Start soundness for prepare rule
This commit is contained in:
parent
b9e0b1fa6d
commit
b546da831d
@ -271,15 +271,25 @@ $\Delta \vdash \sigma(C') \implies \Delta \vdash \sigma(C)$
|
||||
%\item[Capture, Reduce] are always applied together. We have to destinct between two cases:
|
||||
\item[Prepare]
|
||||
To show
|
||||
$\Delta \vdash \wctype{\overline{\wildcard{B}{U}{L}}}{C}{\ol{S}} <: \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}$ by S-Exists we have to proof:
|
||||
$\Delta \vdash \wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}} <: \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}$ by S-Exists we have to proof:
|
||||
We know
|
||||
\begin{gather}
|
||||
\ol{S} = \ol{T}\\
|
||||
\text{fv}(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) = \emptyset\\
|
||||
\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
|
||||
%TODO
|
||||
\end{gather}
|
||||
|
||||
\begin{gather}
|
||||
\Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\
|
||||
\Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\
|
||||
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta) \\
|
||||
\label{rp:3}
|
||||
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\
|
||||
\label{rp:4}
|
||||
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{X}{U}{L}}}{C}{\ol{S}}) = \emptyset
|
||||
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset
|
||||
\end{gather}
|
||||
\ref{rp:4} is always true.
|
||||
Due to $\text{fv}(\sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}})) = \emptyset$ implies \ref{rp:3}.
|
||||
|
||||
\item[Capture]
|
||||
If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) = \emptyset$ the preposition holds by Assumption and S-Exists.
|
||||
|
Loading…
x
Reference in New Issue
Block a user