Compare commits

...

2 Commits

Author SHA1 Message Date
Andreas Stadelmeier
5578415ed3 Fix Capture Soundness 2024-01-17 12:53:36 +01:00
Andreas Stadelmeier
8907cac94a Prepare Soundness 2024-01-17 10:58:16 +01:00

View File

@ -272,59 +272,35 @@ $\Delta \vdash \sigma(C') \implies \Delta \vdash \sigma(C)$
\item[Adopt] Assumption, because $C \subset C'$
%\item[Capture, Reduce] are always applied together. We have to destinct between two cases:
\item[Prepare]
To show
$\Delta \vdash \sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}}) <: \sigma(\wcNtype{\Delta''}{N})$ by S-Exists we have to proof:
%To show
%$\Delta \vdash \sigma(\wctype{\Delta'}{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})$ by S-Exists we have to proof:
Given a constraint $ \wctype{\Delta'}{C}{\ol{S}} \lessdot \wctype{\Delta''}{C}{\ol{T}}$ first the \rulename{Prepare} rule
then the \rulename{Capture} rule is applied.
Therefore we can assume $\Delta, \Delta' \vdash \sigma(\exptype{C}{\ol{S}}) <: \sigma(\wctype{\Delta''}{C}{\ol{T}})$ (see proof for \rulename{Capture})
which implies $\Delta \vdash \sigma(\wctype{\Delta'}{C}{\ol{S}}) <: \sigma(\wctype{\Delta''}{C}{\ol{T}})$ by S-Exists:
$\text{fv}(\sigma(\wctype{\Delta''}{C}{\ol{T}})) = \emptyset$ implies $\text{dom}(\Delta'') \cap \text{fv}(\sigma(\wctype{\Delta''}{C}{\ol{T}})) = \emptyset$.
$\text{fv}(\sigma(\wctype{\Delta'}{C}{\ol{S}})) = \emptyset$ implies $\text{fv}(\ol{S})\subseteq \text{dom}(\Delta, \Delta')$.
We set $\Delta' = \sigma(\wildcardEnv)$.
\begin{gather}
\Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\
\Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\
\label{rp:3}
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\
\label{rp:4}
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset\\
[\ol{A}/\ol{T}] = \ol{T} %TODO: rename T
\end{gather}
\item[Prepare]
To show
$\Delta \vdash \sigma(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}})$ by S-Exists we have to proof:
\begin{gather}
\Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\
\Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\
\label{rp:3}
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\
\label{rp:4}
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset\\
[\ol{A}/\ol{T}] = \ol{T} %TODO: rename T
\end{gather}
We know
\begin{gather}
\sigma(\ol{S}) = [\ol{\wtv{a}}/\ol{A}]\ol{T}\\
\ol{\wtv{a}} \lessdot [\ol{\wtv{a}}/\ol{A}]\ol{U}\\
[\ol{\wtv{a}}/\ol{A}]\ol{L} \lessdot \ol{\wtv{a}}\\
\text{fv}(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) = \emptyset\\
\label{rp:fv2}
\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
\end{gather}
\ref{rp:fv2} implies \ref{rp:4}.
Due to $\text{fv}(\sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}})) = \emptyset$ implies
$\text{fv}(\type{T}) \subseteq \text{dom}(\overline{\wildcard{B}{\type{U}}{\type{L}}})$
and therefore \ref{rp:3}.
% Under the assumption there exists a $\Delta''$ with
% $\Delta, \Delta'' \vdash \sigma(\exptype{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})$
% and $\Delta' \subseteq \Delta''$ and $\text{fv}(\Delta) = \emptyset$.
% Due to $\text{fv}(\sigma(\wctype{\Delta'}{C}{\ol{S}})) = \emptyset$
% and $\text{fv}(\sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})) = \emptyset$
% we can say %TODO: Can we really say that? Weakening does not apply (it is the other direction than weakening)
% $\Delta, \Delta' \vdash \sigma(\exptype{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})$
% which implies
% $\Delta \vdash \sigma(\wctype{\Delta'}{C}{\ol{S}}) <: \sigma(\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}})$.
\item[Capture]
Everytime the \rulename{Capture} rule is invoked we add the freshly generated free variables to the global environment $\wildcardEnv$.
They are from this point on treated like global variables and therefore we can assume $\sigma(\wildcardEnv \cup \ol{\wildcard{C}{U}{L}}) \subseteq \Delta'$ in
$\Delta, \Delta' \vdash \sigma([\ol{\rwildcard{C}}/\ol{\rwildcard{B}}] \exptype{C}{\ol{S}})
<: \sigma(\wctype{\Delta}{C}{\ol{T}})$,
which implies $\Delta, \Delta'/\set{\ol{\wildcard{C}{U}{L}}} \vdash \type{N} <: \sigma(\wctype{\Delta}{C}{\ol{T}})$,
with $\wcNtype{\overline{\wildcard{C}{\type{U}}{\type{L}}}}{N} = \sigma(\wctype{\overline{\wildcard{C}{\type{U}}{\type{L}}}}{C}{\ol{S}})$
We can rename a fresh wildcard $\rwildcard{C}$ freely.
which implies $\Delta, \Delta'/\set{\ol{\wildcard{C}{U}{L}}} \vdash \sigma(\wctype{\overline{\wildcard{C}{\type{U}}{\type{L}}}}{C}{\ol{S}}) <: \sigma(\wctype{\Delta}{C}{\ol{T}})$.
As long as $\ol{C} \notin \text{fv}(\sigma(\wctype{\Delta}{C}{\ol{T}}))$ (TODO: do we need to set the right side to not contain free variables?: NO! because all free variables are inside $\Delta$).
%with $\type{N}= \sigma(\wctype{\overline{\wildcard{C}{\type{U}}{\type{L}}}}{C}{\ol{S}})$
%We can rename a fresh wildcard $\rwildcard{C}$ freely.
% If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) = \emptyset$ the preposition holds by Assumption and S-Exists.
% If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) \neq \emptyset$ the preposition holds because