From 43e75127b313f3f62bd0bcea99fc46f82042e22d Mon Sep 17 00:00:00 2001 From: Andreas Stadelmeier Date: Mon, 5 Feb 2024 14:54:42 +0100 Subject: [PATCH] Nearly finish soundness for TYPE --- soundness.tex | 71 +++++++++++++++------------------------------------ 1 file changed, 20 insertions(+), 51 deletions(-) diff --git a/soundness.tex b/soundness.tex index 1862884..1e065e5 100644 --- a/soundness.tex +++ b/soundness.tex @@ -109,11 +109,13 @@ $\texttt{let}\ \texttt{x} : \wcNtype{\Delta'}{N} = \texttt{e} \ \texttt{in}\ % Solution: Make this a lemma and guarantee that Unify does only create types Delta.T with \Delta subset fv(T) % This is possible because free variables (except those in \Delta_in) are never used in wildcard environments -We could use unify to generate S by -$\unify{}((\Delta, \Delta', \overline{\Delta}), [\ol{\tv{a}}/\ol{X}][\ol{\tv{b}}/\ol{Y}]\set{\ol{N} \lessdot \ol{T}, \type{N} \lessdot \exptype{C}{\ol{X}}})$ -%TODO: Proof that this always works. -% Only the variables in \Delta' ol\Delta are used. Maybe change the lemma 10 to that. -% That part of the unify algorithm is not influenced by other free variables +By lemma \ref{lemma:unifyWeakening} we know that +$\unify{}(\Delta, [\ol{\tv{a}}/\ol{X}][\ol{\tv{b}}/\ol{Y}]\set{ \overline{\wcNtype{\Delta}{N}} \lessdotCC \ol{T}, \wcNtype{\Delta'}{N} \lessdotCC \exptype{C}{\ol{X}}})$ +has a solution. +Also $\overline{\wcNtype{\Delta}{N}} \lessdot \ol{T}$ and $\wcNtype{\Delta'}{N} \lessdotCC \exptype{C}{\ol{X}}$ will be converted to +$\ol{N} \lessdot \ol{T}$ and $\type{N} \lessdot \exptype{C}{\ol{X}}$ by the \rulename{Capture} rule. +Which then results in the same as calling $\unify{}((\Delta, \Delta', \overline{\Delta}), [\ol{\tv{a}}/\ol{X}][\ol{\tv{b}}/\ol{Y}]\set{\ol{N} \lessdot \ol{T}, \type{N} \lessdot \exptype{C}{\ol{X}}})$, +which shows $\Delta, \Delta', \overline{\Delta} \vdash \overline{N} <: [\ol{S}/\ol{X}]\overline{U}$. This implies $\text{dom}(\Delta') \subseteq \text{fv}(\type{N})$ and $\text{dom}(\Delta') \subseteq \text{fv}(\type{N})$ $\Delta, \Delta', \overline{\Delta} \vdash [\ol{S}/\ol{X}]\type{U} \type{T}$, @@ -141,25 +143,7 @@ $\unify{}((\Delta, \Delta', \overline{\Delta}), [\ol{\tv{a}}/\ol{X}][\ol{\tv{b}} % \end{gather} Method calls generate multiple constraints that share the same wildcard placeholders ($\ol{\wtv{a}}$, $\ol{\wtv{b}}$). -%TODO: show that only those wildcards in the parameters and receiver type are used ($\ol{\Delta}$) - % X.List <. List - % set \sigma(r) = X.N - % If there exists a subtype r <: T, then r <: X.N, N <: T with X.N == r - % If CC(X.N) <: T, then N <: T - % R <: X.N due to S-Refl. - % \Delta, X \vdash N <: T due to assumption and S-Exists. - % What if X.N <: Y (where is this Y coming from?) - % %TODO: - % We have to show, that all constraints using the same wtv's C = X1.T1 <. X2.T2 ,... - % with a? \in T1, T2, .... - % then \Delta' \subseteq X1, X2, ... for \Delta, \Delta \vdash sigma(T1) <: sigma(X2.T2), .... - - % when only wildcards in the top level domain from the constraints involving the a? variables are involved - % then they are all contained in $\Delta, \Delta', \overline{Delta}$, which makes S ok true! (does it?) - % and due to r <. T, the judgements N <: [S/X]U and T_r <: \Delta.N are true! - - % If $\ol{\tv{r}} \lessdot \ol{T}$ how can we say that \Delta' only uses \end{description} % \begin{lemma} Unify does add free variables to types not containing free variables (or wildcard placeholders) @@ -237,22 +221,22 @@ The GenSigma and GenDelta rules check for well-formedness. \textit{Proof:} Trivial. \unify{} fails when a constraint $\tv{a} \doteq \rwildcard{X}$ arises. -\begin{lemma} \label{lemma:unifyCC} -Free variables do not leave their scope. TODO -Wildcard variables are only substituted by wildcards inside the same constraint. +% do we even have to proof that? +% \begin{lemma} +% C = Delta.N <. List -% b? =. X -% but if the left side is a normal type (no fv's) then this can be guaranteed (maybe?) -%String <. X_String % here X is not in the environment - -% What is the problem? -% a? can only use wildcards, which are declared in \Delta or on the left side -% Otherwise constraints of the form a <. T cannot ensure soundness! - -% We could say that a? only gets free variables hold by the constraints a? appears in - -% a constraint a <. T means that there are free variables \end{description} \end{lemma}