Fixes
This commit is contained in:
parent
edc7f87108
commit
67ce9e42a2
@ -302,7 +302,7 @@ $\begin{array}{l}
|
|||||||
\Delta = \overline{\type{X} : \bot .. \type{U}} \quad \quad
|
\Delta = \overline{\type{X} : \bot .. \type{U}} \quad \quad
|
||||||
\Delta \vdash \ol{U}, \ol{T} \ \ok \quad \quad
|
\Delta \vdash \ol{U}, \ol{T} \ \ok \quad \quad
|
||||||
\Delta \vdash \type{N} \ \ok \quad \quad
|
\Delta \vdash \type{N} \ \ok \quad \quad
|
||||||
\Delta \vdash \ol{M} \ \ok \texttt{in C}
|
\Delta \vdash \ol{M} \ \ok \texttt{ in C}
|
||||||
\\
|
\\
|
||||||
\hline
|
\hline
|
||||||
\vspace*{-0.3cm}\\
|
\vspace*{-0.3cm}\\
|
||||||
|
10
unify.tex
10
unify.tex
@ -1003,13 +1003,13 @@ Otherwise the generation rules \rulename{GenSigma} and \rulename{GenDelta} will
|
|||||||
\rulename{GenDelta}
|
\rulename{GenDelta}
|
||||||
& $
|
& $
|
||||||
\deduction{
|
\deduction{
|
||||||
\wildcardEnv \vdash C \cup \set{\tv{b} \lessdot \type{N} } \implies \Delta, \sigma
|
\wildcardEnv \vdash C \cup \set{\tv{b} \lessdot \type{T} } \implies \Delta, \sigma
|
||||||
}{
|
}{
|
||||||
\wildcardEnv \vdash [\type{B}/\tv{b}]C \implies \Delta \cup \set{\wildcard{B}{\type{N}}{\bot}}, \sigma \cup \set{\tv{b} \to \type{B}}
|
\wildcardEnv \vdash [\type{B}/\tv{b}]C \implies \Delta \cup \set{\wildcard{B}{\type{T}}{\bot}}, \sigma \cup \set{\tv{b} \to \type{B}}
|
||||||
} \quad
|
} \quad
|
||||||
\begin{array}{l}
|
\begin{array}{l}
|
||||||
\tph(\type{N}) = \emptyset, \text{fv}(\type{N}) \subseteq \Delta \cup \Delta_in \\
|
\tph(\type{T}) = \emptyset, \text{fv}(\type{T}) \subseteq \Delta \cup \Delta_{in} \\
|
||||||
\rwildcard{B} \ \text{fresh}, \tv{b} \notin \text{dom}(\sigma), \Delta \vdash \type{N} \ \ok
|
\rwildcard{B} \ \text{fresh}, \tv{b} \notin \text{dom}(\sigma), \Delta, \Delta_{in} \vdash \type{T} \ \ok
|
||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\\\\
|
\\\\
|
||||||
@ -1041,7 +1041,7 @@ Otherwise the generation rules \rulename{GenSigma} and \rulename{GenDelta} will
|
|||||||
} \quad
|
} \quad
|
||||||
\begin{array}{l}
|
\begin{array}{l}
|
||||||
\tph(\type{T}) = \emptyset \\ %,\, \text{fv}(\type{T}) \subseteq \Delta \\ % T ok implies that
|
\tph(\type{T}) = \emptyset \\ %,\, \text{fv}(\type{T}) \subseteq \Delta \\ % T ok implies that
|
||||||
\tv{a} \notin \text{dom}(\sigma),\, \Delta, \Delta_in \vdash \type{T} \ \ok
|
\tv{a} \notin \text{dom}(\sigma),\, \Delta, \Delta_{in} \vdash \type{T} \ \ok
|
||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\\\\
|
\\\\
|
||||||
|
Loading…
Reference in New Issue
Block a user