191 lines
4.2 KiB
Java
191 lines
4.2 KiB
Java
package GraphenTeorie;
|
|
|
|
import java.util.ArrayList;
|
|
|
|
public class Graph {
|
|
|
|
private ArrayList<Knoten> knotenArrayList;
|
|
private ArrayList<Kante> kantenArrayList;
|
|
|
|
ArrayList<ArrayList<Object>> adjazenzmatrix;
|
|
ArrayList<ArrayList<Object>> adjazenzliste;
|
|
|
|
|
|
public Graph () {
|
|
this.knotenArrayList = new ArrayList<>();
|
|
this.kantenArrayList = new ArrayList<>();
|
|
|
|
this.adjazenzmatrix = createAdjazenzmatrix();
|
|
this.adjazenzliste = createAdjazenzliste();
|
|
}
|
|
|
|
|
|
public static void main(String[] args) {
|
|
Graph meinGraph = new Graph();
|
|
meinGraph.addKnoten();
|
|
meinGraph.addKnoten();
|
|
meinGraph.addKnoten();
|
|
// meinGraph.addKnoten();
|
|
// meinGraph.addKnoten();
|
|
// meinGraph.addKnoten();
|
|
|
|
System.out.println(meinGraph.createAdjazenzmatrix());
|
|
}
|
|
|
|
|
|
public Knoten addKnoten() {
|
|
Knoten neu = new Knoten();
|
|
this.knotenArrayList.add(neu);
|
|
return neu;
|
|
}
|
|
|
|
|
|
public Kante addKante(Knoten von, Knoten nach) {
|
|
Kante neu = new Kante(von, nach);
|
|
this.kantenArrayList.add(neu);
|
|
return neu;
|
|
}
|
|
|
|
|
|
public void removeKnoten(Knoten loeschObjekt) {
|
|
for (Kante i: loeschObjekt.getAnliegendeKanten()) {
|
|
this.removeKante(i);
|
|
}
|
|
this.knotenArrayList.remove(loeschObjekt);
|
|
}
|
|
|
|
|
|
public void removeKante(Kante loeschObjekt) {
|
|
this.kantenArrayList.remove(loeschObjekt);
|
|
}
|
|
|
|
|
|
public void fusioniereKnoten(Knoten k1, Knoten k2) {
|
|
Knoten fusion = this.addKnoten();
|
|
for (Kante i: k1.getEingehendeKanten()) {
|
|
fusion.addEingehendeKante(this.addKante(i.getOtherSide(k1), fusion));
|
|
}
|
|
for (Kante i: k2.getEingehendeKanten()) {
|
|
fusion.addEingehendeKante(this.addKante(i.getOtherSide(k2), fusion));
|
|
}
|
|
for (Kante i: k1.getAusgehendeKanten()) {
|
|
fusion.addEingehendeKante(this.addKante(fusion, i.getOtherSide(k1)));
|
|
}
|
|
for (Kante i: k2.getAusgehendeKanten()) {
|
|
fusion.addEingehendeKante(this.addKante(fusion, i.getOtherSide(k2)));
|
|
}
|
|
|
|
this.removeKnoten(k1);
|
|
this.removeKnoten(k2);
|
|
}
|
|
|
|
|
|
public void kontrahiereKante(Kante k1) {
|
|
this.fusioniereKnoten(k1.getStartKnoten(), k1.getEndKnoten());
|
|
}
|
|
|
|
|
|
public ArrayList<ArrayList<Object>> createAdjazenzmatrix() {
|
|
ArrayList<ArrayList<Object>> matrix = new ArrayList<>();
|
|
matrix.add(new ArrayList<Object>());
|
|
for (int i = 0; i < this.knotenArrayList.size(); i++) {
|
|
matrix.get(0).add(knotenArrayList.get(i));
|
|
matrix.add(new ArrayList<Object>());
|
|
matrix.get(i+1).add(knotenArrayList.get(i));
|
|
}
|
|
|
|
for (ArrayList<Object> i: matrix) {
|
|
for (int j = 0; j < matrix.getFirst().size(); j++) {
|
|
i.add(0);
|
|
}
|
|
}
|
|
|
|
for (Kante i: kantenArrayList) {
|
|
int von = matrix.getFirst().indexOf(i.getStartKnoten());
|
|
int nach = matrix.getFirst().indexOf(i.getEndKnoten());
|
|
|
|
ArrayList<Object> neu = matrix.get(von+1);
|
|
neu.set(nach, i.getGewichtung());
|
|
matrix.set(von+1, neu);
|
|
}
|
|
|
|
return matrix;
|
|
}
|
|
|
|
|
|
public ArrayList<ArrayList<Object>> createAdjazenzliste() {
|
|
return null;
|
|
}
|
|
|
|
|
|
public boolean isUntergraphOf(Graph g1) {
|
|
return true;
|
|
}
|
|
|
|
|
|
public boolean isTeilgraphOf(Graph g1) {
|
|
return true;
|
|
}
|
|
|
|
|
|
public boolean isZusammenhaengend() {
|
|
return true;
|
|
}
|
|
|
|
|
|
public boolean isVollstaendig() {
|
|
return true;
|
|
}
|
|
|
|
|
|
// Graph is 2 colorble or no odd length cycles
|
|
public boolean isBipartit() {
|
|
return true;
|
|
}
|
|
|
|
|
|
public boolean isVollstaendigBipartit() {
|
|
return true;
|
|
}
|
|
|
|
|
|
public boolean isZyklus() {
|
|
return true;
|
|
}
|
|
|
|
|
|
public boolean isRegulaer() {
|
|
return true;
|
|
}
|
|
|
|
|
|
public boolean isPlanar() {
|
|
return true;
|
|
}
|
|
|
|
|
|
public int durchmesser() {
|
|
return 1;
|
|
}
|
|
|
|
|
|
public int radius() {
|
|
return 1;
|
|
}
|
|
|
|
|
|
public ArrayList<Knoten> rand() {
|
|
return null;
|
|
}
|
|
|
|
|
|
public ArrayList<Knoten> zentrum() {
|
|
return null;
|
|
}
|
|
|
|
|
|
public boolean isIsomorphTo(Graph g1) {
|
|
return true;
|
|
}
|
|
}
|