

Research Thesis T3100:

Advancing a Class Library to an Open-Source
Project

Course of Studies: Angewandte Informatik

Duale Hochschule Baden-Württemberg Stuttgart/Campus Horb

by

Marco Schäfer

17.01.11

Edit Time 21.09.10 – 17.01.11

Student - ID, Course 8161805, TAI2008

Company M&M Software GmbH, St.Georgen

Supervisor of DHBW Prof. Dr.-Ing. Olaf Herden

http://www.dhbw-stuttgart.de/horb/zielgruppen/studieninteressierte/studienangebot/angewandte-informatik/kontakt/prof-dr-ing-olaf-herden.html

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

Declaration of Academic Integrity

Hereby I declare that this thesis Advancing a class library to an open-source

project has been written only by me. Furthermore, I confirm that no sources

have been used in the preparation of this project other than those indicated in

the project itself.

Monday, January 17, 2011 Lauterbach

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

Acknowledgement

I would like to thank Prof. Dr.-Ing. Olaf Herden from DHBW Stuttgart/Campus

Horb for excellent mentoring and giving feedback during the whole edit time.

Furthermore I thank my sister for proof-reading this document.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

Abstract

This thesis Advancing a class library to an open-source project was developed

by Marco Schäfer, student at DHBW Stuttgart/Campus Horb.

The author firstly introduces to the project by listing assumptions to the reader

and the structure of this work.

Thereafter he describes the situation before the developed solution existed,

the resultant problem and the goals of this thesis.

Chapter 3 analyses the existing visualization framework by giving an overview

of the context and describing the packages of the framework in more detail.

Furthermore the requirements and expected behavior to the visualization

framework are listed in chapter 4.

In Chapter 5 the architecture and design of the developed components is

presented.

Finally achieved results, future tasks and the author’s personal conclusion are

pointed out.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

Contents

1 Introduction... 6

1.1 Reader Assumptions .. 6

1.2 Structure of Document .. 7

2 Project Overview ... 8

2.1 Current Situation .. 8

2.2 Problem Description ... 8

2.3 Goals of Thesis .. 9

3 Analysis of the Visualization Framework ...10

3.1 Overview ..10

3.2 Visualization Package ...12

3.3 Logging Package ..15

4 Requirements ...17

4.1 Required Visualization Elements ..17

4.2 Expected Behavior ..18

5 Architecture and Design ..19

5.1 Visualization Framework Overview ...19

5.2 VisualizationElements Overview...21

5.3 VisualizationElements Components ..22

6 Results ...26

6.1 Achieved Results ..26

6.2 Open Aspects / Future Extensions ...26

6.3 Personal Conclusion..27

A Appendix ...28

A.1 Glossary ...28

A.2 References ...29

A.3 Figures ...30

A.4 Abbreviations..31

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

6

1 Introduction

This chapter introduces the reader to the project by lining up some basic

assumptions and giving an overview about the structure of the document.

1.1 Reader Assumptions

To understand the content of this project, it is benefic ial for the reader to have

some knowledge in the used technologies. It is not necessary that the reader

knows all of them in detail but basic elements of the following technologies

should be familiar.

 Java Technology

Java is an up-to-date technology developed by the company Sun

Microsystems to program platform independent software applications . It

includes the object oriented programming language Java to write

software, the Java Development Kit (JDK) which contains class libraries

and a compiler and the Java Runtime Environment (JRE) to execute the

programs.

 Unified Modeling Language (UML)

The Unified Modeling Language is used for the diagrams describing the

system. Equivalent to the Java Technology in implementation layer, UML

is the foundation for system modeling. Readers should be familiar with

most common UML-diagrams like Class-, Use-Case-, Sequence- or

Deployment-models.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

7

1.2 Structure of Document

 Chapter 2 gives a short overview of the project. It points out the current

situation, the consequential problem and describes the expected goals.

 Chapter 3 analyzes the design and functionality of the existing

visualization framework.

 Chapter 4 lists the requirements and expected behavior to the

framework

 Chapter 5 covers the worked out architecture by giving an overview of

the context and giving an overview to the visualizationElements package

and describing its components in more detail.

 Chapter 6 completes the project by summing up achieved results, a

short outlook about uncovered tasks and future extensions and finishes

with a personal conclusion.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

8

2 Project Overview
This chapter describes the current situation, points out the problem to be

solved and lists the goals of this project.

2.1 Current Situation

To teach the function of several algorithms and data types, university lecturers

at DHBW Stuttgart/Campus Horb use a framework to visualize the functions

step by step. This framework was developed by Björn Strobel in year 2006 [1]

and was continued and improved by Fabian Hamm 2010 [2].

The framework is used to show the function of abstract data types like queues

stacks and lists, visualization of sort algorithms, operations on graphs and the

function of recursion, backtracking and hashing.

2.2 Problem Description

The main problem of the framework is that if a lecturer wants to visualize the

function of algorithms it won’t be enough to just implement the algorithm and

log the successive actions. He also has to implement the graphical elements to

visualize the steps within the framework.

This leads into a high effort because he has to find and implement a realistic

graphical visualization for the algorithm or data structure. Furthermore the Java

class library has only few classes for graphical objects so it’s hard to draw in

source code.

Additionally it’s hard to arrange the implemented components practically

because the elements have to be placed by X- and Y-coordinates in the

application window.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

9

2.3 Goals of Thesis

The goal of the thesis is to develop several graphical elements to make step-

by-step visualization of algorithms easier for the developer.

First of all the two antecessor theses have to be analyzed to get to know the

existing framework.

Next step is to figure out the most qualified graphical elements to visualize

algorithms and abstract data types.

These elements have to be designed and implemented with Java technology in

this thesis.

If there’s enough time functionality will be assured by Unit Tests .

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

10

3 Analysis of the Visualization Framework

This chapter introduces to the existing visualization framework developed in

previous theses. It explains its design and functionality of the framework’s

components.

3.1 Overview

The existing framework to visualize algorithms step-by-step consists of two

packages:

 visualization

The visualization package contains abstract classes that are used to

show steps of the algorithm graphically and textual. This package is

described in more detail in chapter 3.2.

 logging

The logging package provides abstract classes with functionality to log

each step of an algorithm. This package is described in more detail in

chapter 3.3.

To put the step-by-step visualization into practice a third package has to be

linked as shown below in Figure 1: Visualization Framework Overview. This

package must contain classes that extend the abstract classes existing in

these two packages and adjust the functionality especially for its algorithm.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

11

Figu re 1 : V isua l i za t ion Framework Overv iew

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

12

3.2 Visualization Package

The visualization package contains the following abstract classes to visualize

the function of an algorithm:

Figu re 2 : V isua l i za t ion Package

 ParameterArea (1)

ParameterArea is an abstract class to set parameters for an algorithm. It

extends JPanel class and is located on the top left of the HybridWindow.

To make possible parameterization on the algorithm this class has to be

extended by the application and some input elements (TextBox,

CheckBox, RadioButton, etc.) have to be added.

 class visualization

JPanel

LOG:extends LogElement

DrawArea

drawAreaName: String

logList: LogElementList<LOG>

scrollPane: JScrollPane

+ clear() : void

+ draw(Graphics) : void

+ DrawArea()

+ DrawArea(LogElementList<LOG>, String)

+ drawStep() : void

+ getDrawAreaName() : String

+ getScrollPane() : JScrollPane

+ paint(Graphics) : void

+ setDrawAreaName(String) : void

+ setLogList(LogElementList<LOG>) : void

JApplet

DRAW:extends DrawArea

TEXT:extends TextArea

PARAM:extends ParameterArea

ALGORITHM:extends Algorithm

LOG:extends LogElement

LEGEND:e

HybridWindow

algorithm: ALGORITHM

drawArea: DRAW

legendArea: LEGEND

logList: LogElementList<LOG>

parameterArea: PARAM

tabbedPane: JTabbedPane

textArea: TEXT

+ addNewComponent(String, Component) : void

+ addNewComponentWithIcon(String, Icon, Component) : void

getState() : byte

+ HybridWindow()

+ HybridWindow(DRAW, TEXT, PARAM, ALGORITHM, LogElementList<LOG>, LEGEND)

+ init() : void

setState(int) : void

JPanel

LegendArea

scrollPane: JScrollPane

+ getScrollPane() : JScrollPane

+ initialize(Graphics) : void

+ LegendArea()

+ paint(Graphics) : void

JPanel

ParameterArea

scrollPane: JScrollPane

+ getScrollPane() : JScrollPane

+ ParameterArea()

JTextArea

LOG:extends LogElement

TextArea

logList: LogElementList<LOG>

scrollPane: JScrollPane

+ clear() : void

+ getScrollPane() : JScrollPane

+ print() : boolean

+ printStep() : void

+ setLogList(LogElementList<LOG>) : void

+ TextArea()

+ TextArea(LogElementList<LOG>)

«use»
«use»

«use»

«use»

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

13

 LegendArea (2)

LegendArea is an abstract class to show a legend in the HybridWindow

to describe the visualized elements. This leads into easier

understanding of the visualized algorithm. It extends JPanel and is

located on the bottom left of the HybridWindow. To show a legend in the

application the class has to be extended by the application and with help

of the initialize method the elements to show as legend have to be

defined.

 TextArea (3)

TextArea is an abstract class to visualize the steps of an algorithm

textually. It extends the Java JPanel class and is located on the bottom

of the HybridWindow. This class has to be extended and adjusted by the

application. To show the steps textual the print method has to be

overwritten.

 DrawArea (4)

The abstract class DrawArea is the main part of the visualization of

algorithms. It is the biggest part of the HybridWindow and is located in

the middle. It extends the JPanel class, too. The DrawArea class has to

be extended by the application and the draw method has to be

overwritten to show the steps of an algorithm graphically.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

14

 HybridWindow

The class HybridWindow extends JApplet and is the container for

ParameterArea (1), LegendArea (2) TextArea (3), and DrawArea (4).

Additionally it contains elements to navigate through the steps of an

algorithm (Next Step, Last Step etc.) (5). To use the HybridWindow as

an applet this class has to be extended by the application and the

constructor has to be overwritten. If it is used as an application it is not

necessary to overwrite the constructor.

Figu re 3 : Hy br i dWindow

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

15

3.3 Logging Package

The logging package contains the following abstract classes to log each step of

an algorithm:

Figu re 4 : Logg ing Package

 LogElement

The abstract class LogElement represents a step of an algorithm. The

application has to extend this class by adding attributes required to save

steps of a specific algorithm.

 LogElementList

LogElementList is a final class which represents a container of

LogElements. It stores the several LogElements of an algorithm and has

some methods to easily navigate through the list.

 class logging

PARAM:extends ParameterArea

LOG:extends LogElement

Algorithm

parameterArea: PARAM

title: String

+ Algorithm()

+ Algorithm(PARAM, String)

+ getParameterArea() : PARAM

+ getTitle() : String

+ run() : LogElementList<LOG>

+ setParameterArea(PARAM) : void

+ setTitle(String) : void

LogElement

description: String

step: int

+ getDescription() : String

+ getStep() : int

+ LogElement()

+ LogElement(int, String)

+ setDescription(String) : void

+ setStep(int) : void

Vector

LOG:extends LogElement

LogElementList

{leaf}

- actual: int

- initialized: boolean

+ clear() : void

+ first() : void

+ get() : Object

+ isInitialized() : boolean

+ last() : void

+ LogElementList()

+ next() : void

+ prev() : void

«use»

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

16

 Algorithm

The abstract class Algorithm represents the algorithm that is visualized

with the framework. It has to be extended by the application and the run

method must be implemented. In the run method the algorithm has to be

implemented and the significant steps have to be logged by adding

LogElements objects to a LogElementList instance. After the algorithm

was finished this LogElementList instance is returned to visualize the

steps with help of the visualization package (see chapter 3.2).

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

17

4 Requirements

Regarding to the analysis of the existing framework some requirements

evolved.

4.1 Required Visualization Elements

In consideration of the fact that the visualization framework is used in computer

science lectures, the elements it has to provide become clear.

First of all a table is needed to give an overview about values of variables or

states of algorithms. But especially to visualize hashtables a table with two

columns is needed.

The framework is also used to clarify the function of abstract data types queue

and stack. To visualize a queue the elements are arranged in a row. So a

table, with one row and columns as much as elements in the queue, is the

most qualified to visualize a queue.

In contrast, the elements of a stack are arranged on top of each other. So a

table with one column and rows as much as elements in the queue is the most

practicable to visualize a stack.

A list is also a container of elements and so the best way to visualize it is

similar to the way of visualizing a queue or stack. Therefor it was decided to

draw lists as table with one row and columns as much as elements in the list.

Additionally the framework is used to visualize step-by-step the function of

different sort algorithms like Quicksort, Bubblesort, Mergesort, Heapsort and

several more. A bar chart is needed in the framework because is the standard

graphic to visualize sort algorithms. But in some cases it is better to visuali ze

the elements to sort not as bars but as dots. So a dot chart is also required in

the visualization framework.

Furthermore another part of computer science is theory of graphs and

algorithms on graphs like depth-/breadth-first search, prim’s algorithm and a lot

of more. To alleviate step-by step visualization of these algorithms, drawing a

graph with appertaining edges and vertexes must be provided in the extended

framework. Thereby it should be possible to differ between directed and

undirected graphs as known in graph theory.

Additionally the framework is often used to teach and clarify the functionality of

recursion and backtracking on the basis of the N-Queens-Problem or the

Knight’s Tour. Therefore it should be possible to picture a chess board.

Finally another usage of the framework is pathfinding with backtracking or

graphs. So the visualizing framework should automatically generate and draw a

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

18

maze so that the user doesn’t have to be introduced in the complicated

algorithms of maze generation.

There are some more graphical elements which clarify the usage of algorithms

such as The Towers of Hanoi which are disregarded within this thesis because

they have only one specific algorithm and are not used in more use cases as

the elements named above.

4.2 Expected Behavior

The framework was developed to show the function of algorithms step-by-step.

So for each step of the algorithm the visualization element has to be updated

and redrawn. But the developer should not be forced to create a new

visualization element for each step because this would need a lot of memory.

Additionally in case of the maze, which is generated randomly, a different

maze for each step would be created.

Furthermore the visualization elements should be adapted to the size of the

DrawArea automatically because the HybridWindow can be resized by the

user. But at the same time it should not become too small or even get hidden

because of the window borders.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

19

5 Architecture and Design

This chapter describes the architecture of the developed software. It starts by

giving an overview over the developed system and describes the architecture

of the new developed package. Finally it describes the several new developed

components in detail.

5.1 Visualization Framework Overview

Figure 5 shows how the new package visualizationElements was integrated to

the existing context.

Figu re 5 : Ex tended V i zua l i za t i on Framework Overv iew

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

20

The application still uses functionality of the logging package to log each step

of the algorithm and visualizes the logged steps with help of the visualization

package.

The developer can now use elements of the visualizationElements package

within the application to visualize the steps easier than before. He does not

have to create graphics by himself.

Using the provided functionality is quite easy. The only thing a developer has

to do is to instantiate the chosen visualization element within the extended

DrawArea of the application and to call the element’s draw method within the

DrawArea’s draw method.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

21

5.2 VisualizationElements Overview

Figure 6 shows the architectural structure of package visualizationElements.

Figu re 6 : V isua l i za t ionE lements Package

The package has a hierarchal structure. Each class in package

visualizationElement which represents a visualization element extends the

class VisualizationElement. Furthermore classes which are consequentially

similar and differ only in little functionality and design, build up an inheritance,

too.

Additionally elements which consist of multiple other elements build up an

aggregation.

 class visualizationElementsWithoutMethodsAndFields

BarChart

BarChartElement Cell

ChessBoard

DotChart

Edge

«enumerat...

EdgeStyle
Graph

HashtableList

Maze

Queue

Stack

Table

Vertex

VisualizationElement

-source

-destination

-maze~currentCell

-edgeStyle

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

22

5.3 VisualizationElements Components

This chapter describes each component of the visualizatonElements package

in detail:

 VisualizationElement

The abstract class VisualizationElement is the base class for all

visualization elements. It provides the draw method which every element

needs to draw itself.

 Table

To visualize a table the Table class has to be instantiated and the

values have to be passed into the constructor as two-dimensional array.

The constructor is overloaded so that the column captions can be

passed in as one-dimensional string array optional. The draw method

draws a grid and highlights the column captions.

 Hasthtable

The Hashtable class is just a table with two columns, one for the hash

value and one for the corresponding object. The captions of the Table is

set to “Hash value” and “Object” automatically.

 Stack

The Stack class is implemented as extension of Table inheritance with

one column. Its constructor is overloaded. The values can be inserted

either as Vector or as one-dimensional array of any type. Internally a

table with one column is created within the constructor. To point out that

the represented graphic element is a last-in-first-out memory (LIFO) a

bolster is drawn around the values with an open border at the top. That

highlights that only the last element that was pushed on the stack can

be popped out.

 List

The class List is implemented as Table extension with one row. Its

constructor is overloaded. The values can be inserted either as Vector

or as one-dimensional array of any type. Within the constructor a Table

inheritance with one row is created internally.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

23

 Queue

The class Queue is implemented as implementation inheritance of List.

Its constructor is overloaded, too. The values can be inserted either as

Vector or as one-dimensional array of any type. The Queue is drawn in

the same way as a Table instance. But it has a bolster around with open

borders on the left and right. This clarifies that elements which are

inserted first must be removed first and newly inserted elements are

appended at the end as a first-in-first-out memory works (FIFO).

 BarChart

The BarChart class either takes a Vector or an array of

BarChartElements that represnent the values of the BarChart.

Additionally it takes the height and width of the DrawArea to adjust the

size of the BarChart.

The draw method arranges successively BarChartElements. It adjusts its

size to the size of the window automatically.

 BarChartElement

Elements to present within a BarChart are implemented in the

BarChartElement class. It gets passed the numeric value and optionally

the Color into its overloaded constructor. If no Color instance was

passed into the constructor the black is set as default value for the color

property. It is drawn as a rectangle with the previously set color. Its

height depends on the value it represents. And the width depends on the

number of values the BarChart visualizes and the window size.

 DotChart

The class DotChart has a similar function than the BarChart class. It

takes a Vector or one-dimensional array of integers and the height and

width of the DrawArea in its constructor. Dependent on the height and

the integer values each Vector element is drawn as little dot. The space

between each dot depends on the width of the DrawArea and the

number of elements to draw.

 Graph

The Graph class consists of a Vector of Vertex instances and a Vector

of Edge instances which are also passed into the constructor as a flag

whether the Graph instance represents a directed or undirected graph

and an EdgeStyle value to decide in which style the edges are drawn.

The draw method draws each Vertex and each Edge dependent on the

“directed”-flag either as normal line or as arrow.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

24

 Vertex

Vertexes of a Graph are represented as instances of the Vertex class.

They are located within the DrawArea by the X- and Y- coordinates

which are passed into their constructor. Additionally a marking and the

color of the vertex are set on construction of the Vertex. A Vertex is

drawn as filled circle in the set Color and named by the marking.

 Edge

The Edge class represents a connection between two instances of type

Vertex. Therefore it needs two vertexes, one source vertex and one

destination vertex. As the Vertex, Edge it gets a marking and Color

injected, too. If the Graph is directed they are drawn as arrows

otherwise as normal lines. Additionally they are drawn depending on the

EdgeStyle angled or direct.

 EdgeStyle

The EdgeStyle enum consists of the two values Directed and Angeled.

Depending on the EdgeStyle an Edge is drawn from source to

destination directly or with connected horizontal and vertical lines

(Angeled).

 Chessboard

The Chessboard is a kind of Table where the cells of the table are filled

with color and there are as much rows as tables which are named with

letters and numbers as known from chessboards. A two-dimensional

array of type Boolean is passed into its constructor which represents the

chessboard’s visited cells. The visited cells are shown as letter within

the cell. The board is sized depending on the DrawArea’s size

automatically.

 Maze

The Maze class creates and visualizes a maze with the passed in height

and width. Internally it is organized as two-dimensional array of type

Cell.

 Cell

A Cell represents a cell of a maze. It is located by the number of the row

and column within the maze. Four Boolean values represent the walls in

each direction. The walls of a cell can be set or “removed” either by

getters and setters or by special remove wall methods called.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

25

Some of the developed visualization elements are redundant because they

could also be represented by other elements. For example List and Queue are

nearly the same but it was decided to implement both. The reason for this is

that these elements are often required and it’s easier for the developer to

choose the required element.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

26

6 Results

This chapter shows the results and open aspects of the thesis. Finally the

author describes his personal conclusion about this project.

6.1 Achieved Results

The developed system fulfills the main expectations according to the

elaborated requirements and behavior.

All of the required elements which are worked out in chapter 4.1 are realized

as Java classes.

With help of the visualizationElements package a developer does not have to

create own elements to visualize the algorithms. This makes developing much

easier because drawing with Java was very exhausting. Not only to visualize

the values adequately but also to locate them clearly arranged within the

DrawArea is much easier now.

6.2 Open Aspects / Future Extensions

There are still some open aspects to do in second part of the thesis.

First the whole visualization framework should be tested with unit tests and

system tests.

Afterwards it should be published as open source project on a qualified portal.

Additionally the projects popularity must be improved to bring new developers

on board which will continuing developing on the visualization framework.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

27

6.3 Personal Conclusion

From my personal point of view, the achieved results of the project are

satisfying, but not perfect.

The main goals were fulfilled. All functionalities based on the requirements

analysis and are working quite well under the expected behavior.

The architecture of the system has a clear design and is easy to extend so that

changes and additional functionality can easy be implemented.

In the company I am working I do not use Java technology. So it was hard for

me to reach the achieved results and sometimes implementing was dragging.

But during this thesis I improved my Java knowledge very much.

The project was heavily focused on practical work and not so much research

was done. This real world project helped me a lot in developing my software

engineering skills. I am confident that this was a really good practice for me as

software developer.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

28

A Appendix

A.1 Glossary

Hashtable In a Hashtable stores the memory addresses

of objects that are calculated by a hash

function.

List List is a collection of objects. The objects are

referenced by pointers. So objects can be

accessed randomly.

Queue Queue is a collection of objects. The objects

can only be read in the same order as they

were stored.

Stack Stack is a collection of objects where the

objects can only be read the other way round

as they were stored.

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

29

A.2 References

Literature:

[1] Björn Strobel: Java Bibliothek zur schrittweisen Ausführung von

Algorithmen, BA Horb, 2006

[2] Fabian Hamm : Weiterentwicklung einer Klassenbibliothek zum

Open Source Projekt, DHBW Stuttgart / Campus Horb, 2010

[3] Till Rathmann: Prozedurale Labyrinth-Generierung, Universität

Erlangen-Nürnberg, 14.11.2005

Internet:

[4] Animering af algoritmer:

http://www.akira.ruc.dk/~keld/algoritmik_e99/Applets/

Date: 15.10.2010

[5] Everything you want to know about mazes but you are afraid to ask

http://www.ii.uni.wroc.pl/~wzychla/maze_en.html

Date: 15.10.2010

[6] Relevant Algorithm Animations/Visualizations (in Java)

http://www.ansatt.hig.no/frodeh/algmet/animate.html

Date: 17.10.2010

[7] Inside Technique : Backtrack Recursion and the Mysterious Maze :

Maze Generation:

http://www.siteexperts.com/tips/functions/ts20/page3.asp

Date: 17.10.2010

[8] Think Labyrinth: Maze Algorithms:

http://www.astrolog.org/labyrnth/algrithm.htm

Date: 17.10.2010

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

30

A.3 Figures

Figure 1: Visualization Framework Overview ..11

Figure 2: Visualization Package ...12

Figure 3: HybridWindow ..14

Figure 4: Logging Package ..15

Figure 5: Extended Vizualization Framework Overview19

Figure 6: VisualizationElements Package ...21

Research Thesis T3100:

Advancing a Class Library to

an Open-Source Project
Marco Schäfer

31

A.4 Abbreviations

FIFO First-In-First-Out

JDK Java Development Kit

JRE Java Runtime Environment

LIFO Last-In-First-Out

UML Unified Modeling Language

	Declaration of Academic Integrity
	Acknowledgement
	Abstract
	Contents
	1 Introduction
	1.1 Reader Assumptions
	1.2 Structure of Document

	2 Project Overview
	2.1 Current Situation
	2.2 Problem Description
	2.3 Goals of Thesis

	3 Analysis of the Visualization Framework
	3.1 Overview
	3.2 Visualization Package
	3.3 Logging Package

	4 Requirements
	4.1 Required Visualization Elements
	4.2 Expected Behavior

	5 Architecture and Design
	5.1 Visualization Framework Overview
	5.2 VisualizationElements Overview
	5.3 VisualizationElements Components

	6 Results
	6.1 Achieved Results
	6.2 Open Aspects / Future Extensions
	6.3 Personal Conclusion

	A Appendix
	A.1 Glossary
	A.2 References
	A.3 Figures
	A.4 Abbreviations

