diff --git a/soundness.tex b/soundness.tex index 2754d93..433c919 100644 --- a/soundness.tex +++ b/soundness.tex @@ -153,12 +153,20 @@ $\text{fv}(\type{T}) \subseteq \text{dom}(\Delta)$. % \end{lemma} \begin{lemma} \label{lemma:unifyCC} +Free variables do not leave their scope. \begin{description} - \item[If] $(\sigma, \Delta) = \unify{}( C \cup \set{ \overline{\wcNtype{\Delta}{N} \lessdot \type{T} } } )$ - \item[and] $\text{fv}(\ol{T}) \notin C$, $\text{fv}(\ol{\wcNtype{\Delta}{N}}) \notin C$ - \item[Then] $\Delta, \overline{\Delta} \vdash \overline{ \sigma(\type{N}) <: \sigma(\type{T}) }$ + \item[If] $(\sigma, \Delta) = \unify{}( C \cup \set{ \type{T} \lessdot \type{S} } \cup \set{ \overline{\type{T} \lessdot \type{S} } } )$ + \item[and] $\text{fv}(\type{T}, \type{S}) \subseteq \text{fv}(\ol{T}, \ol{S})$, + $\sigma(\ol{T}) = \ol{\wcNtype{\Delta}{N}}$ and $\sigma(\type{T}) = \wcNtype{\Delta'}{N'}$ + \item[then] $ \Delta, \overline{\Delta}, \Delta' \vdash \sigma(\type{T}) <: \sigma(\type{S}) $ + + % \item[If] $(\sigma, \Delta) = \unify{}( C \cup \set{ \overline{\wcNtype{\Delta}{N} \lessdot \type{T} } } )$ + % \item[and] $\text{fv}(\ol{T}) \notin C$, $\text{fv}(\ol{\wcNtype{\Delta}{N}}) \notin C$ + % \item[Then] $\Delta, \overline{\Delta} \vdash \overline{ \sigma(\type{N}) <: \sigma(\type{T}) }$ \end{description} +Their scope is the set of constraints, which contain the same free variable placeholders. + % Wildcard place holders only use free variables occuring in the same constraint as them. % \begin{description} % \item[If] $(\sigma, \Delta) = \unify{}( C )$ @@ -167,6 +175,19 @@ $\text{fv}(\type{T}) \subseteq \text{dom}(\Delta)$. \end{lemma} \textit{Proof:} %TODO: is it true even? +The input set does not contain free variables, only free variable placeholders. +The only time \unify{} add a wildcard to the $\wildcardEnv$ is the \rulename{Capture} rule. +This rule is only applied for the outer wildcard environments for each type. + +%where to get a Box> ? + +% Box> <. Box> + +% %What is with wildcards in the lower bounds of type +% Box> <. X_Y.Box.Box +% Y.Box <. Box +% Y =. a? + \begin{lemma} The \unify{} algorithm only produces correct output for constraints not containing free variables. diff --git a/unify.tex b/unify.tex index 0c2908e..68b1c02 100644 --- a/unify.tex +++ b/unify.tex @@ -44,7 +44,7 @@ The \unify{} algorithm internally uses the following data types: \begin{tabular}{lcll} $C $ &$::=$ &$\overline{c}$ & Constraint set \\ - $c $ &$::=$ & $\type{T} \lessdot \type{T} \mid \type{T} \doteq \type{T}$ & Constraint \\ + $c $ &$::=$ & $\type{T} \lessdot \type{T} \mid \type{T} \lessdotCC \type{T} \mid \type{T} \doteq \type{T}$ & Constraint \\ $\type{T}, \type{U}, \type{L} $ & $::=$ & $\tv{a} \mid \wtv{a} \mid \gtype{G}$ & Type variable or Type \\ $\gtype{G}$ & $::=$ & $\type{X} \mid \ntype{N}$ & Wildcard, or Class Type \\ $\ntype{N}, \ntype{S}$ & $::=$ & $\wctype{\triangle}{C}{\ol{T}} $ & Class Type \\ @@ -359,7 +359,7 @@ Their upper and lower bounds are fresh type variables. \begin{array}[c]{@{}ll} \begin{array}[c]{l} \wildcardEnv \vdash - C \cup \, \set{ \wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}} \lessdot \wctype{\Delta}{C}{\ol{T}} } \\ + C \cup \, \set{ \wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}} \lessdotCC \wctype{\Delta}{C}{\ol{T}} } \\ \hline \vspace*{-0.4cm}\\ \wildcardEnv \cup \overline{\wildcard{C}{\type{U'}}{\type{L'}}}