ProjektGraph/graph/DirectedGraph.java

603 lines
22 KiB
Java
Raw Permalink Normal View History

2024-06-15 14:48:28 +00:00
package graph;
2024-07-03 17:41:46 +00:00
import OurApplication.OurLogElement;
import logging.LogElementList;
2024-07-02 22:46:21 +00:00
import visualizationElements.Edge;
import visualizationElements.EdgeStyle;
import visualizationElements.Vertex;
import java.awt.Color;
2024-06-25 15:18:34 +00:00
import java.util.HashMap;
2024-06-15 14:48:28 +00:00
import java.util.Objects;
2024-06-25 15:18:34 +00:00
import java.util.PriorityQueue;
2024-06-15 14:48:28 +00:00
import java.util.Vector;
2024-07-07 22:11:04 +00:00
/**
* Represents a directed graph with vertex and edge markings. This class extends the Graph class and
* provides additional functionality for directed graphs, including visualization and logging capabilities.
*
* @param <T> the type of vertex marking
* @param <U> the type of edge marking
*/
public class DirectedGraph<T extends VertexMarking, U extends EdgeMarking> extends Graph<T, U> {
2024-07-02 22:46:21 +00:00
// ATTRIBUTE
private visualizationElements.Graph screenGraph;
2024-07-03 17:41:46 +00:00
private LogElementList<OurLogElement> logList;
2024-07-02 22:46:21 +00:00
// KONSTRUKTOREN
2024-06-15 14:48:28 +00:00
2024-07-07 22:11:04 +00:00
/**
* Constructs an empty directed graph.
*/
2024-06-15 14:48:28 +00:00
public DirectedGraph() {
super();
2024-07-02 22:46:21 +00:00
this.screenGraph = new visualizationElements.Graph(new Vector<Vertex>(), new Vector<Edge>(), true, EdgeStyle.Direct);
2024-07-03 17:41:46 +00:00
this.logList = new LogElementList<OurLogElement>();
2024-06-26 00:20:36 +00:00
}
2024-06-15 14:48:28 +00:00
2024-07-07 22:11:04 +00:00
/**
* Constructs a directed graph from a string representation.
*
* @param s the string representation of the graph
*/
2024-06-15 14:48:28 +00:00
public DirectedGraph(String s) {
super(s);
2024-07-02 22:46:21 +00:00
this.screenGraph = new visualizationElements.Graph(new Vector<Vertex>(), new Vector<Edge>(), true, EdgeStyle.Direct);
2024-07-03 17:41:46 +00:00
this.logList = new LogElementList<OurLogElement>();
2024-07-02 22:46:21 +00:00
}
// GET-ER
2024-07-07 22:11:04 +00:00
/**
* Returns the screen graph associated with this directed graph.
*
* @return the screen graph
*/
2024-07-02 22:46:21 +00:00
public visualizationElements.Graph getScreenGraph() {
return this.screenGraph;
}
2024-07-07 22:11:04 +00:00
/**
* Returns a copy of the screen graph associated with this directed graph.
*
* @return a copy of the screen graph
*/
public visualizationElements.Graph getScreenGraphCopy() {
visualizationElements.Graph graphCopy = new visualizationElements.Graph(new Vector<Vertex>(), new Vector<Edge>(), true, EdgeStyle.Direct);
Vector<visualizationElements.Vertex> copiedVertexes = new Vector<>();
Vector<visualizationElements.Edge> copiedEdges = new Vector<>();
for (visualizationElements.Vertex vertexCopy : this.screenGraph.getVertexes()) {
visualizationElements.Vertex newCopiedVertex = new visualizationElements.Vertex(vertexCopy.getXpos(), vertexCopy.getYpos(), vertexCopy.getMarking(), vertexCopy.getColor());
copiedVertexes.add(newCopiedVertex);
graphCopy.setVertexes(copiedVertexes);
}
for (visualizationElements.Edge edgeCopy : this.screenGraph.getEdges()) {
visualizationElements.Edge newCopiedEdge = new visualizationElements.Edge(edgeCopy.getSource(), edgeCopy.getDestination(), edgeCopy.getMarking(), edgeCopy.getColor());
copiedEdges.add(newCopiedEdge);
graphCopy.setEdges(copiedEdges);
}
return graphCopy;
}
2024-07-02 22:46:21 +00:00
2024-07-07 22:11:04 +00:00
/**
* Returns the log list associated with this directed graph.
*
* @return the log list
*/
2024-07-03 17:41:46 +00:00
public LogElementList<OurLogElement> getLogList() {
return this.logList;
}
2024-07-02 22:46:21 +00:00
// HINZUFÜGEN
2024-07-07 22:11:04 +00:00
/**
* Adds an edge to the graph.
*
* @param e the edge to be added
*/
2024-07-02 22:46:21 +00:00
public void addEdge(MarkedEdge<U> e) {
super.addEdge(e);
this.screenGraph.getEdges().add(e.getScreenEdge());
}
2024-07-07 22:11:04 +00:00
/**
* Adds a vertex to the graph.
*
* @param n the vertex to be added
*/
2024-07-02 22:46:21 +00:00
public void addVertex(MarkedVertex<T> n) {
super.addVertex(n);
this.screenGraph.getVertexes().add(n.getScreenVertex());
}
// LÖSCHEN
2024-07-07 22:11:04 +00:00
/**
* Removes an edge from the graph.
*
* @param e the edge to be removed
*/
2024-07-02 22:46:21 +00:00
public void removeEdge(MarkedEdge<U> e) {
super.removeEdge(e);
this.screenGraph.getEdges().remove(e.getScreenEdge());
}
2024-07-07 22:11:04 +00:00
/**
* Removes a vertex from the graph.
*
* @param n the vertex to be removed
*/
2024-07-02 22:46:21 +00:00
public void removeVertex(MarkedVertex<T> n) {
super.removeVertex(n);
this.screenGraph.getVertexes().remove(n.getScreenVertex());
2024-06-15 14:48:28 +00:00
}
// KNOTEN EIGENSCHAFTEN
2024-06-15 14:48:28 +00:00
2024-07-07 22:11:04 +00:00
/**
* Checks if two vertices are strongly adjacent (i.e., there is a bidirectional edge between them).
*
* @param n1 the first vertex
* @param n2 the second vertex
* @return true if the vertices are strongly adjacent, false otherwise
*/
2024-06-15 14:48:28 +00:00
public boolean areStrongAdjacent(MarkedVertex<T> n1, MarkedVertex<T> n2) {
boolean n1ton2 = false;
boolean n2ton1 = false;
2024-06-25 15:18:34 +00:00
for (MarkedEdge<U> i: this.getAllEdges()) {
2024-06-15 14:48:28 +00:00
if (i.getSource() == n1 && i.getDestination() == n2) {
n1ton2 = true;
} else if (i.getSource() == n2 && i.getDestination() == n1) {
n2ton1 = true;
}
}
return (n1ton2 && n2ton1);
}
2024-07-07 22:11:04 +00:00
/**
* Checks if two vertices are strongly adjacent (i.e., there is a bidirectional edge between them) by their names.
*
* @param s1 the name of the first vertex
* @param s2 the name of the second vertex
* @return true if the vertices are strongly adjacent, false otherwise
* @throws NameDoesNotExistException if one of the vertices does not exist
*/
2024-06-15 14:48:28 +00:00
public boolean areStrongAdjacent(String s1, String s2) throws NameDoesNotExistException {
MarkedVertex<T> n1 = null;
MarkedVertex<T> n2 = null;
for (MarkedVertex<T> i: this.getAllVertexes()) {
if (Objects.equals(i.getName(), s1)) {
n1 = i;
} else if (Objects.equals(i.getName(), s2)) {
n2 = i;
}
}
if (n1 == null || n2 == null) {
throw new NameDoesNotExistException("One of the Vertexes might not exist");
} else {
return areStrongAdjacent(n1, n2);
}
}
2024-07-07 22:11:04 +00:00
/**
* Returns the in-degree of a vertex (i.e., the number of edges directed towards the vertex).
*
* @param n the vertex
* @return the in-degree of the vertex
*/
2024-06-15 14:48:28 +00:00
public int inDegree(MarkedVertex<T> n) {
int degree = 0;
2024-06-25 15:18:34 +00:00
for (MarkedEdge<U> i: this.getAllEdges()) {
2024-06-15 14:48:28 +00:00
if (i.getDestination() == n) {
degree += 1;
}
}
return degree;
}
2024-07-07 22:11:04 +00:00
/**
* Returns the in-degree of a vertex by its name.
*
* @param s the name of the vertex
* @return the in-degree of the vertex
* @throws NameDoesNotExistException if the vertex does not exist
*/
2024-06-15 14:48:28 +00:00
public int inDegree(String s) throws NameDoesNotExistException{
for (MarkedVertex<T> i: this.getAllVertexes()) {
if (Objects.equals(i.getName(), s)) {
return inDegree(i);
}
}
throw new NameDoesNotExistException("One of the Vertexes might not exist");
}
2024-07-07 22:11:04 +00:00
/**
* Returns the out-degree of a vertex (i.e., the number of edges directed away from the vertex).
*
* @param n the vertex
* @return the out-degree of the vertex
*/
2024-06-15 14:48:28 +00:00
public int outDegree(MarkedVertex<T> n) {
int degree = 0;
2024-06-25 15:18:34 +00:00
for (MarkedEdge<U> i: this.getAllEdges()) {
2024-06-15 14:48:28 +00:00
if (i.getSource() == n) {
degree += 1;
}
}
return degree;
}
2024-07-07 22:11:04 +00:00
/**
* Returns the out-degree of a vertex by its name.
*
* @param s the name of the vertex
* @return the out-degree of the vertex
* @throws NameDoesNotExistException if the vertex does not exist
*/
2024-06-15 14:48:28 +00:00
public int outDegree(String s) throws NameDoesNotExistException{
for (MarkedVertex<T> i: this.getAllVertexes()) {
if (Objects.equals(i.getName(), s)) {
return outDegree(i);
}
}
throw new NameDoesNotExistException("One of the Vertexes might not exist");
}
2024-07-07 22:11:04 +00:00
/**
* Returns a vector of predecessor vertices (i.e., vertices with edges directed towards the specified vertex).
*
* @param n the vertex
* @return a vector of predecessor vertices
*/
2024-06-15 14:48:28 +00:00
public Vector<MarkedVertex<T>> getPredecessors(MarkedVertex<T> n) {
Vector<MarkedVertex<T>> predecessors = new Vector<>();
2024-06-25 15:18:34 +00:00
for (MarkedEdge<U> i: this.getAllEdges()) {
if (i.getDestination() == n) {
2024-06-25 15:18:34 +00:00
predecessors.add((MarkedVertex<T>) i.getSource());
}
}
return predecessors;
2024-06-15 14:48:28 +00:00
}
2024-07-07 22:11:04 +00:00
/**
* Returns a vector of successor vertices (i.e., vertices with edges directed away from the specified vertex).
*
* @param n the vertex
* @return a vector of successor vertices
*/
2024-06-15 14:48:28 +00:00
public Vector<MarkedVertex<T>> getSuccessors(MarkedVertex<T> n) {
Vector<MarkedVertex<T>> successors = new Vector<>();
2024-06-25 15:18:34 +00:00
for (MarkedEdge<U> i: this.getAllEdges()) {
if (i.getSource() == n) {
2024-06-25 15:18:34 +00:00
successors.add((MarkedVertex<T>) i.getDestination());
}
}
return successors;
2024-06-15 14:48:28 +00:00
}
2024-06-25 15:18:34 +00:00
// AUFGABE 2
2024-07-07 22:11:04 +00:00
/**
* Finds the shortest path between two vertices using Dijkstra's algorithm.
*
* @param n1 the starting vertex
* @param n2 the ending vertex
* @return the shortest distance from n1 to n2, or -1 if no path is found
*/
2024-06-25 15:18:34 +00:00
public int getShortestPathDijkstra(MarkedVertex<T> n1, MarkedVertex<T> n2) {
2024-06-26 00:20:36 +00:00
2024-06-25 15:18:34 +00:00
// Erstellt Hashmap um Distanz von Startnoten zu jedem Knoten auf dem Graph zu tracken
// Erstellt Hashmap um zu tracken welche Knoten schon besucht wurden
2024-07-07 18:34:38 +00:00
// Erstelle Hashmap um Vorgängerknoten zu tracken
2024-06-25 15:18:34 +00:00
// Initialisierung aller Distanzen auf UNENDLICH (= -1)
// Initialisierung, dass kein Knoten besucht wurde
2024-07-07 18:34:38 +00:00
// Initialisierung aller Vorgänger auf null
2024-06-25 15:18:34 +00:00
HashMap<MarkedVertex<T>, Integer> distance = new HashMap<>();
HashMap<MarkedVertex<T>, Boolean> visited = new HashMap<>();
2024-07-07 18:34:38 +00:00
HashMap<MarkedVertex<T>, MarkedVertex<T>> predecessors = new HashMap<>();
2024-06-25 15:18:34 +00:00
for (MarkedVertex<T> i: this.getAllVertexes()) {
distance.put(i, -1);
visited.put(i, false);
2024-07-07 18:34:38 +00:00
predecessors.put(i, null);
2024-06-25 15:18:34 +00:00
}
2024-06-26 00:20:36 +00:00
2024-06-25 15:18:34 +00:00
// Erstelle Schlange wo die nächsten Verbindungen drin sind
PriorityQueue<WrapperElement<T>> queue = new PriorityQueue<>(new WrapperComparator<T>());
// Distanz zu Startknoten auf 0
// Weg zu Startknoten in die Schlange aufnehmen
distance.put(n1, 0);
queue.add(new WrapperElement<>(n1, 0));
2024-06-26 00:20:36 +00:00
// Variable, die Distanz zwischen aktuellem Knoten und Nachfolger speichert
int dist = 0;
2024-07-03 17:41:46 +00:00
// Zähler für LogList
int step = 0;
2024-07-07 12:02:19 +00:00
// String für den Description Inhalt
String textDescription;
2024-06-26 00:20:36 +00:00
// Färben der Start und Ziel Knoten für Visualisierung + hinzufügen zur LogList
n1.getScreenVertex().setColor(Color.RED);
n2.getScreenVertex().setColor(Color.RED);
2024-07-07 12:02:19 +00:00
textDescription = "Startknoten: " + n1.getScreenVertex().getMarking()
+ ", Endknoten: " + n2.getScreenVertex().getMarking();
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
2024-07-07 18:34:38 +00:00
2024-06-25 15:18:34 +00:00
while (!queue.isEmpty()) {
// Den nächsten Knoten, der am wenigsten kostet, besuchen
WrapperElement<T> nextVertex = queue.poll();
2024-06-26 00:20:36 +00:00
// Falls Knoten schon besucht
if(!visited.get(nextVertex.getElement())){
// Knoten als besucht makieren
visited.put(nextVertex.getElement(), true);
textDescription = "Visit " + nextVertex.getElement().getName();
// Logging
System.out.println(textDescription);
if (nextVertex.getElement().getScreenVertex().getColor() != Color.RED) {
nextVertex.getElement().getScreenVertex().setColor(Color.BLUE);
}
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
}
2024-07-02 22:46:21 +00:00
2024-07-07 18:34:38 +00:00
// Wenn Weg gefunden, brich ab
if (nextVertex.getElement() == n2) {
MarkedVertex<T> colorroute = n2;
while (colorroute != null) {
textDescription = colorroute.getName();
System.out.println(textDescription);
colorroute.getScreenVertex().setColor(Color.green);
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
colorroute = predecessors.get(colorroute);
}
//zurücksetzten der Färbungen
this.clearScreenGraphColor();
return distance.get(n2);
}
2024-06-26 00:20:36 +00:00
// Gehe von diesem Knoten aus alle erreichbaren Knoten durch
2024-06-25 15:18:34 +00:00
for (MarkedVertex<T> i: this.getSuccessors(nextVertex.getElement())) {
2024-06-26 00:20:36 +00:00
// Kante finde, die den jetzigen und nächsten Knoten verbindet
for (MarkedEdge<U> j: this.getAllEdges()) {
if (j.getSource() == nextVertex.getElement() && j.getDestination() == i) {
// Berechne Distanz zu nächstem Knoten
2024-07-07 14:29:45 +00:00
EdgeWeightMarking marking = (EdgeWeightMarking) j.getMarking();
dist = distance.get(nextVertex.getElement()) + marking.getWeight();
2024-06-26 00:20:36 +00:00
break;
}
}
// Wenn es schon einen kürzeren Weg zum Knoten gibt, überspringen
if ((distance.get(i) <= dist && distance.get(i) != -1) || visited.get(i)) {
continue;
}
2024-07-07 18:34:38 +00:00
// Vorgänger aktualisieren
predecessors.put(i, nextVertex.getElement());
2024-06-26 00:20:36 +00:00
// Aktualisiere Distanz von Start zu nächstem Knoten
distance.put(i, dist);
2024-07-02 22:46:21 +00:00
// Logging
2024-07-07 12:02:19 +00:00
textDescription = "Add " + i.getName() + " with " + dist + " weight to queue.";
System.out.println(textDescription);
2024-07-07 21:39:17 +00:00
if (i.getScreenVertex().getColor() != Color.RED) {
i.getScreenVertex().setColor(Color.YELLOW);
}
2024-07-07 12:02:19 +00:00
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
2024-07-02 22:46:21 +00:00
2024-06-26 00:20:36 +00:00
// Nehme nächsten Knoten in die Queue auf
queue.add(new WrapperElement<>(i, dist));
2024-06-25 15:18:34 +00:00
}
}
2024-07-07 18:34:38 +00:00
MarkedVertex<T> colorroute = n2;
2024-07-09 10:39:36 +00:00
// Falls kein Weg gefunden wurde
if (predecessors.get(n2) == null) {
textDescription = "Kein Weg gefunden!";
2024-07-07 18:34:38 +00:00
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
2024-07-09 10:39:36 +00:00
}else{
// Falls ein Weg gefunden wurde
while (colorroute != null) {
textDescription = colorroute.getName();
System.out.println(textDescription);
colorroute.getScreenVertex().setColor(Color.green);
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
2024-07-07 18:34:38 +00:00
2024-07-09 10:39:36 +00:00
colorroute = predecessors.get(colorroute);
}
2024-07-07 18:34:38 +00:00
}
2024-07-09 10:39:36 +00:00
//zurücksetzten der Färbungen
this.clearScreenGraphColor();
2024-07-03 19:49:51 +00:00
System.out.println("Done");
// Gibt Distanz zu gefragtem Knoten zurück
return distance.get(n2);
}
2024-07-05 13:12:42 +00:00
2024-07-07 22:11:04 +00:00
/**
* Finds the shortest path between two vertices using the A* algorithm.
*
* @param n1 the starting vertex
* @param n2 the ending vertex
* @return the shortest distance from n1 to n2, or -1 if no path is found
*/
public double getShortestPathAStar(MarkedVertex<T> n1, MarkedVertex<T> n2) {
2024-07-03 19:49:51 +00:00
// Erstellt Hashmap um Distanz von Startnoten zu jedem Knoten auf dem Graph zu tracken
// Erstellt Hashmap um zu tracken welche Knoten schon besucht wurden
2024-07-07 18:34:38 +00:00
// Erstelle Hashmap um Vorgängerknoten zu tracken
2024-07-03 19:49:51 +00:00
// Initialisierung aller Distanzen auf UNENDLICH (= -1)
// Initialisierung, dass kein Knoten besucht wurde
2024-07-07 18:34:38 +00:00
// Initialisierung aller Vorgänger auf null
HashMap<MarkedVertex<T>, Double> distance = new HashMap<>();
2024-07-03 19:49:51 +00:00
HashMap<MarkedVertex<T>, Boolean> visited = new HashMap<>();
2024-07-07 18:34:38 +00:00
HashMap<MarkedVertex<T>, MarkedVertex<T>> predecessors = new HashMap<>();
2024-07-03 19:49:51 +00:00
for (MarkedVertex<T> i: this.getAllVertexes()) {
distance.put(i, -1.0);
2024-07-03 19:49:51 +00:00
visited.put(i, false);
2024-07-07 18:34:38 +00:00
predecessors.put(i, null);
2024-07-03 19:49:51 +00:00
}
// Erstelle Schlange wo die nächsten Verbindungen drin sind
PriorityQueue<WrapperElement<T>> queue = new PriorityQueue<>(new WrapperComparator<T>());
// Distanz zu Startknoten auf 0
// Weg zu Startknoten in die Schlange aufnehmen
distance.put(n1, 0.0);
2024-07-03 19:49:51 +00:00
queue.add(new WrapperElement<>(n1, 0));
// Variable, die Distanz zwischen aktuellem Knoten und Nachfolger speichert
double dist = 0;
2024-07-03 19:49:51 +00:00
// Variable, die Distanz zwischen dem potenziell nächsten Knoten und dem Zielknoten speichert
double airDist = 0;
// Variable, die Distanz zwischen dem aktuellen Knoten bis zum Endknoten speichert
double distToFinish = 0;
2024-07-03 19:49:51 +00:00
// Zähler für LogList
int step = 0;
2024-07-07 12:02:19 +00:00
// String für den Description Inhalt
String textDescription;
2024-07-03 19:49:51 +00:00
// Färben der Start und Ziel Knoten für Visualisierung + hinzufügen zur LogList
n1.getScreenVertex().setColor(Color.RED);
n2.getScreenVertex().setColor(Color.RED);
2024-07-07 12:02:19 +00:00
textDescription = "Startknoten: " + n1.getScreenVertex().getMarking()
+ ", Endknoten: " + n2.getScreenVertex().getMarking();
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
2024-07-03 19:49:51 +00:00
while (!queue.isEmpty()) {
// Den nächsten Knoten, der am wenigsten kostet, besuchen
WrapperElement<T> nextVertex = queue.poll();
// Falls Knoten schon besucht
if(!visited.get(nextVertex.getElement())){
// Knoten als besucht makieren
visited.put(nextVertex.getElement(), true);
textDescription = "Visit " + nextVertex.getElement().getName();
// Logging
System.out.println(textDescription);
if (nextVertex.getElement().getScreenVertex().getColor() != Color.RED) {
nextVertex.getElement().getScreenVertex().setColor(Color.BLUE);
}
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
}
2024-07-03 19:49:51 +00:00
2024-07-07 18:34:38 +00:00
// Wenn Weg gefunden, brich ab
if (nextVertex.getElement() == n2) {
MarkedVertex<T> colorroute = n2;
while (colorroute != null) {
textDescription = colorroute.getName();
System.out.println(textDescription);
colorroute.getScreenVertex().setColor(Color.green);
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
colorroute = predecessors.get(colorroute);
}
//zurücksetzten der Färbungen
this.clearScreenGraphColor();
return distance.get(n2);
}
2024-07-03 19:49:51 +00:00
// Gehe von diesem Knoten aus alle erreichbaren Knoten durch
for (MarkedVertex<T> i: this.getSuccessors(nextVertex.getElement())) {
// Kante finde, die den jetzigen und nächsten Knoten verbindet
for (MarkedEdge<U> j: this.getAllEdges()) {
if (j.getSource() == nextVertex.getElement() && j.getDestination() == i) {
//Berechnung der Heuristik über die Luftdistanz des nächsten Knoten zum Zielknoten
airDist = Math.sqrt(Math.pow((i.getCords()[0] - n2.getCords()[0]), 2)
+ Math.pow((i.getCords()[1] - n2.getCords()[1]), 2)) / 100;
2024-07-03 19:49:51 +00:00
// Berechne Distanz zu nächstem Knoten
2024-07-07 14:29:45 +00:00
EdgeWeightMarking marking = (EdgeWeightMarking) j.getMarking();
dist = distance.get(nextVertex.getElement()) + marking.getWeight();
distToFinish = distance.get(nextVertex.getElement()) + marking.getWeight() + airDist;
2024-07-03 19:49:51 +00:00
break;
}
}
// Wenn es schon einen kürzeren Weg zum Knoten gibt, überspringen
if ((distance.get(i) <= dist && distance.get(i) != -1) || visited.get(i)) {
continue;
}
2024-07-07 19:13:34 +00:00
// Vorgänger aktualisieren
predecessors.put(i, nextVertex.getElement());
2024-07-03 19:49:51 +00:00
// Aktualisiere Distanz von Start zu nächstem Knoten
distance.put(i, dist);
// Logging
textDescription = "Add " + i.getName() + " with " + distToFinish + " weight to queue.";
2024-07-07 12:02:19 +00:00
System.out.println(textDescription);
2024-07-07 21:39:17 +00:00
if (i.getScreenVertex().getColor() != Color.RED) {
i.getScreenVertex().setColor(Color.YELLOW);
}
2024-07-07 12:02:19 +00:00
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
2024-07-03 19:49:51 +00:00
// Nehme nächsten Knoten in die Queue auf
queue.add(new WrapperElement<>(i, distToFinish));
2024-07-03 19:49:51 +00:00
}
}
2024-07-07 18:34:38 +00:00
MarkedVertex<T> colorroute = n2;
2024-07-09 10:39:36 +00:00
// Falls kein Weg gefunden wurde
if (predecessors.get(n2) == null) {
textDescription = "Kein Weg gefunden!";
2024-07-07 18:34:38 +00:00
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
2024-07-09 10:39:36 +00:00
}else{
// Falls ein Weg gefunden wurde
while (colorroute != null) {
textDescription = colorroute.getName();
System.out.println(textDescription);
colorroute.getScreenVertex().setColor(Color.green);
this.logList.add(new OurLogElement(step, textDescription, 0, this.getScreenGraphCopy()));
2024-07-07 18:34:38 +00:00
2024-07-09 10:39:36 +00:00
colorroute = predecessors.get(colorroute);
}
2024-07-07 18:34:38 +00:00
}
2024-07-09 10:39:36 +00:00
//zurücksetzten der Färbungen
this.clearScreenGraphColor();
2024-07-03 17:41:46 +00:00
System.out.println("Done");
2024-06-26 00:20:36 +00:00
// Gibt Distanz zu gefragtem Knoten zurück
return distance.get(n2);
2024-06-25 15:18:34 +00:00
}
2024-06-15 14:48:28 +00:00
}