Add Global Type Inference introduction
This commit is contained in:
parent
3904304a1d
commit
e15d61cdae
375
introduction.tex
375
introduction.tex
@ -23,37 +23,29 @@ resulting in a correctly typed program (see figure \ref{fig:nested-list-example-
|
||||
|
||||
We support capture conversion and Java style method calls.
|
||||
This requires existential types in a form which is not denotable by Java syntax \cite{aModelForJavaWithWildcards}.
|
||||
The algorithm is able find the correct type for the method \texttt{m} in the following example:
|
||||
\begin{verbatim}
|
||||
<X> Pair<X,X> make(List<X> l)
|
||||
Boolean compare(Pair<X,X> p)
|
||||
|
||||
List<?> b;
|
||||
Boolean m() = this.compare(this.make(b));
|
||||
\end{verbatim}
|
||||
|
||||
|
||||
We present a novel approach to deal with existential types and capture conversion during constraint unification.
|
||||
The algorithm is split in two parts. A constraint generation step and an unification step.
|
||||
|
||||
We proof soundness and aim for a good compromise between completeness and time complexity.
|
||||
Our algorithm finds a correct type solution for the following example, where the Java local type inference fails:
|
||||
\begin{verbatim}
|
||||
class SuperPair<A,B>{
|
||||
A a;
|
||||
B b;
|
||||
}
|
||||
class Pair<A,B> extends SuperPair<B,A>{
|
||||
A a;
|
||||
B b;
|
||||
% Our algorithm finds a correct type solution for the following example, where the Java local type inference fails:
|
||||
% \begin{verbatim}
|
||||
% class SuperPair<A,B>{
|
||||
% A a;
|
||||
% B b;
|
||||
% }
|
||||
% class Pair<A,B> extends SuperPair<B,A>{
|
||||
% A a;
|
||||
% B b;
|
||||
|
||||
<X> X choose(X a, X b){ return b; }
|
||||
% <X> X choose(X a, X b){ return b; }
|
||||
|
||||
String m(List<? extends Pair<Integer, String>> a, List<? extends Pair<Integer, String>> b){
|
||||
return choose(choose(a,b).value.a,b.value.b);
|
||||
}
|
||||
}
|
||||
\end{verbatim}
|
||||
% String m(List<? extends Pair<Integer, String>> a, List<? extends Pair<Integer, String>> b){
|
||||
% return choose(choose(a,b).value.a,b.value.b);
|
||||
% }
|
||||
% }
|
||||
% \end{verbatim}
|
||||
|
||||
\begin{figure}[tp]
|
||||
\begin{subfigure}[t]{\linewidth}
|
||||
@ -165,68 +157,6 @@ List<?> genList() {
|
||||
% \texttt{List<Object>} is not a valid return type for the method \texttt{genList}.
|
||||
% The type inference algorithm has to find the correct type involving wildcards (\texttt{List<?>}).
|
||||
|
||||
\subsection{Global Type Inference}
|
||||
A global type inference algorithm works on an input with no type annotations at all.
|
||||
%TODO: Describe global type inference and lateron why it is so hard to
|
||||
Global type inference means that there are no type annotations at all.
|
||||
\begin{verbatim}
|
||||
m(l) {
|
||||
return l.add(l);
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
$\tv{l} \lessdotCC \exptype{List}{\wtv{x}}, \tv{l} \lessdotCC \wtv{x}$
|
||||
|
||||
|
||||
No capture conversion for methods in the same class:
|
||||
Given two methods without type annotations like
|
||||
\begin{verbatim}
|
||||
// m :: () -> r
|
||||
m() = new List<String>() :? new List<Integer>();
|
||||
|
||||
// id :: (a) -> a
|
||||
id(a) = a
|
||||
\end{verbatim}
|
||||
|
||||
and a method call \texttt{id(m())} would lead to the constraints:
|
||||
$\exptype{List}{\type{String}} \lessdot \ntv{r},
|
||||
\exptype{List}{\type{Integer}} \lessdot \ntv{r},
|
||||
\ntv{r} \lessdot \ntv{a}$
|
||||
|
||||
In this example capture conversion is not applicable,
|
||||
because the \texttt{id} method is not polymorphic.
|
||||
The type solution provided by \unify{} for this constraint set is:
|
||||
$\sigma(\ntv{r}) = \wctype{\rwildcard{X}}{List}{\rwildcard{X}},
|
||||
\sigma(\ntv{a}) = \wctype{\rwildcard{X}}{List}{\rwildcard{X}}$
|
||||
\begin{verbatim}
|
||||
List<?> m() = new List<String>() :? new List<Integer>();
|
||||
List<?> id(List<?> a) = a
|
||||
\end{verbatim}
|
||||
|
||||
The following example has the \texttt{id} method already typed and the method \texttt{m}
|
||||
extended by a recursive call \texttt{id(m())}:
|
||||
\begin{verbatim}
|
||||
<A> List<A> id(List<A> a) = a
|
||||
|
||||
m() = new List<String>() :? new List<Integer>() :? id(m());
|
||||
\end{verbatim}
|
||||
Now the constraints make use of a $\lessdotCC$ constraint:
|
||||
$\exptype{List}{\type{String}} \lessdot \ntv{r},
|
||||
\exptype{List}{\type{Integer}} \lessdot \ntv{r},
|
||||
\ntv{r} \lessdotCC \exptype{List}{\wtv{a}}$
|
||||
|
||||
After substituting $\wctype{\rwildcard{X}}{List}{\rwildcard{X}}$ for $\ntv{r}$ like in the example before
|
||||
we get the constraint $\wctype{\rwildcard{X}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}$.
|
||||
Due to the $\lessdotCC$ \unify{} is allowed to perform a capture conversion yielding
|
||||
$\exptype{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$.
|
||||
\textit{Note:} The wildcard placeholder $\wtv{a}$ is allowed to hold free variables whereas a normal placeholder like $\ntv{r}$
|
||||
is never assigned a type containing free variables.
|
||||
Therefore \unify{} sets $\wtv{a} \doteq \rwildcard{X}$, completing the constraint set and resulting in the type solution:
|
||||
\begin{verbatim}
|
||||
List<?> m() = new List<String>() :? new List<Integer>() :? id(m());
|
||||
\end{verbatim}
|
||||
|
||||
|
||||
\subsection{Java Wildcards}
|
||||
Wildcards are expressed by a \texttt{?} in Java and can be used as parameter types.
|
||||
Wildcards can be formalized as existential types \cite{WildFJ}.
|
||||
@ -261,47 +191,125 @@ $\generics{\rwildcard{Y}}\texttt{head}(\exptype{List}{\rwildcard{Y}})$
|
||||
with $\rwildcard{Y}$ being used as generic parameter \texttt{X}.
|
||||
The $\rwildcard{Y}$ in $\exptype{List}{\rwildcard{Y}}$ is a free variable now.
|
||||
|
||||
%TODO: Read taming wildcards and see if we solve some of the problems presented in section 5 and 6
|
||||
|
||||
% Additionally they can hold a upper or lower bound restriction like \texttt{List<? super String>}.
|
||||
% Our representation of this type is: $\wctype{\wildcard{X}{\type{String}}{\type{Object}}}{List}{\rwildcard{X}}$
|
||||
% Every wildcard has a name ($\rwildcard{X}$ in this case) and an upper and lower bound (respectively \texttt{Object} and \texttt{String}).
|
||||
|
||||
% \subsection{Extensibility} % NOTE: this thing is useless, because final local variables do not need to contain wildcards
|
||||
% In \cite{WildcardsNeedWitnessProtection} capture converson is made explicit with \texttt{let} statements.
|
||||
% We chain let statements in a way that emulates Java behaviour. Allowing the example in \cite{aModelForJavaWithWildcards}
|
||||
% % TODO: Explain the advantage of constraints and how we control the way capture conversion is executed
|
||||
% But it would be also possible to alter the constraint generation step to include additional features.
|
||||
% Final variables or effectively final variables could be expressed with a
|
||||
\subsection{Global Type Inference}
|
||||
% A global type inference algorithm works on an input with no type annotations at all.
|
||||
% \begin{verbatim}
|
||||
% <X> concat(List<X> l1, List<X> l2){...}
|
||||
% m(l) {
|
||||
% return l.add(l);
|
||||
% }
|
||||
% \end{verbatim}
|
||||
% \begin{minipage}{0.50\textwidth}
|
||||
% Java:
|
||||
% \begin{verbatim}
|
||||
% final List<?> l = ...;
|
||||
% concat(l, l);
|
||||
% \end{verbatim}
|
||||
% \end{minipage}%
|
||||
% \begin{minipage}{0.50\textwidth}
|
||||
% Featherweight Java:
|
||||
% \begin{verbatim}
|
||||
% let l : X.List<X> = ... in
|
||||
% concat(l, l)
|
||||
% \end{verbatim}
|
||||
% \end{minipage}
|
||||
|
||||
% $\tv{l} \lessdotCC \exptype{List}{\wtv{x}}, \tv{l} \lessdotCC \wtv{x}$
|
||||
|
||||
The input to our type inference algorithm is a modified version of the \letfj{} calculus presented in \cite{WildcardsNeedWitnessProtection}.
|
||||
\fjtype{} generates constraints from an input program and is the first step of the algorithm.
|
||||
Afterwards \unify{} computes a solution for the given constraint set.
|
||||
Constraints consist out of subtype constraints $(\type{T} \lessdot \type{T})$ and capture constraints $(\type{T} \lessdotCC \type{T})$.
|
||||
Additionally to types constraints can also hold type placeholders $\ntv{a}$ and wildcard type placeholders $\wtv{a}$.
|
||||
A subtype constraint is satisfied if the left side is a subtype of the right side according to the rules in figure \ref{fig:subtyping}.
|
||||
\textit{Example:} $\exptype{List}{\tv{a}} \lessdot \exptype{List}{\type{String}}$ is fulfilled by replacing type placeholder $\tv{a}$ with the type $\type{String}$.
|
||||
Subtype constraints and type placeholders act the same as the ones used in \emph{Type Inference for Featherweight Generic Java} \cite{TIforGFJ}.
|
||||
The novel capture constraints and wildcard placeholders are needed for method invocations involving wildcards.
|
||||
|
||||
%show input and a correct letFJ representation
|
||||
Even in a full typed program local type inference can be necessary.
|
||||
%TODO: first show local type inference and explain lessdotCC constraints. then show example with global TI
|
||||
Our algorithm has to find a type solution and a \letfj{} representation for a given input program.
|
||||
Let's start with an example where all types are already given:
|
||||
\begin{lstlisting}[style=tfgj, caption=Valid Java program, label=lst:addExample]
|
||||
<A> List<A> add(List<A> l, A v)
|
||||
|
||||
List<? super String> l = ...;
|
||||
add(l, "String");
|
||||
\end{lstlisting}
|
||||
\begin{lstlisting}[style=letfj, caption=\letfj{} representation of \texttt{add(l, "String")}, label=lst:addExampleLet]
|
||||
let l2 : (*@$\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}}$@*) = l in <X>add(l2, "String");
|
||||
\end{lstlisting}
|
||||
In \letfj{} there is no local type inference and all type parameters for a method call are mandatory.
|
||||
If wildcards are involved the so called capture conversion has to be done manually via let statements.
|
||||
A let statement \emph{opens} an existential type.
|
||||
In the body of the let statement the \textit{capture type} $\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}}$
|
||||
becomes $\exptype{List}{\rwildcard{X}}$ and the wildcard $\wildcard{X}{\type{Object}}{\type{String}}$ is free and can be used as
|
||||
a type parameter to \texttt{<X>add(...)}.
|
||||
%This is a valid Java program where the type parameters for the polymorphic method \texttt{add}
|
||||
%are determined by local type inference.
|
||||
Our type inference algorithm has to add let statements if necessary, including the capture types.
|
||||
|
||||
Lets have a look at the constraints generated by \fjtype{} for the example in listing \ref{lst:addExample}:
|
||||
\begin{constraintset}
|
||||
$\begin{array}{l}
|
||||
\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}, \, \type{String} \lessdotCC \wtv{a}
|
||||
\\
|
||||
\hline
|
||||
\text{Capture Conversion:}\ \exptype{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}, \, \type{String} \lessdot \wtv{a}
|
||||
\\
|
||||
\hline
|
||||
\text{Solution:}\ \wtv{a} \doteq \rwildcard{X} \implies \exptype{List}{\rwildcard{X}} \lessdot \exptype{List}{\rwildcard{X}}, \, \type{String} \lessdot \rwildcard{X}
|
||||
\end{array}
|
||||
$
|
||||
\end{constraintset}
|
||||
%Why do we need the lessdotCC constraints here?
|
||||
The type of \texttt{l} can be capture converted by a let statement if needed (see listing \ref{lst:addExampleLet}).
|
||||
Therefore we assign the constraint $\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}$
|
||||
which allows \unify{} to do a capture conversion to $\exptype{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$.
|
||||
\textit{Note:} The constraint $\type{String} \lessdot \rwildcard{X}$ is satisfied because $\rwildcard{X}$ has $\type{String}$ as lower bound.
|
||||
|
||||
% No capture conversion for methods in the same class:
|
||||
% Given two methods without type annotations like
|
||||
% \begin{verbatim}
|
||||
% // m :: () -> r
|
||||
% m() = new List<String>() :? new List<Integer>();
|
||||
|
||||
% // id :: (a) -> a
|
||||
% id(a) = a
|
||||
% \end{verbatim}
|
||||
|
||||
% and a method call \texttt{id(m())} would lead to the constraints:
|
||||
% $\exptype{List}{\type{String}} \lessdot \ntv{r},
|
||||
% \exptype{List}{\type{Integer}} \lessdot \ntv{r},
|
||||
% \ntv{r} \lessdotCC \ntv{a}$
|
||||
|
||||
% In this example capture conversion is not applicable,
|
||||
% because the \texttt{id} method is not polymorphic.
|
||||
% The type solution provided by \unify{} for this constraint set is:
|
||||
% $\sigma(\ntv{r}) = \wctype{\rwildcard{X}}{List}{\rwildcard{X}},
|
||||
% \sigma(\ntv{a}) = \wctype{\rwildcard{X}}{List}{\rwildcard{X}}$
|
||||
% \begin{verbatim}
|
||||
% List<?> m() = new List<String>() :? new List<Integer>();
|
||||
% List<?> id(List<?> a) = a
|
||||
% \end{verbatim}
|
||||
|
||||
The following example has the \texttt{id} method already typed and the method \texttt{m}
|
||||
extended by a recursive call \texttt{id(m())}:
|
||||
\begin{verbatim}
|
||||
<A> List<A> id(List<A> a) = a
|
||||
|
||||
m() = new List<String>() :? new List<Integer>() :? id(m());
|
||||
\end{verbatim}
|
||||
Now the constraints make use of a $\lessdotCC$ constraint:
|
||||
$\exptype{List}{\type{String}} \lessdot \ntv{r},
|
||||
\exptype{List}{\type{Integer}} \lessdot \ntv{r},
|
||||
\ntv{r} \lessdotCC \exptype{List}{\wtv{a}}$
|
||||
|
||||
After substituting $\wctype{\rwildcard{X}}{List}{\rwildcard{X}}$ for $\ntv{r}$ like in the example before
|
||||
we get the constraint $\wctype{\rwildcard{X}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}$.
|
||||
Due to the $\lessdotCC$ \unify{} is allowed to perform a capture conversion yielding
|
||||
$\exptype{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$.
|
||||
\textit{Note:} The wildcard placeholder $\wtv{a}$ is allowed to hold free variables whereas a normal placeholder like $\ntv{r}$
|
||||
is never assigned a type containing free variables.
|
||||
Therefore \unify{} sets $\wtv{a} \doteq \rwildcard{X}$, completing the constraint set and resulting in the type solution:
|
||||
\begin{verbatim}
|
||||
List<?> m() = new List<String>() :? new List<Integer>() :? id(m());
|
||||
\end{verbatim}
|
||||
|
||||
|
||||
\subsection{Challenges}\label{challenges}
|
||||
%TODO: Wildcard subtyping is infinite see \cite{TamingWildcards}
|
||||
|
||||
|
||||
One problem is the divergence between denotable and expressable types in Java \cite{semanticWildcardModel}.
|
||||
A wildcard in the Java syntax has no name and is bound to its enclosing type.
|
||||
\texttt{List<List<?>>} equates to $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$.
|
||||
During type checking intermediate types like $\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$
|
||||
$\exptype{List}{\exptype{List}{\type{?}}}$ equates to $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$.
|
||||
During type checking \emph{intermediate types} like $\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$
|
||||
or $\wctype{\rwildcard{X}}{Pair}{\rwildcard{X}, \rwildcard{X}}$ can emerge, which have no equivalent in the Java syntax.
|
||||
Our type inference algorithm uses existential types internally but spawns type solutions compatible with Java.
|
||||
|
||||
@ -330,19 +338,11 @@ Knowing that the type \texttt{String} is a subtype of any type the wildcard \tex
|
||||
it is safe to pass \texttt{"String"} for the first parameter of the function.
|
||||
|
||||
\begin{verbatim}
|
||||
<A> List<A> add(A a, List<A> la) {}
|
||||
<A> List<A> add(List<A> l, A v) {}
|
||||
|
||||
List<? super String> list = ...;
|
||||
add("String", list);
|
||||
List<? super String> list = ...;
|
||||
add("String", list);
|
||||
\end{verbatim}
|
||||
The constraints representing this code snippet are:
|
||||
|
||||
\begin{displaymath}
|
||||
\type{String} \lessdotCC \wtv{a},\,
|
||||
\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{a}}
|
||||
\end{displaymath}
|
||||
|
||||
Here $\sigma(\tv{a}) = \rwildcard{X}$ is a valid solution.
|
||||
\end{example}
|
||||
|
||||
\item \begin{example}\label{intro-example2}
|
||||
@ -350,117 +350,36 @@ This example displays an incorrect Java program.
|
||||
The method call to \texttt{concat} with two wildcard lists is unsound.
|
||||
Each list could be of a different kind and therefore the \texttt{concat} cannot succeed.
|
||||
\begin{verbatim}
|
||||
<A> List<A> concat(List<A> l1, List<A> l2) {}
|
||||
<A> List<A> concat(List<A> l1, List<A> l2) { ... }
|
||||
|
||||
List<?> list = ... ;
|
||||
concat(list, list);
|
||||
List<?> list = ... ;
|
||||
concat(list, list);
|
||||
\end{verbatim}
|
||||
The constraints for this example are:
|
||||
|
||||
$\wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}, \\
|
||||
\wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$
|
||||
%$\exptype{List}{?} \lessdot \exptype{List}{\tv{a}},
|
||||
%\exptype{List}{?} \lessdot \exptype{List}{\tv{a}}$
|
||||
|
||||
Remember that the given constraints cannot have a valid solution.
|
||||
%This is due to the fact that the wildcard variables cannot leave their scope.
|
||||
In this example the \unify{} algorithm should not replace $\tv{a}$ with the captured wildcard $\rwildcard{X}$.
|
||||
% $\wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}, \\
|
||||
% \wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$
|
||||
\end{example}
|
||||
|
||||
\item
|
||||
\unify{} can only remove wildcards, but never add wildcards to an existing type.
|
||||
Java subtyping is invariant.
|
||||
The type $\wctype{\rwildcard{X}}{List}{\rwildcard{X}}$ cannot be a subtype of $\exptype{List}{\tv{a}}$
|
||||
% \item
|
||||
% \unify{} morphs a constraint set into a correct type solution
|
||||
% gradually assigning types to type placeholders during that process.
|
||||
% Solved constraints are removed and never considered again.
|
||||
% In the following example \unify{} solves the constraint generated by the expression
|
||||
% \texttt{l.add(l.head())} first, which results in $\ntv{l} \lessdot \exptype{List}{\wtv{a}}$.
|
||||
% \begin{verbatim}
|
||||
% anyList() = new List<String>() :? new List<Integer>()
|
||||
|
||||
\unify{} morphs a constraint set into a correct type solution
|
||||
gradually assigning types to type placeholders during that process.
|
||||
Solved constraints are removed and never considered again.
|
||||
In the following example \unify{} solves the constraint generated by the expression
|
||||
\texttt{l.add(l.head())} first, which results in $\ntv{l} \lessdot \exptype{List}{\wtv{a}}$.
|
||||
\begin{verbatim}
|
||||
List<?> l = ...;
|
||||
|
||||
m2() {
|
||||
l.add(l.head());
|
||||
}
|
||||
\end{verbatim}
|
||||
The type for \texttt{l} can be any kind of list, but it has to be a invariant one.
|
||||
Assigning a \texttt{List<?>} for \texttt{l} is unsound, because the type list hiding behind
|
||||
\texttt{List<?>} could be a different one for the \texttt{add} call than the \texttt{head} method call.
|
||||
An additional constraint $\wctype{\rwildcard{X}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$
|
||||
is solved by removing the wildcard $\rwildcard{X}$ if possible.
|
||||
% add(anyList(), anyList().head());
|
||||
% \end{verbatim}
|
||||
% The type for \texttt{l} can be any kind of list, but it has to be a invariant one.
|
||||
% Assigning a \texttt{List<?>} for \texttt{l} is unsound, because the type list hiding behind
|
||||
% \texttt{List<?>} could be a different one for the \texttt{add} call than the \texttt{head} method call.
|
||||
% An additional constraint $\wctype{\rwildcard{X}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$
|
||||
% is solved by removing the wildcard $\rwildcard{X}$ if possible.
|
||||
|
||||
|
||||
\end{itemize}
|
||||
|
||||
The \unify{} algorithm only sees the constraints with no information about the program they originated from.
|
||||
The main challenge was to find an algorithm which computes $\sigma(\tv{a}) = \rwildcard{X}$ for example \ref{intro-example1} but not for example \ref{intro-example2}.
|
||||
% Solution: A type variable can only take one type and not a wildcard type.
|
||||
% A wildcard type is only treated like a wildcard while his definition is in scope (during the reduce rule)
|
||||
|
||||
|
||||
% \subsection{Capture Conversion}
|
||||
% \begin{verbatim}
|
||||
% <A> List<A> add(A a, List<A> la) {}
|
||||
|
||||
% List<? super String> list = ...;
|
||||
|
||||
% add("String", list);
|
||||
% \end{verbatim}
|
||||
% The constraints representig this code snippet are:
|
||||
% $\type{String} \lessdot \tv{a},
|
||||
% \wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\tv{a}}$
|
||||
% Under the hood the typechecker has to find a replacement for the generic method parameter \texttt{A}.
|
||||
|
||||
% Java allows a method \texttt{<A> List<A> add(A a, List<A> la)} to be called with
|
||||
% \texttt{String} and \texttt{List<? super String>}.
|
||||
% A naive approach would be to treat wildcards like any other type and replace \texttt{A}
|
||||
% with \texttt{? super String}.
|
||||
% Generating the method type \texttt{List<? super String> add(? super String a, List<? super String> la)}.
|
||||
|
||||
% This does not work for a method like
|
||||
% \texttt{<A> void merge(List<A> l1, List<A> l2)}.
|
||||
% It is crucial for this method to be called with two lists of the same type.
|
||||
% Substituting a wildcard for the generic \texttt{A} leads to
|
||||
% \texttt{void merge(List<?> l1, List<?> l2)},
|
||||
% which is unsound.
|
||||
|
||||
% Capture conversion utilizes the fact that instantiated classes always have an actual type.
|
||||
% \texttt{new List<String>()} and \texttt{new List<Object>()} are
|
||||
% valid instances.
|
||||
% \texttt{new List<? super String>()} is not.
|
||||
% Every type $\wcNtype{\Delta}{N}$ contains an underlying instance of a type $\type{N}$.
|
||||
% Knowing this fact allows to make additional assumptions.
|
||||
|
||||
% \wildFJ{} type rules allow for generic parameters to be replaced by wildcard types.
|
||||
% This is possible because wildcards are split into two parts.
|
||||
% Their declaration at the environment part $\Delta$ of a type $\wcNtype{\Delta}{N}$
|
||||
% and their actual use in the body of the type $\type{N}$.
|
||||
% Replacing the generic \texttt{A} in the type \texttt{List<A>}
|
||||
% by a wildcard $\type{X}$ will not generate the type \texttt{List<?>}.
|
||||
% \texttt{List<?>} is the equivalent of $\wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\type{X}}$.
|
||||
% The generated type here is $\exptype{List}{\type{X}}$, which has different subtype properties.
|
||||
% There is no information about what the type $\exptype{List}{\type{X}}$ actually is.
|
||||
% It has itself as a subtype and for example a type like $\exptype{ArrayList}{\type{X}}$.
|
||||
|
||||
% A method call for example only works with values, which are correct instances of classes.
|
||||
% Capture conversion automatically converts wildcard type to a concrete class type,
|
||||
% which then can be used as a parameter for a method call.
|
||||
|
||||
% In \wildFJ{} this is done via let statements.
|
||||
|
||||
% Written in FJ syntax: $\type{N}$ is a initialized type and
|
||||
% $\wcNtype{\Delta}{N}$ is a type containing wildcards $\Delta$.
|
||||
|
||||
% It is crucial for the wildcard names to never be used twice.
|
||||
% Otherwise the members of a list with type $\wctype{\type{X}}{List}{\type{X}}$ and
|
||||
% a list with type $\wctype{\type{X}}{List}{\type{X}}$ would be the same. $\type{X}$ in fact.
|
||||
|
||||
% The let statement adds wildcards to the environment.
|
||||
% Those wildcards are not allowed to escape the scope of the let statement.
|
||||
% Which is a problem for our type inference algorithm.
|
||||
|
||||
% The capture converted version of the type $\wctype{\rwildcard{X}}{Box}{\rwildcard{X}}$ is
|
||||
% $\exptype{Box}{\rwildcard{X}}$.
|
||||
% The captured type is only used as an intermediate type during a method call.
|
||||
|
||||
The main challenge was to find an algorithm which computes $\sigma(\wtv{a}) = \rwildcard{X}$ for example \ref{intro-example1} but not for example \ref{intro-example2}.
|
||||
|
@ -13,6 +13,7 @@
|
||||
}
|
||||
\lstdefinestyle{fgj}{backgroundcolor=\color{lime!20}}
|
||||
\lstdefinestyle{tfgj}{backgroundcolor=\color{lightgray!20}}
|
||||
\lstdefinestyle{letfj}{backgroundcolor=\color{lightgray!20}}
|
||||
|
||||
|
||||
\newcommand\mv[1]{{\tt #1}}
|
||||
@ -98,6 +99,7 @@
|
||||
\newcommand{\localVarAssumption}{\ensuremath{\mathtt{\eta}}}
|
||||
\newcommand{\expandLB}{\textit{expandLB}}
|
||||
|
||||
\newcommand{\letfj}{\emph{LetFJ}}
|
||||
\newcommand{\tph}{\text{tph}}
|
||||
|
||||
\def\exptypett#1#2{\texttt{#1}\textrm{{\tt <#2}}\textrm{{\tt >}}\xspace}
|
||||
|
Loading…
Reference in New Issue
Block a user