Work on Soundness
This commit is contained in:
parent
c75f0c1ace
commit
550bc384e5
@ -86,7 +86,12 @@ We have to show T-Let and T-Call which leaves us with:
|
|||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\Delta | \Gamma \vdash \expr{e} : \sigma(\tv{e})$ and $\Delta | \Gamma \vdash \overline{\expr{e} : \sigma(\tv{e})}$ by assumption
|
\item $\Delta | \Gamma \vdash \expr{e} : \sigma(\tv{e})$ and $\Delta | \Gamma \vdash \overline{\expr{e} : \sigma(\tv{e})}$ by assumption
|
||||||
\item $\Delta \vdash \type{T}_1 <: \wcNtype{\Delta'}{N}$ and $\Delta \vdash \overline{\type{T}_1 <: \wcNtype{\Delta'}{N}}$ by constraints $\tv{e} \lessdot \tv{x}$, $\overline{\tv{e} \lessdot \tv{x}}$ and lemma \ref{lemma:unifySoundness}
|
\item $\Delta \vdash \type{T}_1 <: \wcNtype{\Delta'}{N}$ and $\Delta \vdash \overline{\type{T}_1 <: \wcNtype{\Delta'}{N}}$ by constraints $\tv{e} \lessdot \tv{x}$, $\overline{\tv{e} \lessdot \tv{x}}$ and lemma \ref{lemma:unifySoundness}
|
||||||
\item $\Delta, \Delta', \ol{\Delta'} | \Gamma, \expr{x} : \type{N}, \overline{\expr{x} : \type{N}} \vdash $
|
\item $\Delta, \Delta', \ol{\Delta'} | \Gamma, \expr{x} : \type{N}, \overline{\expr{x} : \type{N}} \vdash \expr{x}.\texttt{m}(\ol{x}) : \sigma(\tv{r})$ by T-Call, because the following promises are satisfied
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\generics{\ol{X} \triangleleft \ol{U'}} \ol{U} \to \type{U} \in \Pi(\texttt{m})$ is given, otherwise the program fails at the constraint generation step.
|
||||||
|
\item $\Delta \vdash \ol{S} <: [\ol{S}/\ol{X}]\ol{U'}$ by constraints $\ol{\wtv{b}} \lessdot \ol{N}$ and lemma \ref{lemma:unifySoundness}
|
||||||
|
TODO: does not work because left side is a wildcard variable (maybe just change lemma soundness a bit)
|
||||||
|
\end{itemize}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\item[$\texttt{v}.\texttt{m}(\ol{v})$]
|
\item[$\texttt{v}.\texttt{m}(\ol{v})$]
|
||||||
Proof is analog to field access, except the $\Delta \vdash \ol{S}\ \ok$ premise.
|
Proof is analog to field access, except the $\Delta \vdash \ol{S}\ \ok$ premise.
|
||||||
|
Loading…
Reference in New Issue
Block a user