sizes of the
indicesin the exception_table of the Code éttribute (84.7.3), in the LineNumberTabl e attribute (84.7.8),
and in the LocalVariableTable attribute (84.7.9).
The greatest number of local variablesintheloca variablesarray of aframe created uponinvocation of a
method islimited to 65535 by the size of the max_|ocalsitem of the Code attribute (84.7.3) giving the
code of the method. Note that values of type long and double are each considered to reserve two local
variables and contribute two unitstoward the max_localsvalue, so use of local variables of those types
further reduces this limit.
The number of fieldsthat may be declared by aclassor interfaceislimited to 65535 by the size of the
Fiddds_count item of the ClassFile structure (84.1). Notethat the value of the Field ds_count item of the
ClassFile structure does not include fields that are inherited from superclasses or superinterfaces.
The number of methods that may be declared by aclassor interfaceislimited to 65535 by the size of the
methods_count item of the ClassFile structure (84.1). Notethat the value of themethods _count item of the
ClassFile structure does not include methods that are inherited from superclasses or superinterfaces.
The number of direct superinterfaces of aclassor interfaceislimited to 65535 by the size of theinterfaces-
count item of the ClassFile structure (84.1).
The size of an operand stack in aframe (83.6) islimited to 65535 values by the max_stack field of the
Code _attribute structure (84.7.3). Note that values of type long and Double are each considered to
contribute two units toward the max_stack value, so use of values of these types on the operand stack
further reduces this limit.

153

* The number of loca variablesin aframe (83.6) is limited to 65535 by the max_locals field of the
Code_attribute structure (84.7.3) and the 16-hit local variable indexing of the Java virtual machine
instruction set.

The number of dimensionsin an array is limited to 255 by the size of the dimensions opcode of the
multianewarray instruction and by the constraints imposed on the multianewarray, anewarray, and
newarray instructions by §4.8.2.

The number of method parametersislimited to 255 by the definition of amethod descriptor (84.3.3),
where thelimit includes one unit for thisin the case of instance or interface method invocations. Note that
amethod descriptor is defined in terms of anotion of method parameter length in which a parameter of
type long or Double contributestwo unitsto the length, so parameters of these types further reduce the
limit.

Thelength of field and method names, field and method descriptors, and other constant string valuesis
limited to 65535 characters by the 16-bit unsigned length item of the CONSTANT _Utf8 info structure
(84.4.7). Note that the limit is on the number of bytesin the encoding and not on the number of encoded
characters. UTF-8 encodes some characters using two or three bytes. Thus, strings incorporating
multibyte characters are further constrained.

