Remove Same rule. SameW rule is for both constraints

This commit is contained in:
Andreas Stadelmeier 2024-04-10 01:16:24 +02:00
parent 4b183937f5
commit 3a9f2d3e16
2 changed files with 56 additions and 50 deletions

View File

@ -560,23 +560,44 @@ During the course of the \unify{} algorithm more and more types emerge.
As soon as enough type information is given \unify{} can conduct a capture conversion if needed. As soon as enough type information is given \unify{} can conduct a capture conversion if needed.
The constraints where this is possible are marked as capture constraints. The constraints where this is possible are marked as capture constraints.
Type information flows top down. \section{Discussion Pair Example}
Argument types of a method invocation impact its return type. We can make it work with a special rule in the \unify{}.
But knowing the return type does not imply distinct argument types. But this will only help in this specific example and not generally solve the issue.
We know from the argument types of \texttt{receive} -which are given- that the \texttt{copy} method A type $\exptype{Pair}{\rwildcard{X}, \rwildcard{X}}$ has atleast two immediate supertypes:
needs to return a type of the form $\exptype{Pair}{\type{X}, \type{Y}}$ $\wctype{\rwildcard{X}}{Pair}{\rwildcard{X}, \rwildcard{X}}$ and
where \type{X} and \type{Y} can be any types as long as \type{Y} is a subtype of \type{X}. $\wctype{\rwildcard{X}, \rwildcard{Y}}{Pair}{\rwildcard{X}, \rwildcard{Y}}$.
Without wildcards this would leave us with a clue what the type should look like. Imagine a type $\exptype{Triple}{\rwildcard{X},\rwildcard{X},\rwildcard{X}}$ already has
% TODO: how many supertypes are there?
X.Triple<X,X,X> <: X,Y.Triple<X,Y,X> <:
X,Y,Z.Triple<X,Y,Z>
%TODO: simplify this example. lSpeial <. List<x> and List<x> <. id is sufficient \begin{verbatim}
% The unify algorithm needs to resolve l <c List<x?> to l <. X.List<X>, X.List<X> <c List<x?> <X> Pair<X,X> make(List<X> l){ ... }
<X> boolean compare(Pair<X,X> p) { ... }
% this is not complete: List<?> l;
l <c Pair<x?, y?> Pair<?,?> p;
l <. X,Y.Pair<X,Y>, X,Y.Pair<X,Y> <. Pair<x?, y?>
compare(make(l)); // Valid
compare(p); // Error
\end{verbatim}
Our type inference algorithm is not able to solve this example.
When we convert this to \TamedFJ{} and generate constraints we end up with:
%TODO: Finish this example! does it work?
\begin{lstlisting}[style=tamedfj]
let x = l in let m = make(x) in compare(m)
\end{lstlisting}
\begin{constraints}
\end{constraints}
%TODO
\begin{lstlisting}[style=letfj]
let x : (*@$\wctype{\rwildcard{X}}{List}{\rwildcard{X}}$@*) = l in let m = make(x) in compare(m)
\end{lstlisting}
% if a x =. y emerge:
X =. Y, which will delete both wildcards
\end{itemize} \end{itemize}

View File

@ -402,23 +402,8 @@ which are used for the upper and lower bounds.
% \end{array} % \end{array}
% \end{displaymath} % \end{displaymath}
%TODO new rules:
% b <. List<x?>
% ----------------
% b =. bot | b <. List<x>
% b <. List<X> % if there are a <. List<x?> constraints remaining in the end, then this can be a sign of a irregular input constraint set.
% ----------------
% b =. bot | XU =. XL, a =. XU [a/X]C
% b =. C<X>
% --------------
% b =. X.C<X>
% TODO: SameW rule can also be applied to normal type variables, because we have the contract rule now:
% a <c List<x?>
% --------------
% a <. X.List<X>, X.List<X> <c List<x?>
\begin{figure} \begin{figure}
\begin{center} \begin{center}
@ -905,35 +890,35 @@ $\set{\tv{a} \doteq \type{N}} \in C$ with $\text{fv}(\type{N}) \cap \Delta_{in}
\begin{center} \begin{center}
\fbox{ \fbox{
\begin{tabular}[t]{l@{~}l} \begin{tabular}[t]{l@{~}l}
\rulename{SameW}
& $
\begin{array}[c]{l}
\wildcardEnv \vdash
C \cup \type{G} \lessdot \wtv{a}\\
\hline
\wildcardEnv \vdash
C \cup \set{
\wtv{a} \doteq \type{G}
}
\end{array}
$
\\\\
\cdashline{1-2} \\
\rulename{Same} \rulename{Same}
& $ & $
\begin{array}[c]{l} \begin{array}[c]{l}
\wildcardEnv \cup \set{\overline{\wildcard{A}{\type{U}}{\type{L}}}} \vdash \wildcardEnv \vdash
C \cup \wctype{\Delta'}{C}{\ol{X}} \lessdot \ntv{a}\\ C \cup \type{G} \lessdot \tv{a}\\
\hline \hline
\wildcardEnv \cup \set{\overline{\wildcard{A}{\type{U}}{\type{L}}}} \vdash \wildcardEnv \vdash
C \cup \set{ C \cup \set{
\ntv{a} \doteq \wctype{\Delta',\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{X}} \tv{a} \doteq \type{G}
} }
\end{array} \quad \begin{array}[c]{l}
\text{fv}(\wctype{\Delta'}{C}{\ol{X}}) / \Delta_{in} = \overline{\rwildcard{A}}
\end{array} \end{array}
$ $
\\\\ \\\\
% \cdashline{1-2} \\
% \rulename{Same}
% & $
% \begin{array}[c]{l}
% \wildcardEnv \cup \set{\overline{\wildcard{A}{\type{U}}{\type{L}}}} \vdash
% C \cup \wctype{\Delta'}{C}{\ol{X}} \lessdot \ntv{a}\\
% \hline
% \wildcardEnv \cup \set{\overline{\wildcard{A}{\type{U}}{\type{L}}}} \vdash
% C \cup \set{
% \ntv{a} \doteq \wctype{\Delta',\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{X}}
% }
% \end{array} \quad \begin{array}[c]{l}
% \text{fv}(\wctype{\Delta'}{C}{\ol{X}}) / \Delta_{in} = \overline{\rwildcard{A}}
% \end{array}
% $
% \\\\
\cdashline{1-2} \\ \cdashline{1-2} \\
\rulename{\generalizeRule} \rulename{\generalizeRule}
& $ & $
@ -981,7 +966,7 @@ $\set{\tv{a} \doteq \type{N}} \in C$ with $\text{fv}(\type{N}) \cap \Delta_{in}
% $ % $
\\\\ \\\\
\cdashline{1-2} \\ \cdashline{1-2} \\
\rulename{\generalizeRule{}W} \rulename{\generalizeRule{}W} %TODO: Change description for step 2!
& $ & $
\begin{array}[c]{l} \begin{array}[c]{l}
\wildcardEnv \vdash C \cup \wctype{\Delta}{C}{\ol{T}} \lessdot \wtv{a}\\ \wildcardEnv \vdash C \cup \wctype{\Delta}{C}{\ol{T}} \lessdot \wtv{a}\\