Compare commits
2 Commits
669837d6ac
...
813b256e4d
Author | SHA1 | Date | |
---|---|---|---|
|
813b256e4d | ||
|
7ed1529710 |
@ -1,4 +1,4 @@
|
|||||||
\section{Constraint generation}
|
\section{Constraint generation}\label{chapter:constraintGeneration}
|
||||||
% Our type inference algorithm is split into two parts.
|
% Our type inference algorithm is split into two parts.
|
||||||
% A constraint generation step \textbf{TYPE} and a \unify{} step.
|
% A constraint generation step \textbf{TYPE} and a \unify{} step.
|
||||||
|
|
||||||
|
29
tRules.tex
29
tRules.tex
@ -3,21 +3,28 @@
|
|||||||
The input syntax for our algorithm is shown in figure \ref{fig:syntax}
|
The input syntax for our algorithm is shown in figure \ref{fig:syntax}
|
||||||
and the respective type rules in figure \ref{fig:expressionTyping} and \ref{fig:typing}.
|
and the respective type rules in figure \ref{fig:expressionTyping} and \ref{fig:typing}.
|
||||||
|
|
||||||
The algorithm presented in this paper is an extension of the \emph{Global Type Inference for Featherweight Generic Java}\cite{TIforFGJ} algorithm.
|
Our algorithm is an extension of the \emph{Global Type Inference for Featherweight Generic Java}\cite{TIforFGJ} algorithm.
|
||||||
Additional features like overriding methods and method overloading can be added by copying the respective parts from there.
|
|
||||||
The input language is designed to showcase type inference involving existential types.
|
The input language is designed to showcase type inference involving existential types.
|
||||||
We introduce the type rule T-Call which emulates a Java method call,
|
Method call rule T-Call is the most interesting part, because it emulates the behaviour of a Java method call,
|
||||||
where existential types are implicitly \textit{opened} and \textit{closed}.
|
where existential types are implicitly \textit{opened} and \textit{closed}.
|
||||||
The T-Elvis rule mimics the type judgement of a branch expression like \texttt{if-else}
|
|
||||||
and is solely used for examples.
|
%The T-Elvis rule mimics the type judgement of a branch expression like \texttt{if-else}.
|
||||||
|
%and is solely used for examples.
|
||||||
|
The calculus does not include method overloading or method overriding for simplicity reasons.
|
||||||
|
Type inference for both are described in \cite{TIforFGJ} and can be added to this algorithm accordingly.
|
||||||
|
Our algorithm is designed for extensibility with the final goal of full support for Java.
|
||||||
|
\unify{} is the core of the algorithm and can be used for any calculus sharing the same subtype relations as depicted in \ref{fig:subtyping}.
|
||||||
|
Additional language constructs can be added by implementing the respective constraint generation functions in the same fashion as described in chapter \ref{chapter:constraintGeneration}.
|
||||||
|
|
||||||
|
%Additional features like overriding methods and method overloading can be added by copying the respective parts from there.
|
||||||
%Additional features can be easily added by generating the respective constraints (Plümicke hier zitieren)
|
%Additional features can be easily added by generating the respective constraints (Plümicke hier zitieren)
|
||||||
|
|
||||||
The type system in \cite{WildcardsNeedWitnessProtection} allows a method to \textit{override} an existing method declaration in one of its super classes,
|
% The type system in \cite{WildcardsNeedWitnessProtection} allows a method to \textit{override} an existing method declaration in one of its super classes,
|
||||||
but only by a method with the exact same type.
|
% but only by a method with the exact same type.
|
||||||
The type system presented here does not allow the \textit{overriding} of methods.
|
% The type system presented here does not allow the \textit{overriding} of methods.
|
||||||
Our type inference algorithm consumes the input classes in succession and could only do a type check instead of type inference
|
% Our type inference algorithm consumes the input classes in succession and could only do a type check instead of type inference
|
||||||
on overriding methods, because their type is already determined.
|
% on overriding methods, because their type is already determined.
|
||||||
Allowing overriding therefore has no implication on our type inference algorithm.
|
% Allowing overriding therefore has no implication on our type inference algorithm.
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
$
|
$
|
||||||
|
118
unify.tex
118
unify.tex
@ -463,24 +463,24 @@ Their upper and lower bounds are fresh type variables.
|
|||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\\\\
|
\\\\
|
||||||
% \rulename{Adopt}
|
\rulename{Adopt}
|
||||||
% & $
|
& $
|
||||||
% \begin{array}[c]{@{}ll}
|
\begin{array}[c]{@{}ll}
|
||||||
% \begin{array}[c]{l}
|
\begin{array}[c]{l}
|
||||||
% \wildcardEnv \vdash C \cup \, \set{
|
\wildcardEnv \vdash C \cup \, \set{
|
||||||
% \tv{b} \lessdot \tv{a},
|
\tv{b} \lessdot \tv{a},
|
||||||
% \tv{a} \lessdot \type{N}, \tv{b} \lessdot \type{N'}} \\
|
\tv{a} \lessdot \type{N}, \tv{b} \lessdot \type{N'}} \\
|
||||||
% \hline
|
\hline
|
||||||
% \vspace*{-0.4cm}\\
|
\vspace*{-0.4cm}\\
|
||||||
% \wildcardEnv \vdash C \cup \, \set{
|
\wildcardEnv \vdash C \cup \, \set{
|
||||||
% \tv{b} \lessdot \type{N},
|
\tv{b} \lessdot \type{N},
|
||||||
% \tv{b} \lessdot \tv{a},
|
\tv{b} \lessdot \tv{a},
|
||||||
% \tv{a} \lessdot \type{N} , \tv{b} \lessdot \type{N'}
|
\tv{a} \lessdot \type{N} , \tv{b} \lessdot \type{N'}
|
||||||
% }
|
}
|
||||||
% \end{array}
|
\end{array}
|
||||||
% \end{array}
|
\end{array}
|
||||||
% $
|
$
|
||||||
% \\\\
|
\\\\
|
||||||
\rulename{Adapt}
|
\rulename{Adapt}
|
||||||
&
|
&
|
||||||
$
|
$
|
||||||
@ -747,28 +747,28 @@ This builds a search tree over multiple possible solutions.
|
|||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\\\\
|
\\\\
|
||||||
% \rulename{Settle}
|
\rulename{Settle}
|
||||||
% & $
|
& $
|
||||||
% \begin{array}[c]{l}
|
\begin{array}[c]{l}
|
||||||
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
||||||
% \tv{a} \lessdot^* \tv{b}}
|
\tv{a} \lessdot^* \tv{b}}
|
||||||
% \\
|
\\
|
||||||
% \hline
|
\hline
|
||||||
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot^* \tv{b}, \tv{b} \lessdot \type{N} }
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot^* \tv{b}, \tv{b} \lessdot \type{N} }
|
||||||
% \end{array}
|
\end{array}
|
||||||
% $
|
$
|
||||||
% \\\\
|
\\\\
|
||||||
% \rulename{Raise}
|
\rulename{Raise}
|
||||||
% & $
|
& $
|
||||||
% \begin{array}[c]{l}
|
\begin{array}[c]{l}
|
||||||
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
||||||
% \tv{a} \lessdot \tv{b}}
|
\tv{a} \lessdot \tv{b}}
|
||||||
% \\
|
\\
|
||||||
% \hline
|
\hline
|
||||||
% \wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \type{N}, \type{N} \lessdot \tv{b} }
|
\wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \type{N}, \type{N} \lessdot \tv{b} }
|
||||||
% \end{array}
|
\end{array}
|
||||||
% $
|
$
|
||||||
% \\\\
|
\\\\
|
||||||
\end{tabular}}
|
\end{tabular}}
|
||||||
\end{center}
|
\end{center}
|
||||||
\caption{Step 2 branching: Multiple rules can be applied to the same constraint}
|
\caption{Step 2 branching: Multiple rules can be applied to the same constraint}
|
||||||
@ -860,11 +860,30 @@ $
|
|||||||
\end{tabular}}
|
\end{tabular}}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
|
% \textbf{Step 4:}
|
||||||
|
% If there are constraints of the form $(\tv{a} \lessdot \tv{b})$ remaining in the constraint set then
|
||||||
|
% apply the \rulename{Sub-Elim} rule and start over with step 1.
|
||||||
|
% Otherwise continue to step 5.
|
||||||
|
% \begin{center}
|
||||||
|
% \fbox{
|
||||||
|
% \begin{tabular}[t]{l@{~}l}
|
||||||
|
% \rulename{SubElim}
|
||||||
|
% & $\begin{array}[c]{l}
|
||||||
|
% \wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \tv{b}}\\
|
||||||
|
% \hline
|
||||||
|
% [\tv{a}/\tv{b}]\wildcardEnv \vdash [\tv{a}/\tv{b}]C \cup \set{ \tv{b} \doteq \tv{a} }
|
||||||
|
% \end{array}
|
||||||
|
% $
|
||||||
|
% \end{tabular}}
|
||||||
|
% \end{center}
|
||||||
|
|
||||||
|
\noindent
|
||||||
\textbf{Step 4:}
|
\textbf{Step 4:}
|
||||||
If there are constraints of the form $(\tv{a} \lessdot \tv{b})$ remaining in the constraint set then
|
We apply the rules in figure \ref{fig:cleanup-rules} exhaustively and proceed with step 6.
|
||||||
apply the \rulename{Sub-Elim} rule and start over with step 1.
|
|
||||||
Otherwise continue to step 5.
|
\begin{figure}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
|
\leavevmode
|
||||||
\fbox{
|
\fbox{
|
||||||
\begin{tabular}[t]{l@{~}l}
|
\begin{tabular}[t]{l@{~}l}
|
||||||
\rulename{SubElim}
|
\rulename{SubElim}
|
||||||
@ -874,18 +893,7 @@ Otherwise continue to step 5.
|
|||||||
[\tv{a}/\tv{b}]\wildcardEnv \vdash [\tv{a}/\tv{b}]C \cup \set{ \tv{b} \doteq \tv{a} }
|
[\tv{a}/\tv{b}]\wildcardEnv \vdash [\tv{a}/\tv{b}]C \cup \set{ \tv{b} \doteq \tv{a} }
|
||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\end{tabular}}
|
\\\\
|
||||||
\end{center}
|
|
||||||
|
|
||||||
\noindent
|
|
||||||
\textbf{Step 5:}
|
|
||||||
We apply the rules in figure \ref{fig:cleanup-rules} exhaustively and proceed with step 6.
|
|
||||||
|
|
||||||
\begin{figure}
|
|
||||||
\begin{center}
|
|
||||||
\leavevmode
|
|
||||||
\fbox{
|
|
||||||
\begin{tabular}[t]{l@{~}l}
|
|
||||||
\rulename{Ground}
|
\rulename{Ground}
|
||||||
& $\begin{array}[c]{@{}ll}
|
& $\begin{array}[c]{@{}ll}
|
||||||
\begin{array}[c]{l}
|
\begin{array}[c]{l}
|
||||||
|
Loading…
Reference in New Issue
Block a user