Cleanup soundness. Add Delta environment to Unify input

This commit is contained in:
Andreas Stadelmeier 2024-01-23 16:30:24 +01:00
parent 881eecef8a
commit 05b6b84e1e
2 changed files with 32 additions and 79 deletions

View File

@ -13,6 +13,10 @@ Type inference produces a correctly typed program.
\end{description} \end{description}
\end{theorem} \end{theorem}
\begin{lemma}{Well-formedness:}
TODO:
\end{lemma}
\begin{lemma}{Soundness:} \begin{lemma}{Soundness:}
\unify{}'s type solutions for a constraint set generated by $\typeExpr{}$ are correct. \unify{}'s type solutions for a constraint set generated by $\typeExpr{}$ are correct.
\begin{description} \begin{description}
@ -44,7 +48,7 @@ By structural induction over the expression $\texttt{e}$.
then $\Delta|\Gamma \vdash \texttt{e} : \wcNtype{\Delta_c}{N}$ by assumption. then $\Delta|\Gamma \vdash \texttt{e} : \wcNtype{\Delta_c}{N}$ by assumption.
$\Delta', \Delta, \Delta_c \vdash \type{N} <: \sigma(\exptype{C}{\overline{\wtv{a}}})$ by premise. $\Delta', \Delta, \Delta_c \vdash \type{N} <: \sigma(\exptype{C}{\overline{\wtv{a}}})$ by premise.
%Let $\sigma(\tv{r}) = \wcNtype{\Delta'}{N}$. %Let $\sigma(\tv{r}) = \wcNtype{\Delta'}{N}$.
Let $\sigma([\ol{\wtv{a}}/\ol{X}]\type{T}) = \wcNtype{\Delta_t}{N_t}$. %Let $\sigma([\ol{\wtv{a}}/\ol{X}]\type{T}) = \wcNtype{\Delta_t}{N_t}$.
The completion of $|\texttt{e}.\texttt{f}|$ is $\texttt{let}\ \texttt{x} = \texttt{e} : \wcNtype{\Delta_c}{N}\ \texttt{in} \ \texttt{x}.\texttt{f}$ The completion of $|\texttt{e}.\texttt{f}|$ is $\texttt{let}\ \texttt{x} = \texttt{e} : \wcNtype{\Delta_c}{N}\ \texttt{in} \ \texttt{x}.\texttt{f}$
@ -63,6 +67,8 @@ By structural induction over the expression $\texttt{e}$.
%Easy, because unify only generates substitutions for normal type placeholders which are OK %Easy, because unify only generates substitutions for normal type placeholders which are OK
\item[$\texttt{e}.\texttt{m}(\ol{e})$] \item[$\texttt{e}.\texttt{m}(\ol{e})$]
Lets have a look at the case where the receiver and parameter types are all named types.
So $\sigma(\ol{\tv{r}}) = \ol{T} = \ol{\wcNtype{\Delta}{N}}$ and $\sigma(\tv{r}) = \type{T}_r = \wcNtype{\Delta'}{N}$:
\begin{gather} \begin{gather}
\label{sp:1} \label{sp:1}
\Delta, \Delta', \overline{\Delta} \vdash \ol{N} <: [\ol{S}/\ol{X}]\ol{U} \\ \Delta, \Delta', \overline{\Delta} \vdash \ol{N} <: [\ol{S}/\ol{X}]\ol{U} \\
@ -70,7 +76,7 @@ By structural induction over the expression $\texttt{e}$.
\Delta, \Delta', \overline{\Delta} \vdash \ol{S} <: [\ol{S}/\ol{X}]\ol{U'} \\ \Delta, \Delta', \overline{\Delta} \vdash \ol{S} <: [\ol{S}/\ol{X}]\ol{U'} \\
\Delta, \Delta', \overline{\Delta} \vdash \ol{S} \ \ok \\ \Delta, \Delta', \overline{\Delta} \vdash \ol{S} \ \ok \\
\label{sp:4} \label{sp:4}
\Delta \vdash \ol{T} <: \ol{\wcNtype{\Delta}{N}} \\ \Delta, \Delta' \vdash \ol{T} <: \ol{\wcNtype{\Delta}{N}} \\
\end{gather} \end{gather}
\ref{sp:1} is guaranteed by the constraints $\ol{r} \lessdot \ol{T}$. \ref{sp:1} is guaranteed by the constraints $\ol{r} \lessdot \ol{T}$.
$\ol{\tv{r}} \lessdot \ol{T}$ says that there is a $\Delta'$ with $\ol{\tv{r}} \lessdot \ol{T}$ says that there is a $\Delta'$ with
@ -78,6 +84,12 @@ By structural induction over the expression $\texttt{e}$.
If $\overline{\sigma(\tv{r}) = \wcNtype{\Delta}{N}}$ If $\overline{\sigma(\tv{r}) = \wcNtype{\Delta}{N}}$
then \ref{sp:1} due to lemma \ref{lemma:unifyCC}. then \ref{sp:1} due to lemma \ref{lemma:unifyCC}.
\ref{sp:4} is not using $\ol{\Delta}$.
$\sigma(\ol{\tv{r}}) = \ol{T} = \ol{\wcNtype{\Delta}{N}}$
Method calls generate multiple constraints that share the same wildcard placeholders ($\ol{\wtv{a}}$, $\ol{\wtv{b}}$).
%TODO: show that only those wildcards in the parameters and receiver type are used ($\ol{\Delta}$)
% X.List<X> <. List<a?> % X.List<X> <. List<a?>
% set \sigma(r) = X.N % set \sigma(r) = X.N
% If there exists a subtype r <: T, then r <: X.N, N <: T with X.N == r % If there exists a subtype r <: T, then r <: X.N, N <: T with X.N == r
@ -100,73 +112,32 @@ By structural induction over the expression $\texttt{e}$.
% If $\ol{\tv{r}} \lessdot \ol{T}$ how can we say that \Delta' only uses % If $\ol{\tv{r}} \lessdot \ol{T}$ how can we say that \Delta' only uses
\end{description} \end{description}
\begin{lemma} % \begin{lemma} Unify does add free variables to types not containing free variables (or wildcard placeholders)
\begin{description}
\item[If] $(\sigma, \Delta) = \unify{}( C )$
\item[Then] $\forall x \in \set{\type{S} \mid \type{S} \in C, \text{fv}(\type{S}) = \emptyset }: \text{fv}(\sigma(\type{S})) \subseteq \text{dom}(\Delta)$
\end{description}
\end{lemma}
\textit{Proof:} by induction over the \unify{} algorithm.
A unifier $\sigma(\tv{a}) = \type{T}$, where the type variable $\tv{a}$ is not flagged as a wildcard will always hold
$\text{fv}(\type{T}) \subseteq \text{dom}(\Delta)$.
%UNIFY fails when there are free variables on the right side of a a =. T constraint
\begin{lemma}
\unify{} only produces well-formed type substitutions.
% Could this be done via the GenSigma rule? just check if substitutions are well-formed?
% L <. U
% not possible because well-formedness depends on the input, which is not checked (should we check it? is that possible?)
%only type variables have to be OK
% TODO: Problem: how to proof \ol{S} ok for T-Call.
% a <. List<x?> --> here the type substituted for x? must be ok. Proof that by changing Unify to not return type insertions for this type and assume there is a correct substitution for x
\end{lemma}
% %This lemma can be used to proof Normalize rule!
% \begin{lemma}\label{lemma:wildcardReplacement}
% Wildcards with the same upper and lower bound can be replaced by their bounds without breaking subtype relations.
% \begin{description} % \begin{description}
% \item[If] $\Delta \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash \type{T} <: \type{S}$ % \item[If] $(\sigma, \Delta) = \unify{}( \Delta', C )$
% \item[and] $\type{U} = \type{L}$ and $\text{fv}(\type{U}) = \emptyset$ % \item[Then] $\forall x \in \set{\type{S} \mid \type{S} \in C, \text{fv}(\type{S}) = \emptyset }: \text{fv}(\sigma(\type{S})) \subseteq \text{dom}(\Delta)$
% \item[Then] $\Delta \vdash [\type{U}/\type{X}]\type{T} <: [\type{U}/\type{X}]\type{S}$
% \end{description}
% \end{lemma}
% \textit{Proof:} %TODO
% %By structural induction over the subtype relation
% %S-Refl: by assumption L <: L implies [\type{U}/\type{X}]L
% \begin{lemma}\label{lemma:noAdditionalFV}
% Type solution $\sigma$ does not add additional free variables.
% \begin{description}
% \item[If] $(\sigma, \Delta) = \unify{}( \overline{ \type{S} \lessdot \type{T} } \cup C)$
% \item[and] $fv(\overline{ \type{S} }) = \emptyset$, $fv(\overline{ \type{T} }) = \emptyset$
% \item[Then] $fv(\sigma(\overline{ \type{S} })) = \emptyset, fv(\sigma(\overline{ \type{T} })) = \emptyset$
% \end{description}
% \end{lemma}
% \begin{lemma}
% % https://math.libretexts.org/Bookshelves/Mathematical_Logic_and_Proof/Book%3A_Mathematical_Reasoning__Writing_and_Proof_(Sundstrom)/07%3A_Equivalence_Relations/7.03%3A_Equivalence_Classes
% $\doteq$ is an equivalence relation on a constraint set $C$.
% \begin{description}
% \item[If] $\Delta \vdash \overline{\type{T} <: \type{S}}$ and $\type{T} \doteq \type{S}$
% \item[Then] $\Delta \vdash [\type{T}/\type{S}](\overline{\type{T} <: \type{S}})$
% \end{description} % \end{description}
% \end{lemma} % \end{lemma}
% \textit{Proof:} by induction over the \unify{} algorithm.
% A unifier $\sigma(\tv{a}) = \type{T}$, where the type variable $\tv{a}$ is not flagged as a wildcard will always hold
% $\text{fv}(\type{T}) \subseteq \text{dom}(\Delta)$.
% %UNIFY fails when there are free variables on the right side of a a =. T constraint
\begin{lemma} \label{lemma:tvsNoFV} \begin{lemma} \label{lemma:tvsNoFV}
\unify{} does not add free variables to types not containing free variables. \unify{} does not add free variables to types not containing free variables.
\begin{description} \begin{description}
\item[If] $(\sigma, \Delta) = \unify{} (C)$ \item[If] $(\sigma, \Delta) = \unify{} (\Delta', C)$
\item[and] $\tv{a}$ being a type placeholders used in $C$ \item[and] $\tv{a}$ being a type placeholders used in $C$
\item[then] $\text{fv}(\sigma(\tv{a})) = \emptyset$ \item[then] $\text{fv}(\sigma(\tv{a})) \subseteq \Delta, \Delta'$
\end{description} \end{description}
\end{lemma} \end{lemma}
\textit{Proof:} \textit{Proof:}
Trivial Trivial. \unify{} fails when a constraint $\tv{a} \doteq \rwildcard{X}$ arises.
\begin{lemma} \label{lemma:unifyCC} \begin{lemma} \label{lemma:unifyCC}
Free variables do not leave their scope. TODO Free variables do not leave their scope. TODO
Wildcard variables are only substituted by wildcards inside the same constraint.
\begin{description} \begin{description}
\item[If] $(\sigma, \Delta) = \unify{}( C \cup \set{ \type{T} \lessdot \type{S} } \cup \set{ \overline{\type{T} \lessdotCC \type{S} } } )$ \item[If] $(\sigma, \Delta) = \unify{}( C \cup \set{ \type{T} \lessdot \type{S} } \cup \set{ \overline{\type{T} \lessdotCC \type{S} } } )$
\item[and] $\text{fv}(\type{T}, \type{S}) \subseteq \text{fv}(\ol{T}, \ol{S})$, \item[and] $\text{fv}(\type{T}, \type{S}) \subseteq \text{fv}(\ol{T}, \ol{S})$,
@ -180,11 +151,6 @@ Free variables do not leave their scope. TODO
Their scope is the set of constraints, which contain the same free variable placeholders. Their scope is the set of constraints, which contain the same free variable placeholders.
% Wildcard place holders only use free variables occuring in the same constraint as them.
% \begin{description}
% \item[If] $(\sigma, \Delta) = \unify{}( C )$
% \item[Then] $\text{fv}(\sigma(\tv{a})) \subseteq \set{ \text{fv}(\type{T}) \cup \text{fv}(\type{S}) \mid \tv{a} \in \text{tph}(\type{T},\type{S}), (\type{T} \lessdot \type{S}) \in C }$
% \end{description}
\end{lemma} \end{lemma}
\textit{Proof:} \textit{Proof:}
%TODO: is it true even? %TODO: is it true even?
@ -192,20 +158,6 @@ The input set does not contain free variables, only free variable placeholders.
The only time \unify{} add a wildcard to the $\wildcardEnv$ is the \rulename{Capture} rule. The only time \unify{} add a wildcard to the $\wildcardEnv$ is the \rulename{Capture} rule.
This rule is only applied for the outer wildcard environments for each type. This rule is only applied for the outer wildcard environments for each type.
%where to get a Box<Box<a?>> ?
% Box<Box<a?>> <. Box<? super Box<?>>
% %What is with wildcards in the lower bounds of type
% Box<Box<a?>> <. X_Y.Box<Y>.Box<X>
% Y.Box<Y> <. Box<a?>
% Y =. a?
% Box<Y.Box<Y>> <. Box<? extends Box<a>>
% Y.Box<Y> <. Box<a>
% Problem: für tvs dürfen keine Wildcards eingesetzt werden, außer für die
\begin{lemma}\label{lemma:unifySoundness} \begin{lemma}\label{lemma:unifySoundness}
The \unify{} algorithm only produces correct output. The \unify{} algorithm only produces correct output.
\begin{description} \begin{description}
@ -213,14 +165,13 @@ The \unify{} algorithm only produces correct output.
%\item[and] $fv(\overline{ \type{S} }) = \emptyset$, $fv(\overline{ \type{T} }) = \emptyset$ %\item[and] $fv(\overline{ \type{S} }) = \emptyset$, $fv(\overline{ \type{T} }) = \emptyset$
\item[Then] there exists a $\sigma'$ with: \item[Then] there exists a $\sigma'$ with:
$\sigma \subseteq \sigma'$ and $\sigma \subseteq \sigma'$ and
$\Delta, \Delta' \vdash \overline{\sigma'(\type{S}) <: \sigma'(\type{T})}$ $\Delta, \Delta', \overline{\Delta} \vdash \overline{\sigma'(\type{S}) <: \sigma'(\type{T})}$
and $\Delta, \Delta', \overline{\Delta} \vdash \overline{\type{N} <: \sigma'(\type{T'})}$ where $\overline{\sigma(\type{S'}) = \wcNtype{\Delta}{N}}$, and $\Delta, \Delta', \overline{\Delta} \vdash \overline{\type{N} <: \sigma'(\type{T'})}$ where $\overline{\sigma(\type{S'}) = \wcNtype{\Delta}{N}}$,
otherwise $\Delta, \Delta' \vdash \overline{\sigma'(\type{S'}) <: \sigma'(\type{T'})}$ otherwise $\Delta, \Delta' \vdash \overline{\sigma'(\type{S'}) <: \sigma'(\type{T'})}$
% and $\sigma(\type{T'}) = \sigma(\type{T'})$. % and $\sigma(\type{T'}) = \sigma(\type{T'})$.
% The function $\CC{}$ is given as $\CC{}(\wcNtype{\Delta}{N}) = \type{N}$ % The function $\CC{}$ is given as $\CC{}(\wcNtype{\Delta}{N}) = \type{N}$
% Unify cannot guarantee that only wildcards declared on the left side are used. Example input: % Unify cannot guarantee that only wildcards declared on the left side are used. Example input:
% List<b?> <. List<b?> % List<b?> <. List<b?>
% b? =. X % b? =. X

View File

@ -5,7 +5,8 @@
The \unify{} algorithm computes the type solution. The \unify{} algorithm computes the type solution.
\begin{description} \begin{description}
\item[Input:] List of constraints $C = \set{ \type{T} \lessdot \type{T}, \type{T} \doteq \type{T} \ldots}$ \item[Input:] An environment $\Delta'$
and a List of constraints $C = \set{ \type{T} \lessdot \type{T}, \type{T} \doteq \type{T} \ldots}$
The input constraints must be of the following format: The input constraints must be of the following format:
@ -18,6 +19,7 @@ The input constraints must be of the following format:
\noindent \noindent
Additional requirements: Additional requirements:
\begin{itemize} \begin{itemize}
\item Every wildcard $\rwildcard{X} \in \Delta'$ has to have an unique name which is not defined anywhere in the constraint set $C$.
\item The input only consists of $\lessdot$ constraints \item The input only consists of $\lessdot$ constraints
% \item No free variables in type parameters. % \item No free variables in type parameters.
% A constraint like $\tv{a} \lessdot \exptype{List}{\rwildcard{X}}$ is prohibited. % A constraint like $\tv{a} \lessdot \exptype{List}{\rwildcard{X}}$ is prohibited.
@ -91,7 +93,7 @@ C \cup \set{\tv{a} \doteq \type{T}}
\end{array} \end{array}
\quad \begin{array}{c} \quad \begin{array}{c}
\tv{a} \notin \type{T} \\ \tv{a} \notin \type{T} \\
\text{fv}(\type{T}) = \emptyset \text{fv}(\type{T}) \subseteq \Delta'
\end{array}$\\ \end{array}$\\
\\ \\
\rulename{Subst-WC} &$ \rulename{Subst-WC} &$