Merge branch 'master' of https://gitea.hb.dhbw-stuttgart.de/stan/Ecoop2024_TIforWildFJ
This commit is contained in:
commit
e42b0aaafe
120
introduction.tex
120
introduction.tex
@ -550,12 +550,31 @@ is solved by removing the wildcard $\rwildcard{X}$ if possible.
|
||||
|
||||
this problem is solved by ANF transformation
|
||||
|
||||
\item \textbf{Wildcards as Existential Types:}
|
||||
One problem is the divergence between denotable and expressable types in Java \cite{semanticWildcardModel}.
|
||||
A wildcard in the Java syntax has no name and is bound to its enclosing type:
|
||||
$\exptype{List}{\exptype{List}{\type{?}}}$ equates to $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$.
|
||||
During type checking \emph{intermediate types}
|
||||
can emerge, which have no equivalent in the Java syntax.
|
||||
\item
|
||||
% This problem is solved by assuming everything is a wildcard and lateron erasing excessive wildcards
|
||||
% this is solved by having wildcards bound to a type. But this makes it necessary to remove wildcards lateron otherwise Unify would have to backtrack
|
||||
The program in listing \ref{shuffleExample} shows a challenge involving wildcards and subtyping.
|
||||
The method call \texttt{shuffle(l)} is incorrect, because \texttt{l} has the type
|
||||
$\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$ representing a list of unknown lists.
|
||||
Whereas $\wctype{\rwildcard{X}}{List2D}{\rwildcard{X}}$ is a subtype of
|
||||
$\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$ representing a list of lists, all of the same type $\rwildcard{X}$,
|
||||
and can savely be passed to \texttt{shuffle}.
|
||||
This behavior can also be explained by looking at the types and their capture converted versions:
|
||||
\begin{center}
|
||||
\begin{tabular}{l | l | l}
|
||||
Java type & \TamedFJ{} representation & Capture Conversion \\
|
||||
\hline
|
||||
$\exptype{List}{\exptype{List}{\texttt{?}}}$ & $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$ & $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$ \\
|
||||
$\exptype{List2D}{\texttt{?}}$ & $\wctype{\rwildcard{X}}{List2D}{\rwildcard{X}}$ & $\exptype{List2D}{\rwildcard{X}}$ \\
|
||||
%Supertype of $\exptype{List2D}{\texttt{?}}$ & $\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$ & $\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$ \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
%The direct supertype of $\exptype{List2D}{\rwildcard{X}}$ is $\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$.
|
||||
%One problem is the divergence between denotable and expressable types in Java \cite{semanticWildcardModel}.
|
||||
%A wildcard in the Java syntax has no name and is bound to its enclosing type:
|
||||
%$\exptype{List}{\exptype{List}{\type{?}}}$ equates to $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$.
|
||||
%During type checking \emph{intermediate types}
|
||||
%can emerge, which have no equivalent in the Java syntax.
|
||||
|
||||
\begin{lstlisting}[style=java,label=shuffleExample,caption=Intermediate Types Example]
|
||||
class List<X> extends Object {...}
|
||||
@ -569,45 +588,64 @@ List2D<?> l2d = ...;
|
||||
shuffle(l); // Error
|
||||
shuffle(l2d); // Valid
|
||||
\end{lstlisting}
|
||||
Java is using local type inference to allow method invocations which are not describable with regular Java types.
|
||||
The \texttt{shuffle} method in this case is invoked with the type $\wctype{\rwildcard{X}}{List2D}{\rwildcard{X}}$
|
||||
which is a subtype of $\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$.
|
||||
After capture conversion \texttt{l2d'} has the type $\exptype{List}{\exptype{List}{\rwildcard{X}}}$
|
||||
and \texttt{shuffle} can be invoked with the type parameter $\rwildcard{X}$:
|
||||
\begin{lstlisting}[style=TamedFJ]
|
||||
let l2d' : (*@$\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$@*) = l2d in <X>shuffle(l2d')
|
||||
\end{lstlisting}
|
||||
% Java is using local type inference to allow method invocations which are not describable with regular Java types.
|
||||
% The \texttt{shuffle} method in this case is invoked with the type $\wctype{\rwildcard{X}}{List2D}{\rwildcard{X}}$
|
||||
% which is a subtype of $\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$.
|
||||
% After capture conversion \texttt{l2d'} has the type $\exptype{List}{\exptype{List}{\rwildcard{X}}}$
|
||||
% and \texttt{shuffle} can be invoked with the type parameter $\rwildcard{X}$:
|
||||
% \begin{lstlisting}[style=TamedFJ]
|
||||
% let l2d' : (*@$\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$@*) = l2d in <X>shuffle(l2d')
|
||||
% \end{lstlisting}
|
||||
|
||||
For the example shown in listing \ref{shuffleExample} the method call \texttt{shuffle(l2d)} creates the constraints:
|
||||
\begin{constraintset}
|
||||
\begin{center}
|
||||
$
|
||||
\begin{array}{l}
|
||||
\wctype{\rwildcard{X}}{List2D}{\rwildcard{X}} \lessdotCC \exptype{List}{\exptype{List}{\wtv{x}}}
|
||||
\\
|
||||
\hline
|
||||
\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}} \lessdotCC \exptype{List}{\exptype{List}{\wtv{x}}}
|
||||
\\
|
||||
\hline
|
||||
\textit{Capture Conversion:}\
|
||||
\exptype{List}{\exptype{List}{\rwildcard{X}}} \lessdot \exptype{List}{\exptype{List}{\wtv{x}}}
|
||||
\\
|
||||
\hline
|
||||
\textit{Solution:} \wtv{x} \doteq \rwildcard{X} \implies \exptype{List}{\exptype{List}{\rwildcard{X}}} \lessdot \exptype{List}{\exptype{List}{\rwildcard{X}}}
|
||||
\end{array}
|
||||
$
|
||||
\end{center}
|
||||
\end{constraintset}
|
||||
% For the example shown in listing \ref{shuffleExample} the method call \texttt{shuffle(l2d)} creates the constraints:
|
||||
% \begin{constraintset}
|
||||
% \begin{center}
|
||||
% $
|
||||
% \begin{array}{l}
|
||||
% \wctype{\rwildcard{X}}{List2D}{\rwildcard{X}} \lessdotCC \exptype{List}{\exptype{List}{\wtv{x}}}
|
||||
% \\
|
||||
% \hline
|
||||
% \wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}} \lessdotCC \exptype{List}{\exptype{List}{\wtv{x}}}
|
||||
% \\
|
||||
% \hline
|
||||
% \textit{Capture Conversion:}\
|
||||
% \exptype{List}{\exptype{List}{\rwildcard{X}}} \lessdot \exptype{List}{\exptype{List}{\wtv{x}}}
|
||||
% \\
|
||||
% \hline
|
||||
% \textit{Solution:} \wtv{x} \doteq \rwildcard{X} \implies \exptype{List}{\exptype{List}{\rwildcard{X}}} \lessdot \exptype{List}{\exptype{List}{\rwildcard{X}}}
|
||||
% \end{array}
|
||||
% $
|
||||
% \end{center}
|
||||
% \end{constraintset}
|
||||
|
||||
The method call \texttt{shuffle(l)} is invalid however,
|
||||
because \texttt{l} has the type
|
||||
$\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$.
|
||||
There is no solution for the subtype constraint:
|
||||
$\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}} \lessdotCC \exptype{List}{\exptype{List}{\wtv{x}}}$
|
||||
Given such a program our type inference algorithm has to allow the call \texttt{shuffle(l2d)} and
|
||||
decline the call to \texttt{shuffle(l)}.
|
||||
|
||||
% The method call \texttt{shuffle(l)} is invalid however,
|
||||
% because \texttt{l} has the type
|
||||
% $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$.
|
||||
% There is no solution for the subtype constraint:
|
||||
% $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}} \lessdotCC \exptype{List}{\exptype{List}{\wtv{x}}}$
|
||||
|
||||
\item \label{challenge3} \textbf{Free Variables cannot leaver their scope}:
|
||||
Let's assume we have a variable \texttt{ls} with type $\exptype{List}{\wctype{\rwildcard{X}}{List}{\rwildcard{X}}}$
|
||||
%When calling the \texttt{id} function with an element of this list we have to apply capture conversion.
|
||||
and the following input program:
|
||||
|
||||
\noindent
|
||||
\begin{minipage}{0.62\textwidth}
|
||||
\begin{lstlisting}
|
||||
let x : (*@$\wctype{\rwildcard{X}}{List}{\rwildcard{X}}$@*) = ls.get(0) in id(x) : (*@$\ntv{z}$@*)
|
||||
\end{lstlisting}\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.36\textwidth}
|
||||
\begin{lstlisting}[style=constraints]
|
||||
(*@$\wctype{\rwildcard{X}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{x}}$@*),
|
||||
(*@$\exptype{List}{\wtv{x}} \lessdot \ntv{z},$@*)
|
||||
\end{lstlisting}
|
||||
\end{minipage}
|
||||
% the variable z has to
|
||||
|
||||
\begin{example}
|
||||
Take the Java program in listing \ref{lst:mapExample} for example.
|
||||
It maps every element of a list
|
||||
$\expr{l} : \exptype{List}{\wctype{\rwildcard{A}}{List}{\rwildcard{A}}}$
|
||||
@ -655,8 +693,6 @@ $\exptype{List}{\wctype{\rwildcard{A}}{List}{\rwildcard{A}}}$
|
||||
We solve this by distinguishing between wildcard placeholders and normal placeholders.
|
||||
$\ntv{z}$ is a normal placeholder and is not allowed to contain free variables.
|
||||
|
||||
\end{example}
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
%TODO: Move this part. or move the third challenge some underneath.
|
||||
|
Loading…
Reference in New Issue
Block a user