Compare commits
2 Commits
56f9d35615
...
5578415ed3
Author | SHA1 | Date | |
---|---|---|---|
|
5578415ed3 | ||
|
8907cac94a |
@ -272,59 +272,35 @@ $\Delta \vdash \sigma(C') \implies \Delta \vdash \sigma(C)$
|
||||
\item[Adopt] Assumption, because $C \subset C'$
|
||||
%\item[Capture, Reduce] are always applied together. We have to destinct between two cases:
|
||||
\item[Prepare]
|
||||
To show
|
||||
$\Delta \vdash \sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}}) <: \sigma(\wcNtype{\Delta''}{N})$ by S-Exists we have to proof:
|
||||
%To show
|
||||
%$\Delta \vdash \sigma(\wctype{\Delta'}{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})$ by S-Exists we have to proof:
|
||||
Given a constraint $ \wctype{\Delta'}{C}{\ol{S}} \lessdot \wctype{\Delta''}{C}{\ol{T}}$ first the \rulename{Prepare} rule
|
||||
then the \rulename{Capture} rule is applied.
|
||||
Therefore we can assume $\Delta, \Delta' \vdash \sigma(\exptype{C}{\ol{S}}) <: \sigma(\wctype{\Delta''}{C}{\ol{T}})$ (see proof for \rulename{Capture})
|
||||
which implies $\Delta \vdash \sigma(\wctype{\Delta'}{C}{\ol{S}}) <: \sigma(\wctype{\Delta''}{C}{\ol{T}})$ by S-Exists:
|
||||
$\text{fv}(\sigma(\wctype{\Delta''}{C}{\ol{T}})) = \emptyset$ implies $\text{dom}(\Delta'') \cap \text{fv}(\sigma(\wctype{\Delta''}{C}{\ol{T}})) = \emptyset$.
|
||||
$\text{fv}(\sigma(\wctype{\Delta'}{C}{\ol{S}})) = \emptyset$ implies $\text{fv}(\ol{S})\subseteq \text{dom}(\Delta, \Delta')$.
|
||||
|
||||
|
||||
|
||||
We set $\Delta' = \sigma(\wildcardEnv)$.
|
||||
|
||||
\begin{gather}
|
||||
\Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\
|
||||
\Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\
|
||||
\label{rp:3}
|
||||
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\
|
||||
\label{rp:4}
|
||||
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset\\
|
||||
[\ol{A}/\ol{T}] = \ol{T} %TODO: rename T
|
||||
\end{gather}
|
||||
|
||||
\item[Prepare]
|
||||
To show
|
||||
$\Delta \vdash \sigma(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}})$ by S-Exists we have to proof:
|
||||
\begin{gather}
|
||||
\Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\
|
||||
\Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\
|
||||
\label{rp:3}
|
||||
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\
|
||||
\label{rp:4}
|
||||
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset\\
|
||||
[\ol{A}/\ol{T}] = \ol{T} %TODO: rename T
|
||||
\end{gather}
|
||||
|
||||
We know
|
||||
\begin{gather}
|
||||
\sigma(\ol{S}) = [\ol{\wtv{a}}/\ol{A}]\ol{T}\\
|
||||
\ol{\wtv{a}} \lessdot [\ol{\wtv{a}}/\ol{A}]\ol{U}\\
|
||||
[\ol{\wtv{a}}/\ol{A}]\ol{L} \lessdot \ol{\wtv{a}}\\
|
||||
\text{fv}(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) = \emptyset\\
|
||||
\label{rp:fv2}
|
||||
\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
|
||||
\end{gather}
|
||||
|
||||
\ref{rp:fv2} implies \ref{rp:4}.
|
||||
Due to $\text{fv}(\sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}})) = \emptyset$ implies
|
||||
$\text{fv}(\type{T}) \subseteq \text{dom}(\overline{\wildcard{B}{\type{U}}{\type{L}}})$
|
||||
and therefore \ref{rp:3}.
|
||||
% Under the assumption there exists a $\Delta''$ with
|
||||
% $\Delta, \Delta'' \vdash \sigma(\exptype{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})$
|
||||
% and $\Delta' \subseteq \Delta''$ and $\text{fv}(\Delta) = \emptyset$.
|
||||
% Due to $\text{fv}(\sigma(\wctype{\Delta'}{C}{\ol{S}})) = \emptyset$
|
||||
% and $\text{fv}(\sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})) = \emptyset$
|
||||
% we can say %TODO: Can we really say that? Weakening does not apply (it is the other direction than weakening)
|
||||
% $\Delta, \Delta' \vdash \sigma(\exptype{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})$
|
||||
% which implies
|
||||
% $\Delta \vdash \sigma(\wctype{\Delta'}{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})$.
|
||||
|
||||
\item[Capture]
|
||||
Everytime the \rulename{Capture} rule is invoked we add the freshly generated free variables to the global environment $\wildcardEnv$.
|
||||
They are from this point on treated like global variables and therefore we can assume $\sigma(\wildcardEnv \cup \ol{\wildcard{C}{U}{L}}) \subseteq \Delta'$ in
|
||||
$\Delta, \Delta' \vdash \sigma([\ol{\rwildcard{C}}/\ol{\rwildcard{B}}] \exptype{C}{\ol{S}})
|
||||
<: \sigma(\wctype{\Delta}{C}{\ol{T}})$,
|
||||
which implies $\Delta, \Delta'/\set{\ol{\wildcard{C}{U}{L}}} \vdash \type{N} <: \sigma(\wctype{\Delta}{C}{\ol{T}})$,
|
||||
with $\wcNtype{\overline{\wildcard{C}{\type{U}}{\type{L}}}}{N} = \sigma(\wctype{\overline{\wildcard{C}{\type{U}}{\type{L}}}}{C}{\ol{S}})$
|
||||
We can rename a fresh wildcard $\rwildcard{C}$ freely.
|
||||
which implies $\Delta, \Delta'/\set{\ol{\wildcard{C}{U}{L}}} \vdash \sigma(\wctype{\overline{\wildcard{C}{\type{U}}{\type{L}}}}{C}{\ol{S}}) <: \sigma(\wctype{\Delta}{C}{\ol{T}})$.
|
||||
As long as $\ol{C} \notin \text{fv}(\sigma(\wctype{\Delta}{C}{\ol{T}}))$ (TODO: do we need to set the right side to not contain free variables?: NO! because all free variables are inside $\Delta$).
|
||||
%with $\type{N}= \sigma(\wctype{\overline{\wildcard{C}{\type{U}}{\type{L}}}}{C}{\ol{S}})$
|
||||
%We can rename a fresh wildcard $\rwildcard{C}$ freely.
|
||||
|
||||
% If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) = \emptyset$ the preposition holds by Assumption and S-Exists.
|
||||
% If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) \neq \emptyset$ the preposition holds because
|
||||
|
Loading…
x
Reference in New Issue
Block a user