diff --git a/soundness.tex b/soundness.tex index 9c4eeee..398fe56 100644 --- a/soundness.tex +++ b/soundness.tex @@ -235,15 +235,10 @@ If there is a solution for a constraint set $C$, then there is also a solution f \item[If] $(\sigma, \Delta) = \unify{}( C \cup C')$ \item[then] $ (\sigma', \Delta') = \unify{}( C')$ \end{description} -\textit{Proof:} -%TODO \end{lemma} \textit{Proof:} -%TODO: is it true even? -The input set does not contain free variables, only free variable placeholders. -The only time \unify{} add a wildcard to the $\wildcardEnv$ is the \rulename{Capture} rule. -This rule is only applied for the outer wildcard environments for each type. +%TODO \begin{lemma}\label{lemma:unifySoundness} The \unify{} algorithm only produces correct output.