Local vs Global TI
This commit is contained in:
parent
3a7c862fd2
commit
fc508cf331
@ -12,29 +12,29 @@
|
||||
|
||||
\section{Global Type Inference}
|
||||
Java already provides type inference in a restricted form namely local type inference.
|
||||
It takes a vital role in method invocations
|
||||
by determining type parameters.
|
||||
%TODO: Explain Java needs it for capture conversion
|
||||
|
||||
Java already uses type inference when it comes to method invocations, local variables or lambda expressions.
|
||||
The crucial part for all of this use cases is the surrounding context.
|
||||
The invocation of \texttt{emptyList} missing type parameters can be added by Java's local type inference
|
||||
because the expected return type is known. \texttt{List<String>} in this case.
|
||||
\begin{lstlisting}[caption=Extract of a valid Java program]
|
||||
But our global type inference algorithm is able to work on input programs which do not hold any type annotations at all.
|
||||
We will show the different capabilities with an example.
|
||||
In listing \ref{lst:tiExample} the method call \texttt{emptyList} is missing
|
||||
its type parameters.
|
||||
Java will infer \texttt{String} for the parameter \texttt{T} by using the type annotations
|
||||
\texttt{List<String>} on the left side of the assignment and a matching algorithm \cite{javaTIisBroken}.
|
||||
%The invocation of \texttt{emptyList} missing type parameters can be added by Java's local type inference
|
||||
%because the expected return type is known. \texttt{List<String>} in this case.
|
||||
\begin{lstlisting}[caption=Extract of a valid Java program, label=lst:tiExample]
|
||||
<T> List<T> emptyList() { ... }
|
||||
|
||||
List<String> ls = emptyList();
|
||||
\end{lstlisting}
|
||||
|
||||
Local type inference is based on matching and not unification \cite{javaTIisBroken}.
|
||||
%\textit{Local Type Inference limitations:}
|
||||
When calling the \texttt{emptyList} method without context its return value will be set to a \texttt{List<Object>}.
|
||||
The following Java code snippet is incorrect, because \texttt{emptyList()} returns
|
||||
The Java code snippet in \ref{lst:tiLimit} is incorrect, because \texttt{emptyList()} returns
|
||||
a \texttt{List<Object>} instead of the required $\exptype{List}{\exptype{List}{String}}$.
|
||||
\begin{verbatim}
|
||||
\begin{lstlisting}[caption=Limitations of Java's Type Inference, label=lst:tiLimit]
|
||||
emptyList().add(new List<String>())
|
||||
.get(0)
|
||||
.get(0);
|
||||
\end{verbatim}
|
||||
\end{lstlisting}
|
||||
%List<String> <. A
|
||||
%List<A> <: List<B>, B <: List<C>
|
||||
% B = A and therefore A on the left and right side of constraints.
|
||||
@ -45,34 +45,36 @@ but the second call to \texttt{get} is only possible if \texttt{emptyList} retur
|
||||
a list of lists.
|
||||
The local type inference algorithm based on matching cannot produce this solution.
|
||||
Here a type inference algorithm based on unification is needed.
|
||||
\begin{verbatim}
|
||||
this.<List<String>>emptyList().add(new List<String>())
|
||||
.get(0)
|
||||
.get(0);
|
||||
\end{verbatim}
|
||||
% \begin{verbatim}
|
||||
% this.<List<String>>emptyList().add(new List<String>())
|
||||
% .get(0)
|
||||
% .get(0);
|
||||
% \end{verbatim}
|
||||
|
||||
$
|
||||
\begin{array}[b]{c}
|
||||
\begin{array}[b]{c}
|
||||
\texttt{emptyList()} : \exptype{List}{\exptype{List}{\type{String}}}
|
||||
\\
|
||||
\hline
|
||||
\texttt{emptyList().get()} : \exptype{List}{\type{String}}
|
||||
\end{array} \rulenameAfter{T-Call}
|
||||
\quad \generics{\type{X}}\exptype{List}{\type{X}} \to \type{X} \in \mtypeEnvironment{}(\texttt{get})1
|
||||
\\
|
||||
\hline
|
||||
\texttt{emptyList().get().get()} : \type{String}
|
||||
\end{array} \rulenameAfter{T-Call}
|
||||
$
|
||||
% $
|
||||
% \begin{array}[b]{c}
|
||||
% \begin{array}[b]{c}
|
||||
% \texttt{emptyList()} : \exptype{List}{\exptype{List}{\type{String}}}
|
||||
% \\
|
||||
% \hline
|
||||
% \texttt{emptyList().get()} : \exptype{List}{\type{String}}
|
||||
% \end{array} \rulenameAfter{T-Call}
|
||||
% \quad \generics{\type{X}}\exptype{List}{\type{X}} \to \type{X} \in \mtypeEnvironment{}(\texttt{get})1
|
||||
% \\
|
||||
% \hline
|
||||
% \texttt{emptyList().get().get()} : \type{String}
|
||||
% \end{array} \rulenameAfter{T-Call}
|
||||
% $
|
||||
|
||||
%motivate constraints:
|
||||
To solve this example we will create constraints
|
||||
To solve this example our Type Inference algorithm will create constraints
|
||||
$
|
||||
\exptype{List}{\tv{a}} \lessdot \tv{b},
|
||||
\tv{b} \lessdot \exptype{List}{\tv{c}},
|
||||
\tv{c} \lessdot \exptype{List}{\tv{d}}
|
||||
$ TODO
|
||||
$
|
||||
|
||||
TODO
|
||||
Local type inference \cite{javaTIisBroken} is able to find a type substitution $\sigma$ satisfying
|
||||
$\overline{\type{A} <: \sigma(\type{F}) }, \sigma(\type{R}) <: \type{E}$.
|
||||
It is important that $\overline{\type{A}}$ and $\type{E}$ are given types and do not contain
|
||||
|
Loading…
Reference in New Issue
Block a user