Compare commits

..

2 Commits

Author SHA1 Message Date
Andreas Stadelmeier
813b256e4d Intro to type rules 2024-02-10 08:19:24 +01:00
Andreas Stadelmeier
7ed1529710 Include Adopt, Settle and Raise again 2024-02-10 08:18:58 +01:00
3 changed files with 84 additions and 69 deletions

View File

@ -1,4 +1,4 @@
\section{Constraint generation}
\section{Constraint generation}\label{chapter:constraintGeneration}
% Our type inference algorithm is split into two parts.
% A constraint generation step \textbf{TYPE} and a \unify{} step.

View File

@ -3,21 +3,28 @@
The input syntax for our algorithm is shown in figure \ref{fig:syntax}
and the respective type rules in figure \ref{fig:expressionTyping} and \ref{fig:typing}.
The algorithm presented in this paper is an extension of the \emph{Global Type Inference for Featherweight Generic Java}\cite{TIforFGJ} algorithm.
Additional features like overriding methods and method overloading can be added by copying the respective parts from there.
Our algorithm is an extension of the \emph{Global Type Inference for Featherweight Generic Java}\cite{TIforFGJ} algorithm.
The input language is designed to showcase type inference involving existential types.
We introduce the type rule T-Call which emulates a Java method call,
Method call rule T-Call is the most interesting part, because it emulates the behaviour of a Java method call,
where existential types are implicitly \textit{opened} and \textit{closed}.
The T-Elvis rule mimics the type judgement of a branch expression like \texttt{if-else}
and is solely used for examples.
%The T-Elvis rule mimics the type judgement of a branch expression like \texttt{if-else}.
%and is solely used for examples.
The calculus does not include method overloading or method overriding for simplicity reasons.
Type inference for both are described in \cite{TIforFGJ} and can be added to this algorithm accordingly.
Our algorithm is designed for extensibility with the final goal of full support for Java.
\unify{} is the core of the algorithm and can be used for any calculus sharing the same subtype relations as depicted in \ref{fig:subtyping}.
Additional language constructs can be added by implementing the respective constraint generation functions in the same fashion as described in chapter \ref{chapter:constraintGeneration}.
%Additional features like overriding methods and method overloading can be added by copying the respective parts from there.
%Additional features can be easily added by generating the respective constraints (Plümicke hier zitieren)
The type system in \cite{WildcardsNeedWitnessProtection} allows a method to \textit{override} an existing method declaration in one of its super classes,
but only by a method with the exact same type.
The type system presented here does not allow the \textit{overriding} of methods.
Our type inference algorithm consumes the input classes in succession and could only do a type check instead of type inference
on overriding methods, because their type is already determined.
Allowing overriding therefore has no implication on our type inference algorithm.
% The type system in \cite{WildcardsNeedWitnessProtection} allows a method to \textit{override} an existing method declaration in one of its super classes,
% but only by a method with the exact same type.
% The type system presented here does not allow the \textit{overriding} of methods.
% Our type inference algorithm consumes the input classes in succession and could only do a type check instead of type inference
% on overriding methods, because their type is already determined.
% Allowing overriding therefore has no implication on our type inference algorithm.
\begin{figure}
$

118
unify.tex
View File

@ -463,24 +463,24 @@ Their upper and lower bounds are fresh type variables.
\end{array}
$
\\\\
% \rulename{Adopt}
% & $
% \begin{array}[c]{@{}ll}
% \begin{array}[c]{l}
% \wildcardEnv \vdash C \cup \, \set{
% \tv{b} \lessdot \tv{a},
% \tv{a} \lessdot \type{N}, \tv{b} \lessdot \type{N'}} \\
% \hline
% \vspace*{-0.4cm}\\
% \wildcardEnv \vdash C \cup \, \set{
% \tv{b} \lessdot \type{N},
% \tv{b} \lessdot \tv{a},
% \tv{a} \lessdot \type{N} , \tv{b} \lessdot \type{N'}
% }
% \end{array}
% \end{array}
% $
% \\\\
\rulename{Adopt}
& $
\begin{array}[c]{@{}ll}
\begin{array}[c]{l}
\wildcardEnv \vdash C \cup \, \set{
\tv{b} \lessdot \tv{a},
\tv{a} \lessdot \type{N}, \tv{b} \lessdot \type{N'}} \\
\hline
\vspace*{-0.4cm}\\
\wildcardEnv \vdash C \cup \, \set{
\tv{b} \lessdot \type{N},
\tv{b} \lessdot \tv{a},
\tv{a} \lessdot \type{N} , \tv{b} \lessdot \type{N'}
}
\end{array}
\end{array}
$
\\\\
\rulename{Adapt}
&
$
@ -747,28 +747,28 @@ This builds a search tree over multiple possible solutions.
\end{array}
$
\\\\
% \rulename{Settle}
% & $
% \begin{array}[c]{l}
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
% \tv{a} \lessdot^* \tv{b}}
% \\
% \hline
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot^* \tv{b}, \tv{b} \lessdot \type{N} }
% \end{array}
% $
% \\\\
% \rulename{Raise}
% & $
% \begin{array}[c]{l}
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
% \tv{a} \lessdot \tv{b}}
% \\
% \hline
% \wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \type{N}, \type{N} \lessdot \tv{b} }
% \end{array}
% $
% \\\\
\rulename{Settle}
& $
\begin{array}[c]{l}
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
\tv{a} \lessdot^* \tv{b}}
\\
\hline
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot^* \tv{b}, \tv{b} \lessdot \type{N} }
\end{array}
$
\\\\
\rulename{Raise}
& $
\begin{array}[c]{l}
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
\tv{a} \lessdot \tv{b}}
\\
\hline
\wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \type{N}, \type{N} \lessdot \tv{b} }
\end{array}
$
\\\\
\end{tabular}}
\end{center}
\caption{Step 2 branching: Multiple rules can be applied to the same constraint}
@ -860,11 +860,30 @@ $
\end{tabular}}
\end{center}
% \textbf{Step 4:}
% If there are constraints of the form $(\tv{a} \lessdot \tv{b})$ remaining in the constraint set then
% apply the \rulename{Sub-Elim} rule and start over with step 1.
% Otherwise continue to step 5.
% \begin{center}
% \fbox{
% \begin{tabular}[t]{l@{~}l}
% \rulename{SubElim}
% & $\begin{array}[c]{l}
% \wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \tv{b}}\\
% \hline
% [\tv{a}/\tv{b}]\wildcardEnv \vdash [\tv{a}/\tv{b}]C \cup \set{ \tv{b} \doteq \tv{a} }
% \end{array}
% $
% \end{tabular}}
% \end{center}
\noindent
\textbf{Step 4:}
If there are constraints of the form $(\tv{a} \lessdot \tv{b})$ remaining in the constraint set then
apply the \rulename{Sub-Elim} rule and start over with step 1.
Otherwise continue to step 5.
We apply the rules in figure \ref{fig:cleanup-rules} exhaustively and proceed with step 6.
\begin{figure}
\begin{center}
\leavevmode
\fbox{
\begin{tabular}[t]{l@{~}l}
\rulename{SubElim}
@ -874,18 +893,7 @@ Otherwise continue to step 5.
[\tv{a}/\tv{b}]\wildcardEnv \vdash [\tv{a}/\tv{b}]C \cup \set{ \tv{b} \doteq \tv{a} }
\end{array}
$
\end{tabular}}
\end{center}
\noindent
\textbf{Step 5:}
We apply the rules in figure \ref{fig:cleanup-rules} exhaustively and proceed with step 6.
\begin{figure}
\begin{center}
\leavevmode
\fbox{
\begin{tabular}[t]{l@{~}l}
\\\\
\rulename{Ground}
& $\begin{array}[c]{@{}ll}
\begin{array}[c]{l}