From 521dee7fa2131a58540e39b5cb1846f05d5f6e04 Mon Sep 17 00:00:00 2001 From: JanUlrich Date: Tue, 16 Jan 2024 10:00:47 +0100 Subject: [PATCH] Soundness Prepare --- soundness.tex | 27 ++++++++++++++++----------- 1 file changed, 16 insertions(+), 11 deletions(-) diff --git a/soundness.tex b/soundness.tex index f7b1c5a..ae338c2 100644 --- a/soundness.tex +++ b/soundness.tex @@ -272,24 +272,29 @@ $\Delta \vdash \sigma(C') \implies \Delta \vdash \sigma(C)$ \item[Prepare] To show $\Delta \vdash \wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}} <: \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}$ by S-Exists we have to proof: -We know -\begin{gather} - \ol{S} = \ol{T}\\ - \text{fv}(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) = \emptyset\\ - \text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset - %TODO -\end{gather} - \begin{gather} \Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\ \Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\ \label{rp:3} \text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\ \label{rp:4} -\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset +\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset\\ +[\ol{A}/\ol{T}] = \ol{T} %TODO: rename T \end{gather} -\ref{rp:4} is always true. -Due to $\text{fv}(\sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}})) = \emptyset$ implies \ref{rp:3}. + +We know +\begin{gather} + \ol{S} = [\ol{\wtv{a}}/\ol{A}]\ol{T}\\ + \text{fv}(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) = \emptyset\\ +\label{rp:fv2} + \text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset + %TODO +\end{gather} + +\ref{rp:fv2} implies \ref{rp:4}. +Due to $\text{fv}(\sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}})) = \emptyset$ implies +$\text{fv}(\type{T}) \subseteq \text{dom}(\overline{\wildcard{B}{\type{U}}{\type{L}}})$ +and therefore \ref{rp:3}. \item[Capture] If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) = \emptyset$ the preposition holds by Assumption and S-Exists.