Global Type Inference Intro

This commit is contained in:
JanUlrich 2024-05-23 16:42:55 +02:00
parent b2ca8e49df
commit 9f088eb29d

View File

@ -282,6 +282,40 @@ lo.add(new Integer(1)); // error!
\section{Global Type Inference Algorithm} \section{Global Type Inference Algorithm}
\begin{figure}[h]
\begin{minipage}{0.49\textwidth}
\begin{lstlisting}[style=tfgj, caption=Valid Java program, label=lst:addExample]
<A> List<A> add(List<A> l, A v)
List<? super String> l = ...;
add(l, "String");
\end{lstlisting}
\end{minipage}\hfill
\begin{minipage}{0.49\textwidth}
\begin{lstlisting}[style=tamedfj, caption=\TamedFJ{} representation, label=lst:addExampleLet]
<A> List<A> add(List<A> l, A v)
List<? super String> l = ...;
let v:(*@$\tv{v}$@*) = l
in add(v, "String");
\end{lstlisting}
\end{minipage}\\
\begin{minipage}{0.49\textwidth}
\begin{lstlisting}[style=constraints, caption=Constraints, label=lst:addExampleCons]
(*@$\wctype{\wildcard{X}{\type{String}}{\bot}}{List}{\rwildcard{X}} \lessdot \tv{v}$@*)
(*@$\tv{v} \lessdotCC \exptype{List}{\wtv{a}}$@*)
(*@$\type{String} \lessdot \wtv{a}$@*)
\end{lstlisting}
\end{minipage}\hfill
\begin{minipage}{0.49\textwidth}
\begin{lstlisting}[style=letfj, caption=Type solution, label=lst:addExampleSolution]
<A> List<A> add(List<A> l, A v)
List<? super String> l = ...;
let l2:(*@$\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}}$@*) = l
in <X>add(l2, "String");
\end{lstlisting}
\end{minipage}
\end{figure}
% \begin{description} % \begin{description}
% \item[input] \tifj{} program % \item[input] \tifj{} program
% \item[output] type solution % \item[output] type solution
@ -298,11 +332,32 @@ which introduces a let statement defining a new variable \texttt{v}.
Afterwards constraints are generated \ref{lst:addExampleCons}. Afterwards constraints are generated \ref{lst:addExampleCons}.
During the constraint generation step the type of the variable \texttt{v} is unknown During the constraint generation step the type of the variable \texttt{v} is unknown
and given the type placeholder $\tv{v}$. and given the type placeholder $\tv{v}$.
Due to the call to the method \texttt{add} it is clear that \texttt{v} has to be a subtype of The methodcall to \texttt{add} spawns the constraint $\tv{v} \lessdotCC \exptype{List}{\wtv{a}}$.
any kind of \texttt{List} resulting in the constraint $\tv{v} \lessdotCC \exptype{List}{\wtv{a}}$.
Here we introduce a capture constraint ($\lessdotCC$) %a new type of subtype constraint Here we introduce a capture constraint ($\lessdotCC$) %a new type of subtype constraint
expressing that the left side of the constraint is subject to a capture conversion. expressing that the left side of the constraint is subject to a capture conversion.
%Additionally we use a wildcard placeholder $\wtv{a}$ as a type parameter for \texttt{List}. At the start of our global type inference algorithm no types are assigned yet.
During the course of \unify{} - our unification algorithm used to solve the generated constraint set (see chapter \ref{sec:unify})- more and more types emerge.
As soon as a concrete type for $\tv{v}$ is given \unify{} can conduct a capture conversion if needed.
%The constraints where this is possible are marked as capture constraints.
In this example $\tv{v}$ will be set to $\wctype{\wildcard{X}{\type{String}}{\bot}}{List}{\rwildcard{X}}$ leaving us with the following constraints:
\begin{displaymath}
\prftree[r]{Capture}{
\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}, \, \type{String} \lessdotCC \wtv{a}
}{
\wildcard{Y}{\type{Object}}{\type{String}} \wcSep \exptype{List}{\rwildcard{Y}} \lessdot \exptype{List}{\wtv{a}}, \, \type{String} \lessdot \wtv{a}
}
\end{displaymath}
%Capture Constraints $(\wctype{\rwildcard{X}}{C}{\rwildcard{X}} \lessdotCC \type{T})$ allow for a capture conversion,
%which converts a constraint of the form $(\wctype{\rwildcard{X}}{C}{\rwildcard{X}} \lessdotCC \type{T})$ to $(\exptype{C}{\rwildcard{X}} \lessdot \type{T})$
The constraint $\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}$
allows \unify{} to do a capture conversion to $\exptype{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$.
The captured wildcard $\rwildcard{X}$ gets a fresh name and is stored in the wildcard environment of the \unify{} algorithm.
Leaving us with the solution $\exptype{List}{\rwildcard{Y}} \lessdot \exptype{List}{\rwildcard{Y}}$, $\type{String} \lessdot \rwildcard{Y}$
The constraint $\type{String} \lessdot \rwildcard{Y}$ is satisfied
because $\rwildcard{Y}$ has $\type{String}$ as lower bound.
A correct Featherweight Java program including all type annotations and an explicit capture conversion via let statement is shown in listing \ref{lst:addExampleSolution}. A correct Featherweight Java program including all type annotations and an explicit capture conversion via let statement is shown in listing \ref{lst:addExampleSolution}.
This program can be deducted from the type solution of our \unify{} algorithm presented in chapter \ref{sec:unify}. This program can be deducted from the type solution of our \unify{} algorithm presented in chapter \ref{sec:unify}.
@ -326,43 +381,6 @@ a type parameter to method call \texttt{<X>add(v, "String")}.
% There are no informal parts in our \unify{} algorithm. % There are no informal parts in our \unify{} algorithm.
% It solely consist out of transformation rules which are bound to simple checks. % It solely consist out of transformation rules which are bound to simple checks.
%show input and a correct letFJ representation
%TODO: first show local type inference and explain lessdotCC constraints. then show example with global TI
\begin{figure}[h]
\begin{minipage}{0.49\textwidth}
\begin{lstlisting}[style=tfgj, caption=Valid Java program, label=lst:addExample]
<A> List<A> add(List<A> l, A v)
List<? super String> l = ...;
add(l, "String");
\end{lstlisting}
\end{minipage}\hfill
\begin{minipage}{0.49\textwidth}
\begin{lstlisting}[style=tamedfj, caption=\TamedFJ{} representation, label=lst:addExampleLet]
<A> List<A> add(List<A> l, A v)
List<? super String> l = ...;
let v:(*@$\tv{v}$@*) = l
in add(v, "String");
\end{lstlisting}
\end{minipage}\\
\begin{minipage}{0.49\textwidth}
\begin{lstlisting}[style=constraints, caption=Constraints, label=lst:addExampleCons]
(*@$\tv{v} \lessdot \wctype{\wildcard{X}{\type{String}}{\bot}}{List}{\rwildcard{X}}$@*)
(*@$\tv{v} \lessdotCC \exptype{List}{\wtv{a}}$@*)
(*@$\type{String} \lessdot \wtv{a}$@*)
\end{lstlisting}
\end{minipage}\hfill
\begin{minipage}{0.49\textwidth}
\begin{lstlisting}[style=letfj, caption=Type solution, label=lst:addExampleSolution]
<A> List<A> add(List<A> l, A v)
List<? super String> l = ...;
let l2:(*@$\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}}$@*) = l
in <X>add(l2, "String");
\end{lstlisting}
\end{minipage}
\end{figure}
One problem is the divergence between denotable and expressable types in Java \cite{semanticWildcardModel}. One problem is the divergence between denotable and expressable types in Java \cite{semanticWildcardModel}.
A wildcard in the Java syntax has no name and is bound to its enclosing type: A wildcard in the Java syntax has no name and is bound to its enclosing type:
$\exptype{List}{\exptype{List}{\type{?}}}$ equates to $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$. $\exptype{List}{\exptype{List}{\type{?}}}$ equates to $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$.
@ -409,36 +427,6 @@ if there is any.
It's only restriction is that no polymorphic recursion is allowed. It's only restriction is that no polymorphic recursion is allowed.
\end{recap} \end{recap}
% %
Lets have a look at the constraints generated by \fjtype{} for the example in listing \ref{lst:addExample}:
\begin{constraintset}
\begin{center}
$\begin{array}{c}
\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}, \, \type{String} \lessdotCC \wtv{a}
\\
\hline
\textit{Capture Conversion:}\ \wildcard{Y}{\type{Object}}{\type{String}} \wcSep \exptype{List}{\rwildcard{Y}} \lessdot \exptype{List}{\wtv{a}}, \, \type{String} \lessdot \wtv{a}
\\
\hline
\textit{Solution:}\ \wtv{a} \doteq \rwildcard{Y} \implies \wildcard{Y}{\type{Object}}{\type{String}} \wcSep \exptype{List}{\rwildcard{Y}} \lessdot \exptype{List}{\rwildcard{Y}}, \, \type{String} \lessdot \rwildcard{Y}
\end{array}
$
\end{center}
\end{constraintset}
%
Capture Constraints $(\wctype{\rwildcard{X}}{C}{\rwildcard{X}} \lessdotCC \type{T})$ allow for a capture conversion,
which converts a constraint of the form $(\wctype{\rwildcard{X}}{C}{\rwildcard{X}} \lessdotCC \type{T})$ to $(\exptype{C}{\rwildcard{X}} \lessdot \type{T})$
%These constraints are used at places where a capture conversion via let statement can be added.
%Why do we need the lessdotCC constraints here?
The type of \texttt{l} can be capture converted by a let statement if needed (see listing \ref{lst:addExampleLet}).
Therefore we assign the constraint $\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}$
which allows \unify{} to do a capture conversion to $\exptype{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$.
The captured wildcard $\rwildcard{X}$ gets a fresh name and is stored in the wildcard environment of the \unify{} algorithm.
\textit{Note:} The constraint $\type{String} \lessdot \rwildcard{Y}$ is satisfied
because $\rwildcard{Y}$ has $\type{String}$ as lower bound.
For the example shown in listing \ref{shuffleExample} the method call \texttt{shuffle(l2d)} creates the constraints: For the example shown in listing \ref{shuffleExample} the method call \texttt{shuffle(l2d)} creates the constraints:
\begin{constraintset} \begin{constraintset}
@ -516,17 +504,10 @@ $\exptype{List}{\type{A}} <: \exptype{List}{\type{X}},
% is solved by removing the wildcard $\rwildcard{X}$ if possible. % is solved by removing the wildcard $\rwildcard{X}$ if possible.
\item \textbf{Capture Conversion during \unify{}:} \item \textbf{Capture Conversion during \unify{}:}
The return type of a generic method call depends on its argument types. The example in \ref{lst:addExample} needs to be solvable.
A method like \texttt{String trim(String s)} will always return a \type{String} type. Here a capture conversion during the unification step of our algorithm has to be conducted.
However the return type of \texttt{<A> A head(List<A> l)} is a generic variable \texttt{A} and only shows Otherwise the \texttt{add} method is not callable with the existential type
its actual type when the type of the argument list \texttt{l} is known. $\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}}$.
The same goes for capture conversion, which can only be applied for a method call
when the argument types are given.
At the start of our global type inference algorithm no types are assigned yet.
During the course of the \unify{} algorithm more and more types emerge.
As soon as enough type information is given \unify{} can conduct a capture conversion if needed.
The constraints where this is possible are marked as capture constraints.
\item \textbf{Free Variables cannot leaver their scope}: \item \textbf{Free Variables cannot leaver their scope}: