Cleanup CC command
This commit is contained in:
parent
c42477bf8a
commit
295f1ee567
@ -1,7 +1,5 @@
|
||||
\section{Soundness}
|
||||
|
||||
\newcommand{\CC}{\text{CC}}
|
||||
|
||||
\begin{lemma}
|
||||
A sound TypelessFJ program is also sound under LetFJ type rules.
|
||||
\begin{description}
|
||||
@ -426,7 +424,7 @@ Therefore we can say that $\Delta, \Delta', \overline{\Delta} \vdash \sigma'(\ex
|
||||
% List<X> <. Y.List<Y>, free variables are either in
|
||||
If $\text{fv}(\exptype{C}{\ol{S}}) = \text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset$ the preposition holds by Assumption and S-Exists.
|
||||
Otherwise
|
||||
$\Delta' \vdash \CC{}(\sigma(\exptype{C}{\ol{S}})) <: \sigma(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}})$
|
||||
$\Delta' \vdash \text{CC}(\sigma(\exptype{C}{\ol{S}})) <: \sigma(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}})$
|
||||
holds with any $\Delta'$ so that $(\text{fv}(\exptype{C}{\ol{S}}) \cup \text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) ) \subseteq \text{dom}(\Delta') $.
|
||||
\item[Match] Assumption, S-Trans
|
||||
\item[Trim] Assumption and S-Exists
|
||||
|
Loading…
Reference in New Issue
Block a user