Compare commits
2 Commits
5074c21943
...
a0d98b9403
Author | SHA1 | Date | |
---|---|---|---|
|
a0d98b9403 | ||
|
fca93d7ec6 |
@ -111,6 +111,7 @@
|
|||||||
\newcommand{\wtypestore}[3]{\ensuremath{#1 = \wtype{#2}{#3}}}
|
\newcommand{\wtypestore}[3]{\ensuremath{#1 = \wtype{#2}{#3}}}
|
||||||
%\newcommand{\wtype}[2]{\ensuremath{[#1\ #2]}}
|
%\newcommand{\wtype}[2]{\ensuremath{[#1\ #2]}}
|
||||||
\newcommand{\wtv}[1]{\ensuremath{\tv{#1}_?}}
|
\newcommand{\wtv}[1]{\ensuremath{\tv{#1}_?}}
|
||||||
|
\newcommand{\ntv}[1]{\ensuremath{\underline{\tv{#1}}}}
|
||||||
\newcommand{\wcstore}{\ensuremath{\Delta}}
|
\newcommand{\wcstore}{\ensuremath{\Delta}}
|
||||||
|
|
||||||
%\newcommand{\rwildcard}[1]{\ensuremath{\mathtt{#1}_?}}
|
%\newcommand{\rwildcard}[1]{\ensuremath{\mathtt{#1}_?}}
|
||||||
|
76
unify.tex
76
unify.tex
@ -1,6 +1,18 @@
|
|||||||
|
|
||||||
\section{Unify}\label{sec:unify}
|
\section{Unify}\label{sec:unify}
|
||||||
|
|
||||||
|
The wildcard placeholders are used for intermediat types.
|
||||||
|
It is not possible to create all super types of a type.
|
||||||
|
The General rule only creates the ones expressable by Java syntax, which still are infinitly many in some cases \cite{TamingWildcards}.
|
||||||
|
%thats not true. it can spawn X^T_T2.List<X> where T and T2 are types and we need to choose one inbetween them
|
||||||
|
Otherwise the algorithm could generate more solutions, but they have to be filterd out afterwards, because they cannot be translated into Java.
|
||||||
|
|
||||||
|
Any type can be inserted into wildcard placeholders.
|
||||||
|
Normal placeholders have to contain types, which are well-formed under the supplied environment.
|
||||||
|
% It is important that the algorithm also works for any subset of constraints
|
||||||
|
%TODO: The unify algorithm can do any operation on wildcard placeholders the same as on normal ones.
|
||||||
|
%TODO: Unify could make way more substitutions for wtvs especially in step 2
|
||||||
|
|
||||||
\subsection{Description}
|
\subsection{Description}
|
||||||
The \unify{} algorithm tries to find a solution for a set of constraints like
|
The \unify{} algorithm tries to find a solution for a set of constraints like
|
||||||
$\set{\exptype{List}{String} \lessdot \tv{a}, \exptype{List}{Integer} \lessdot \tv{a}}$.
|
$\set{\exptype{List}{String} \lessdot \tv{a}, \exptype{List}{Integer} \lessdot \tv{a}}$.
|
||||||
@ -137,13 +149,13 @@ This is necessary for the \rulename{Equals} rule to work properly.
|
|||||||
\begin{tabular}[t]{l@{~}l}
|
\begin{tabular}[t]{l@{~}l}
|
||||||
\rulename{Subst} &
|
\rulename{Subst} &
|
||||||
$\begin{array}[c]{l}
|
$\begin{array}[c]{l}
|
||||||
\wildcardEnv \vdash C \cup \set{\tv{a} \doteq \type{T}}\\
|
\wildcardEnv \vdash C \cup \set{\ntv{a} \doteq \type{T}}\\
|
||||||
\hline
|
\hline
|
||||||
[\type{T}/\tv{a}]\wildcardEnv \vdash [\type{T}/\tv{a}]
|
[\type{T}/\tv{a}]\wildcardEnv \vdash [\type{T}/\tv{a}]
|
||||||
C \cup \set{\tv{a} \doteq \type{T}}
|
C \cup \set{\ntv{a} \doteq \type{T}}
|
||||||
\end{array}
|
\end{array}
|
||||||
\quad \begin{array}{c}
|
\quad \begin{array}{c}
|
||||||
\tv{a} \notin \type{T} \\
|
\ntv{a} \notin \type{T} \\
|
||||||
\text{fv}(\type{T}) \subseteq \Delta'
|
\text{fv}(\type{T}) \subseteq \Delta'
|
||||||
\end{array}$\\
|
\end{array}$\\
|
||||||
\\
|
\\
|
||||||
@ -184,7 +196,7 @@ $
|
|||||||
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \, \set{ \type{U} \lessdot \type{G} }
|
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \, \set{ \type{U} \lessdot \type{G} }
|
||||||
\end{array}
|
\end{array}
|
||||||
\quad \quad
|
\quad \quad
|
||||||
\begin{array}[c]{l}
|
\begin{array}[c]{l} %TODO: can the second part be removed by adding a X.C<X> <. C<a?> constraint at method invocation?
|
||||||
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \, \set{ \type{A} \lessdotCC \type{G} } \\
|
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \, \set{ \type{A} \lessdotCC \type{G} } \\
|
||||||
\hline
|
\hline
|
||||||
\vspace*{-0.4cm}\\
|
\vspace*{-0.4cm}\\
|
||||||
@ -329,24 +341,24 @@ $
|
|||||||
The \rulename{match} rule generates fresh wildcards $\overline{\wildcard{A}{\tv{u}}{\tv{l}}}$.
|
The \rulename{match} rule generates fresh wildcards $\overline{\wildcard{A}{\tv{u}}{\tv{l}}}$.
|
||||||
Their upper and lower bounds are fresh type variables.
|
Their upper and lower bounds are fresh type variables.
|
||||||
|
|
||||||
%Unify only renames the wildcards in the reduce rule
|
|
||||||
% It's the only place where wildcards are coming into play (theres always a reduce step before a wildcard substitution is possible)
|
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
% die wildcard variablen sollten erst am Ende ausgetauscht werden gegen normale variablen
|
\begin{center}
|
||||||
% das funktioniert, da die im Reduce step erstellten direkt substituiert werden
|
\leavevmode
|
||||||
% die anderen erlauben Capture Conversion aber nur wenn der Methodentyp und Parametertyp schon feststeht! (gleich Mächtig wie TI in Java)
|
\fbox{
|
||||||
% a? <. T ->
|
\begin{tabular}[t]{l@{~}l}
|
||||||
% T <. a? ->
|
\rulename{Circle} & $
|
||||||
% a? =. T -> substitute!
|
\begin{array}[c]{l}
|
||||||
% bei normalen Typvariablen werden keine Wildcards substituiert
|
\wildcardEnv \vdash C \cup \, \set{\tv{a}_1 \lessdot
|
||||||
|
\tv{a}_2, \tv{a}_2 \lessdot \tv{a}_3, \dots, \tv{a}_n \lessdot \tv{a}_1}\\
|
||||||
% \begin{tcolorbox}
|
\hline
|
||||||
% $
|
\wildcardEnv \vdash C \cup \, \set{\tv{a}_1 \doteq \tv{a}_2, \tv{a}_2 \doteq \tv{a}_3, \dots , \tv{a}_n \doteq \tv{a}_1}
|
||||||
% \wctype{\rwildcard{X}}{Box}{\rwildcard{X}} \lessdot \exptype{Box}{\tv{a}_?}, \\
|
\end{array} \quad n>0
|
||||||
% \exptype{Box}{\tv{a}_?} \lessdot \wctype{\rwildcard{X}}{Box}{\rwildcard{X}}
|
$
|
||||||
% $
|
\end{tabular}}
|
||||||
% \end{tcolorbox}
|
\end{center}
|
||||||
|
\caption{Rules for normal placeholders}\label{fig:reduce-rules}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -358,16 +370,16 @@ Their upper and lower bounds are fresh type variables.
|
|||||||
\begin{array}[c]{@{}ll}
|
\begin{array}[c]{@{}ll}
|
||||||
\begin{array}[c]{l}
|
\begin{array}[c]{l}
|
||||||
\wildcardEnv \vdash C \cup \, \set{
|
\wildcardEnv \vdash C \cup \, \set{
|
||||||
\tv{a} \lessdot \wctype{\Delta}{D}{\ol{T}}, \tv{a} \lessdot \wctype{\Delta'}{D'}{\ol{T'}} }\\
|
\tv{a} \lessdot_1 \wctype{\Delta}{D}{\ol{T}}, \tv{a} \lessdot_2 \wctype{\Delta'}{D'}{\ol{T'}} }\\
|
||||||
\hline
|
\hline
|
||||||
\vspace*{-0.4cm}\\
|
\vspace*{-0.4cm}\\
|
||||||
\wildcardEnv \vdash C \cup \, \left\{ \begin{array}[c]{l}
|
\wildcardEnv \vdash C \cup \, \left\{ \begin{array}[c]{l}
|
||||||
\tv{a} \lessdot \wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}},
|
\tv{a} \lessdot \wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}},
|
||||||
\ol{\tv{l}} \lessdot \ol{\tv{u}}, \\
|
\ol{\tv{l}} \lessdot \ol{\tv{u}}, \\
|
||||||
\wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}}
|
\wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}}
|
||||||
\lessdot \wctype{\Delta}{D}{\ol{T}}, \\
|
\lessdot_1 \wctype{\Delta}{D}{\ol{T}}, \\
|
||||||
\wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}}
|
\wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}}
|
||||||
\lessdot \wctype{\Delta'}{D'}{\ol{T'}}
|
\lessdot_2 \wctype{\Delta'}{D'}{\ol{T'}}
|
||||||
\end{array}
|
\end{array}
|
||||||
\right\}
|
\right\}
|
||||||
\end{array}
|
\end{array}
|
||||||
@ -751,10 +763,10 @@ This builds a search tree over multiple possible solutions.
|
|||||||
& $
|
& $
|
||||||
\begin{array}[c]{l}
|
\begin{array}[c]{l}
|
||||||
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
||||||
\tv{a} \lessdot^* \tv{b}}
|
\tv{a} \lessdot \tv{b}}
|
||||||
\\
|
\\
|
||||||
\hline
|
\hline
|
||||||
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot^* \tv{b}, \tv{b} \lessdot \type{N} }
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \tv{b}, \tv{b} \lessdot \type{N} }
|
||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\\\\
|
\\\\
|
||||||
@ -1049,13 +1061,13 @@ Otherwise the generation rules \rulename{GenSigma} and \rulename{GenDelta} will
|
|||||||
\rulename{GenDelta}
|
\rulename{GenDelta}
|
||||||
& $
|
& $
|
||||||
\deduction{
|
\deduction{
|
||||||
\wildcardEnv \vdash C \cup \set{\tv{b} \lessdot \type{T} } \implies \Delta, \sigma
|
\wildcardEnv \vdash C \cup \set{\ntv{b} \lessdot \type{T} } \implies \Delta, \sigma
|
||||||
}{
|
}{
|
||||||
\wildcardEnv \vdash [\type{B}/\tv{b}]C \implies \Delta \cup \set{\wildcard{B}{\type{T}}{\bot}}, \sigma \cup \set{\tv{b} \to \type{B}}
|
\wildcardEnv \vdash [\type{B}/\ntv{b}]C \implies \Delta \cup \set{\wildcard{B}{\type{T}}{\bot}}, \sigma \cup \set{\ntv{b} \to \type{B}}
|
||||||
} \quad
|
} \quad
|
||||||
\begin{array}{l}
|
\begin{array}{l}
|
||||||
\tph(\type{T}) = \emptyset, \text{fv}(\type{T}) \subseteq \Delta \cup \Delta_{in} \\
|
\tph(\type{T}) = \emptyset, \text{fv}(\type{T}) \subseteq \Delta \cup \Delta_{in} \\
|
||||||
\rwildcard{B} \ \text{fresh}, \tv{b} \notin \text{dom}(\sigma), \Delta, \Delta_{in} \vdash \type{T} \ \ok
|
\rwildcard{B} \ \text{fresh}, \ntv{b} \notin \text{dom}(\sigma), \Delta, \Delta_{in} \vdash \type{T} \ \ok
|
||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\\\\
|
\\\\
|
||||||
@ -1063,14 +1075,14 @@ Otherwise the generation rules \rulename{GenSigma} and \rulename{GenDelta} will
|
|||||||
& $
|
& $
|
||||||
\deduction{
|
\deduction{
|
||||||
\wildcardEnv \vdash C \cup
|
\wildcardEnv \vdash C \cup
|
||||||
\set{\tv{a} \doteq \type{T} } \implies \Delta, \sigma
|
\set{\ntv{a} \doteq \type{T} } \implies \Delta, \sigma
|
||||||
}{
|
}{
|
||||||
\wildcardEnv \vdash C \implies \Delta, \sigma \cup
|
\wildcardEnv \vdash C \implies \Delta, \sigma \cup
|
||||||
\set{\tv{a} \to \type{T} }
|
\set{\ntv{a} \to \type{T} }
|
||||||
} \quad
|
} \quad
|
||||||
\begin{array}{l}
|
\begin{array}{l}
|
||||||
\tph(\type{T}) = \emptyset \\ %,\, \text{fv}(\type{T}) \subseteq \Delta \\ % T ok implies that
|
\tph(\type{T}) = \emptyset \\ %,\, \text{fv}(\type{T}) \subseteq \Delta \\ % T ok implies that
|
||||||
\tv{a} \notin \text{dom}(\sigma),\, \Delta, \Delta_{in} \vdash \type{T} \ \ok
|
\ntv{a} \notin \text{dom}(\sigma),\, \Delta, \Delta_{in} \vdash \type{T} \ \ok
|
||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\\\\
|
\\\\
|
||||||
|
Loading…
Reference in New Issue
Block a user