Compare commits
No commits in common. "7b86dc0cf314010c210e49b593c3dbe7cdb9431b" and "cec613b875a81f57cd0402cfcbe055916536548d" have entirely different histories.
7b86dc0cf3
...
cec613b875
@ -30,8 +30,7 @@ We support capture conversion and Java style method calls.
|
||||
This requires existential types in a form which is not denotable by Java syntax \cite{aModelForJavaWithWildcards}.
|
||||
\item
|
||||
We present a novel approach to deal with existential types and capture conversion during constraint unification.
|
||||
\item The algorithm is split in two parts. A constraint generation step and an unification step.
|
||||
Input language and constraint generations can be extended without altering the unification part.
|
||||
The algorithm is split in two parts. A constraint generation step and an unification step.
|
||||
\item
|
||||
We proof soundness and aim for a good compromise between completeness and time complexity.
|
||||
\end{itemize}
|
||||
@ -118,6 +117,11 @@ class Example {
|
||||
%\label{fig:intro-example-code}
|
||||
\end{figure}
|
||||
|
||||
|
||||
%TODO
|
||||
% The goal is to proof soundness in respect to the type rules introduced by \cite{aModelForJavaWithWildcards}
|
||||
% and \cite{WildcardsNeedWitnessProtection}.
|
||||
|
||||
\begin{figure}%[tp]
|
||||
\begin{subfigure}[t]{0.49\linewidth}
|
||||
\begin{lstlisting}[style=fgj]
|
||||
@ -255,7 +259,7 @@ The input to our type inference algorithm is a modified version of the \letfj{}\
|
||||
First \fjtype{} generates constraints
|
||||
and afterwards \unify{} computes a solution for the given constraint set.
|
||||
Constraints consist out of subtype constraints $(\type{T} \lessdot \type{T})$ and capture constraints $(\type{T} \lessdotCC \type{T})$.
|
||||
\textit{Note:} a type $\type{T}$ can either be a named type, a type placeholder or a wildcard type placeholder.
|
||||
\textit{Note:} a type $\type{T}$ can either be a named type, a type placeholder $\ntv{a}$ or a wildcard type placeholder $\wtv{a}$.
|
||||
A subtype constraint is satisfied if the left side is a subtype of the right side according to the rules in figure \ref{fig:subtyping}.
|
||||
\textit{Example:} $\exptype{List}{\ntv{a}} \lessdot \exptype{List}{\type{String}}$ is fulfilled by replacing type placeholder $\ntv{a}$ with the type $\type{String}$.
|
||||
Subtype constraints and type placeholders act the same as the ones used in \emph{Type Inference for Featherweight Generic Java} \cite{TIforFGJ}.
|
||||
@ -531,16 +535,38 @@ $
|
||||
The \unify{} algorithm only sees the constraints with no information about the program they originated from.
|
||||
The main challenge was to find an algorithm which computes $\sigma(\wtv{a}) = \rwildcard{X}$ for example \ref{intro-example1} but not for example \ref{intro-example2}.
|
||||
|
||||
\section{\TamedFJ{} and \letfj{}}
|
||||
The input to our type inference algorithm is a \TamedFJ{} program.
|
||||
The output is a valid \letfj{} program.
|
||||
\letfj{} is defined in \cite{WildcardsNeedWitnessProtection}.
|
||||
It is an extension to Featherweight Java which adds Wildcard types and let statements.
|
||||
The let statements are used to explicitly apply capture conversion.
|
||||
\subsection{ANF transformation}
|
||||
%TODO: describe ANF syntax (which is different then the one from the wiki: https://en.wikipedia.org/wiki/A-normal_form)
|
||||
The input is a \letfj{} program without \texttt{let} statements, which is then transformed to A-normal form \cite{aNormalForm}
|
||||
before getting processed by \fjtype{}.
|
||||
|
||||
%TODO
|
||||
% The goal is to proof soundness in respect to the type rules introduced by \cite{aModelForJavaWithWildcards}
|
||||
% and \cite{WildcardsNeedWitnessProtection}.
|
||||
$
|
||||
\begin{array}{lrcl|l}
|
||||
\hline
|
||||
& & & \textbf{\letfj{}} & \textbf{A-Normal form} \\
|
||||
\text{Terms} & t & ::=
|
||||
& \expr{x}
|
||||
& \expr{x}
|
||||
\\
|
||||
& & \ \ |
|
||||
& \texttt{new} \ \type{C}(\overline{t})
|
||||
& \texttt{let}\ \overline{x} = \overline{t} \ \texttt{in}\ \texttt{new} \ \type{C}(\overline{x})
|
||||
\\
|
||||
& & \ \ |
|
||||
& t.f
|
||||
& \texttt{let}\ x = t \ \texttt{in}\ x.f
|
||||
\\
|
||||
& & \ \ |
|
||||
& t.\texttt{m}(\overline{t})
|
||||
& \texttt{let}\ x_1 = t \ \texttt{in}\ \texttt{let}\ \overline{x} = \overline{v} \ \texttt{in}\ x_1.\texttt{m}(\overline{x})
|
||||
\\
|
||||
& & \ \ |
|
||||
& t \elvis{} t
|
||||
& t \elvis{} t\\
|
||||
%
|
||||
\hline
|
||||
\end{array}
|
||||
$
|
||||
|
||||
\subsection{Capture Conversion}
|
||||
The input to our type inference algorithm does not contain let statements.
|
||||
|
@ -143,6 +143,7 @@
|
||||
\newcommand{\ruleSubstWC}[0]{\rulename{Subst-WC}}
|
||||
\newcommand{\subclass}{\mathtt{\sqsubset}\mkern-5mu :}
|
||||
|
||||
\newcommand{\TameFJ}{\text{TameFJ}}
|
||||
\newcommand{\TamedFJ}{\textbf{TamedFJ}}
|
||||
\newcommand{\TYPE}{\textbf{TYPE}}
|
||||
|
||||
|
175
tRules.tex
175
tRules.tex
@ -38,10 +38,6 @@ Additional language constructs can be added by implementing the respective const
|
||||
% on overriding methods, because their type is already determined.
|
||||
% Allowing overriding therefore has no implication on our type inference algorithm.
|
||||
|
||||
The syntax forces every expression to undergo a capture conversion before it can be used as a method argument.
|
||||
Even variables have to be catched by a let statement first.
|
||||
This behaviour emulates Java's implicit capture conversion.
|
||||
|
||||
\begin{figure}
|
||||
$
|
||||
\begin{array}{lrcl}
|
||||
@ -51,176 +47,19 @@ $
|
||||
\text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\
|
||||
\text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\
|
||||
\text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\
|
||||
\text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{\expr{x}}) = t \\
|
||||
\text{Terms} & t & ::= & \expr{x} \\
|
||||
& & \ \ | & \texttt{let}\ \overline{\expr{x}_c} = \overline{t} \ \texttt{in}\ \texttt{new} \ \type{C}(\overline{\expr{x}_c}) \\
|
||||
& & \ \ | & \texttt{let}\ \expr{x}_c = t \ \texttt{in}\ \expr{x}_c.f \\
|
||||
& & \ \ | & \texttt{let}\ \expr{x}_c = t \ \texttt{in}\ \texttt{let}\ \overline{\expr{x}_c} = \overline{t} \ \texttt{in}\ \expr{x}_c.\texttt{m}(\overline{\expr{x}_c}) \\
|
||||
& & \ \ | & t \elvis{} t \\
|
||||
\text{Variable contexts} & \Gamma & ::= & \overline{\expr{x}:\type{T}}\\
|
||||
\text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{x}) = t \\
|
||||
\text{Terms} & t & ::= & x \\
|
||||
& & \ \ | & \texttt{new} \ \type{C}(\overline{t})\\
|
||||
& & \ \ | & t.f\\
|
||||
& & \ \ | & t.\texttt{m}(\overline{t})\\
|
||||
& & \ \ | & t \elvis{} t\\
|
||||
\text{Variable contexts} & \Gamma & ::= & \overline{x:\type{T}}\\
|
||||
\hline
|
||||
\end{array}
|
||||
$
|
||||
\caption{Input Syntax}\label{fig:syntax}
|
||||
\end{figure}
|
||||
|
||||
% \begin{figure}
|
||||
% $
|
||||
% \begin{array}{lrcl}
|
||||
% \hline
|
||||
% \text{Parameterized classes} & \mv N & ::= & \exptype{C}{\ol{T}} \\
|
||||
% \text{Types} & \type{S}, \type{T}, \type{U} & ::= & \type{X} \mid \wcNtype{\Delta}{N} \\
|
||||
% \text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\
|
||||
% \text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\
|
||||
% \text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\
|
||||
% \text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{\expr{x}}) = t \\
|
||||
% \text{Values} & v & ::= & \expr{x} \\
|
||||
% \text{Terms} & t & ::= & v \\
|
||||
% & & \ \ | & \texttt{let} \ \expr{x} = \texttt{new} \ \type{C}(\overline{v}) \ \texttt{in} \ t \\
|
||||
% & & \ \ | & \texttt{let} \ \expr{x} = v.f \ \texttt{in} \ t \\
|
||||
% & & \ \ | & \texttt{let} \ \expr{x} = v.\texttt{m}(\overline{v}) \ \texttt{in} \ t \\
|
||||
% & & \ \ | & \texttt{let} \ \expr{x} = v \elvis{} v \ \texttt{in} \ t \\
|
||||
% \text{Variable contexts} & \Gamma & ::= & \overline{\expr{x}:\type{T}}\\
|
||||
% \hline
|
||||
% \end{array}
|
||||
% $
|
||||
% \caption{Input Syntax}\label{fig:syntax}
|
||||
% \end{figure}
|
||||
|
||||
% \begin{figure}
|
||||
% $
|
||||
% \begin{array}{lrcl}
|
||||
% \hline
|
||||
% \text{Parameterized classes} & \mv N & ::= & \exptype{C}{\ol{T}} \\
|
||||
% \text{Types} & \type{S}, \type{T}, \type{U} & ::= & \type{X} \mid \wcNtype{\Delta}{N} \\
|
||||
% \text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\
|
||||
% \text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\
|
||||
% \text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\
|
||||
% \text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{\expr{x}}) = t \\
|
||||
% \text{Terms} & t & ::= & \expr{x} \\
|
||||
% & & \ \ | & \texttt{let} \ \expr{x} = t \ \texttt{in} \ t \\
|
||||
% & & \ \ | & \expr{x}.f \\
|
||||
% & & \ \ | & \expr{x}.\texttt{m}(\overline{\expr{x}}) \\
|
||||
% & & \ \ | & t \elvis{} t \\
|
||||
% \text{Variable contexts} & \Gamma & ::= & \overline{\expr{x}:\type{T}}\\
|
||||
% \hline
|
||||
% \end{array}
|
||||
% $
|
||||
% \caption{Input Syntax}\label{fig:syntax}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
% \begin{figure}
|
||||
% $
|
||||
% \begin{array}{lrcl}
|
||||
% \hline
|
||||
% \text{Parameterized classes} & \mv N & ::= & \exptype{C}{\ol{T}} \\
|
||||
% \text{Types} & \type{S}, \type{T}, \type{U} & ::= & \type{X} \mid \wcNtype{\Delta}{N} \\
|
||||
% \text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\
|
||||
% \text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\
|
||||
% \text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\
|
||||
% \text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{x}) = t \\
|
||||
% \text{Terms} & t & ::= & x \\
|
||||
% & & \ \ | & \texttt{new} \ \type{C}(\overline{t})\\
|
||||
% & & \ \ | & t.f\\
|
||||
% & & \ \ | & t.\texttt{m}(\overline{t})\\
|
||||
% & & \ \ | & t \elvis{} t\\
|
||||
% \text{Variable contexts} & \Gamma & ::= & \overline{x:\type{T}}\\
|
||||
% \hline
|
||||
% \end{array}
|
||||
% $
|
||||
% \caption{Input Syntax}\label{fig:syntax}
|
||||
% \end{figure}
|
||||
|
||||
\subsection{ANF transformation}
|
||||
\newcommand{\anf}[1]{\ensuremath{\tau}(#1)}
|
||||
%https://en.wikipedia.org/wiki/A-normal_form)
|
||||
Featherweight Java's syntax involves no \texttt{let} statement
|
||||
and terms can be nested freely.
|
||||
This is similar to Java's syntax.
|
||||
To convert it to \TamedFJ{} additional let statements have to be added.
|
||||
This is done by a \textit{A-Normal Form} \cite{aNormalForm} transformation.
|
||||
|
||||
|
||||
\textit{Example:}\\
|
||||
\noindent
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\begin{lstlisting}[style=fgj,caption=Featherweight Java]
|
||||
m(l, v){
|
||||
return id(l).add(v);
|
||||
}
|
||||
\end{lstlisting}
|
||||
\end{minipage}%
|
||||
\hfill
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\begin{lstlisting}[style=tfgj,caption=\TamedFJ{} representation]
|
||||
m(l, v) =
|
||||
let x = id(l) in x.add(v)
|
||||
|
||||
\end{lstlisting}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
$
|
||||
\begin{array}{|lrcl|l}
|
||||
\hline
|
||||
& & & \textbf{Featherweight Java Terms}\\
|
||||
\text{Terms} & t & ::=
|
||||
& \expr{x}
|
||||
\\
|
||||
& & \ \ |
|
||||
& \texttt{new} \ \type{C}(\overline{t})
|
||||
\\
|
||||
& & \ \ |
|
||||
& t.f
|
||||
\\
|
||||
& & \ \ |
|
||||
& t.\texttt{m}(\overline{t})
|
||||
\\
|
||||
& & \ \ |
|
||||
& t \elvis{} t\\
|
||||
%
|
||||
\hline
|
||||
\end{array}
|
||||
$
|
||||
|
||||
$\begin{array}{lrcl}
|
||||
\text{ANF} & \anf{\expr{x}} & = & \expr{x} \\
|
||||
& \anf{\texttt{new} \ \type{C}(\overline{t})} & = & \texttt{let}\ \overline{\expr{x}} = \anf{\overline{t}} \ \texttt{in}\ \texttt{new} \ \type{C}(\overline{\expr{x}}) \\
|
||||
& \anf{t.f} & = & \texttt{let}\ \expr{x} = \anf{t} \ \texttt{in}\ \expr{x}.f \\
|
||||
& \anf{t.\texttt{m}(\overline{t})} & = & \texttt{let}\ \expr{x} = \anf{t} \ \texttt{in}\ \texttt{let}\ \overline{\expr{x}} = \anf{\overline{t}} \ \texttt{in}\ \expr{x}.\texttt{m}(\overline{\expr{x}}) \\
|
||||
& \anf{t_1 \elvis{} t_2} & = & \anf{t_1} \elvis{} \anf{t_2}
|
||||
\end{array}$
|
||||
|
||||
% $
|
||||
% \begin{array}{lrcl|l}
|
||||
% \hline
|
||||
% & & & \textbf{Featherweight Java} & \textbf{A-Normal form} \\
|
||||
% \text{Terms} & t & ::=
|
||||
% & \expr{x}
|
||||
% & \expr{x}
|
||||
% \\
|
||||
% & & \ \ |
|
||||
% & \texttt{new} \ \type{C}(\overline{t})
|
||||
% & \texttt{let}\ \overline{x} = \overline{t} \ \texttt{in}\ \texttt{new} \ \type{C}(\overline{x})
|
||||
% \\
|
||||
% & & \ \ |
|
||||
% & t.f
|
||||
% & \texttt{let}\ x = t \ \texttt{in}\ x.f
|
||||
% \\
|
||||
% & & \ \ |
|
||||
% & t.\texttt{m}(\overline{t})
|
||||
% & \texttt{let}\ x_1 = t \ \texttt{in}\ \texttt{let}\ \overline{x} = \overline{t} \ \texttt{in}\ x_1.\texttt{m}(\overline{x})
|
||||
% \\
|
||||
% & & \ \ |
|
||||
% & t \elvis{} t
|
||||
% & t \elvis{} t\\
|
||||
% %
|
||||
% \hline
|
||||
% \end{array}
|
||||
% $
|
||||
|
||||
|
||||
% Each class type has a set of wildcard types $\overline{\Delta}$ attached to it.
|
||||
% The type $\wctype{\overline{\Delta}}{C}{\ol{T}}$ defines a set of wildcards $\overline{\Delta}$,
|
||||
% which can be used inside the type parameters $\ol{T}$.
|
||||
|
524
unify.tex
524
unify.tex
@ -70,7 +70,6 @@ We define two types as equal if they are mutual subtypes of each other.
|
||||
% then $\Delta \vdash [\type{S}/\type{S'}]\type{T} <: \type{T'}$.
|
||||
|
||||
|
||||
\textbf{Capture Constraints:}
|
||||
The equality relation on Capture constraints is not reflexive.
|
||||
A capture constraint is never equal to another capture constraint even when structurally the same
|
||||
($\type{T} \lessdotCC \type{S} \neq \type{T} \lessdotCC \type{S}$).
|
||||
@ -79,29 +78,6 @@ All constraints are stored in a set and there are no dublicates of subtype const
|
||||
Capture constraints however have to be stored as a list or have an unique number assigned
|
||||
so that duplicates don't get automatically discarded.
|
||||
|
||||
Capture constraints are treated like regular subtype constraints.
|
||||
All transformations for subtype constraints work for capture constraints aswell.
|
||||
For clarification Subtype constraints are marked with a number.
|
||||
Constraints with the same number stay the same type.
|
||||
Newly created subtype constraints are always regular subtype constrains unless stated otherwise.
|
||||
The \rulename{Adopt} rule for example takes multiple subtype constraints and adds a new one.
|
||||
Having the constraints
|
||||
$\ntv{a} \lessdotCC \wtv{b}, \ntv{a} \lessdot \type{String}, \wtv{b} \lessdot \type{Object}$
|
||||
would lead to
|
||||
$\wtv{b} \lessdot \type{String}, \ntv{a} \lessdotCC \wtv{b}, \ntv{a} \lessdot \type{String}, \wtv{b} \lessdotCC \type{Object}$
|
||||
after applying \rulename{Adopt}.
|
||||
The new generated constraint $\wtv{b} \lessdot \type{String}$ is a normal subtype constraint.
|
||||
The type placeholders which are annotated as wildcard placeholders also stay wildcard placeholders.
|
||||
The only rule that replaces wildcard type placeholders with regular placeholders is the \rulename{Normalize} rule.
|
||||
|
||||
\textbf{Wildcard Environment:}
|
||||
Additional to a constraint set \unify{} holds a wildcard environment $\wildcardEnv{}$ keeping free variables.
|
||||
The algorithm starts with an empty wildcard environment $\wildcardEnv{}$.
|
||||
Only the \rulename{Capture} rule adds wildcards to that environment
|
||||
and every added wildcard gets a fresh unique name.
|
||||
This ensures the wildcard environment $\wildcardEnv{}$ never
|
||||
gets the same wildcard twice.
|
||||
|
||||
% \subsection{Capture Conversion}
|
||||
% % TODO: Describe Capture conversion
|
||||
% Capture conversion is done during the \unify{} algorithm.
|
||||
@ -143,57 +119,6 @@ The \unify{} algorithm internally uses the following data types:
|
||||
$\wtype{W}$ & $::=$ & $\wildcard{X}{U}{L}$ & Wildcard \\
|
||||
\end{tabular}
|
||||
|
||||
The algorithm is split into multiple parts:
|
||||
\begin{description}
|
||||
\item[Step 1:]
|
||||
Apply the rules depicted in the figures \ref{fig:normalizing-rules}, \ref{fig:reduce-rules} and \ref{fig:wildcard-rules} exhaustively.
|
||||
Starting with the \rulename{circle} rule.
|
||||
|
||||
\item[Step 2:]
|
||||
%If there are no $(\type{T} \lessdot \tv{a})$ constraints remaining in the constraint set $C$
|
||||
%resume with step 4.
|
||||
|
||||
The rules in figure \ref{fig:step2-rules} offer multiple possibilities to deal with constraints of the form $\type{N} \lessdot \tv{a}$.
|
||||
This builds a search tree over multiple possible solutions.
|
||||
\unify{} has to try each branch and accumulate the resulting solutions into a solution set.
|
||||
|
||||
$\type{T} \lessdot \ntv{a}$ constraints have three and $\type{T} \lessdot \wtv{a}$ constraints have five possible transformations.
|
||||
|
||||
\item[Step 3:]
|
||||
We apply the rules in figure \ref{fig:cleanup-rules} exhaustively and proceed with step 4.
|
||||
|
||||
\item[Step 4:] \textit{(Generating Result)}
|
||||
Apply the rules in figure \ref{fig:generation-rules} until $\wildcardEnv = \emptyset$ and $C = \emptyset$.
|
||||
The resulting $\Delta, \sigma$ is a correct solution.
|
||||
|
||||
For this step to succeed there should only be four kinds of constraints left.
|
||||
\begin{enumerate}
|
||||
%\item\label{item:3} $\tv{a} \lessdot \tv{b}$ %, with $a$ and $b$ both isolated type variables
|
||||
\item $\tv{a} \doteq \tv{b}$
|
||||
%\item $\wtv{a} \doteq \type{G}$
|
||||
\item\label{item:1} $\tv{a} \lessdot \wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}$, with $\text{fv}(\wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}) \subseteq \Delta_in$
|
||||
\item\label{item:2} $\tv{a} \doteq \wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}$, with $\tv{a} \notin \ol{\type{T}}$ % and $\text{fv}(\wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}) = \emptyset$
|
||||
\item\label{item:3} $\tv{a} \doteq \rwildcard{X}$
|
||||
\end{enumerate}
|
||||
|
||||
%Each type placeholder $\tv{a}$ must solely appear on the left side of a constraint.
|
||||
\unify{} fails if there is any $\tv{a} \doteq \type{T}$ such that $\tv{a}$ occurs in $\type{T}$.
|
||||
For the cases \ref{item:1}, \ref{item:2}, and \ref{item:3} the placeholder $\tv{a}$
|
||||
cannot appear anywhere else in the constraint set.
|
||||
Otherwise the generation rules \rulename{GenSigma} and \rulename{GenDelta} will not be able to process every constraint.
|
||||
|
||||
% \begin{displaymath}
|
||||
% \deduction{
|
||||
% \wildcardEnv \cup \set{\wildcard{B}{\type{G}}{\type{G'}}} \vdash C \implies \Delta, \sigma
|
||||
% }{
|
||||
% \wildcardEnv \vdash C \implies \Delta \cup \set{\wildcard{B}{\type{G}}{\type{G'}}}, \sigma
|
||||
% }\quad \text{tph}(\type{G}) = \emptyset, \text{tph}(\type{G'}) = \emptyset,
|
||||
% \rwildcard{B} \notin \text{dom}(\Delta)
|
||||
% \quad \rulename{AddDelta}
|
||||
% \end{displaymath}
|
||||
\end{description}
|
||||
|
||||
|
||||
The $\wtv{a}$ type variables are flagged as wildcard type variables.
|
||||
These type variables can be substituted by a wildcard or a type with free wildcard variables.
|
||||
As long as a type variable is flagged as $\wtv{a}$ it can be used by the \rulename{Subst-WC} rule in step 1.
|
||||
@ -206,137 +131,8 @@ The \rulename{Tame} rule eliminates wildcards. %TODO
|
||||
This is done by setting the upper and lower bound to the same value.
|
||||
|
||||
\unify{} applies a capture conversion everywhere it is possible (see \rulename{Capture} rule).
|
||||
Capture conversion removes a types bounding environment $\Delta$ and adds the included wildcard definitions to the global environment $\wildcardEnv{}$.
|
||||
%Type variables used in its type parameters are now bound to a global scope and not locally anymore.
|
||||
|
||||
The \rulename{match} rule generates fresh wildcards $\overline{\wildcard{A}{\tv{u}}{\tv{l}}}$.
|
||||
Their upper and lower bounds are fresh type variables.
|
||||
|
||||
\unify{} is able to remove wildcards by assigning their upper and lower bounds the same type
|
||||
(Def: $\type{Object} = \wildcard{A}{Object}{Object}$ by definition \ref{def:equal}).
|
||||
This is used by the \rulename{Tame} rule.
|
||||
|
||||
\textbf{Helper functions:}
|
||||
\begin{description}
|
||||
\item[$\tph{}$] returns all type placeholders inside a given type.
|
||||
|
||||
\textit{Example:} $\tph(\wctype{\wildcard{X}{\tv{a}}{\bot}}{Pair}{\wtv{b},\rwildcard{X}}) = \set{\tv{a}, \wtv{b}}$
|
||||
\item [$\ll$ relation:]
|
||||
The $\ll$ relation is the reflexive and transitive closure of the \texttt{extends} relations:
|
||||
\begin{displaymath}
|
||||
\begin{array}[c]{c}
|
||||
\exptype{C}{\ol{X} \triangleleft \ol{N}} \triangleleft \exptype{D}{\ol{N}} \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\texttt{C} \ll \texttt{D}
|
||||
\end{array}
|
||||
\quad
|
||||
\begin{array}[c]{l}
|
||||
\\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\texttt{C} \ll \texttt{C}
|
||||
\end{array}
|
||||
\quad
|
||||
\begin{array}[c]{l}
|
||||
\texttt{C} \ll \texttt{D}, \texttt{D} \ll \texttt{E} \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\texttt{C} \ll \texttt{E}
|
||||
\end{array}
|
||||
\end{displaymath}
|
||||
The algorithm uses it to determine if two types are possible subtypes of one another.
|
||||
This is needed in the \rulename{adapt} and \rulename{match} rules.
|
||||
|
||||
%\textbf{Wildcard renaming}\\
|
||||
\item[Wildcard renaming:]
|
||||
The \rulename{reduce} rule separates wildcards from their environment.
|
||||
At this point each wildcard gets a new and unique name.
|
||||
To only rename the respective wildcards the reduce rule renames wildcards up to alpha conversion:
|
||||
($[\ol{C}/\ol{B}]$ in the \rulename{reduce} rule)
|
||||
\begin{align*}
|
||||
[\type{A}/\type{B}]\type{B} &= \type{A} \\
|
||||
[\type{A}/\type{B}]\type{C} &= \type{C} & \text{if}\ \type{B} \neq \type{C}\\
|
||||
[\type{A}/\type{B}]\wcNtype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{N} &= \wcNtype{\overline{\wildcard{X}{[\type{A}/\type{B}]\type{U}}{[\type{A}/\type{B}]\type{L}}}}{[\type{A}/\type{B}]N} & \text{if}\ \type{B} \notin \overline{\rwildcard{X}} \\
|
||||
[\type{A}/\type{B}]\wcNtype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{N} &= \wcNtype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{N} & \text{if}\ \type{B} \in \overline{\rwildcard{X}} \\
|
||||
\end{align*}
|
||||
\item[Free Variables:]
|
||||
The $\text{fv}$ function assumes every wildcard type variable to be a free variable aswell.
|
||||
% TODO: describe a function which determines free variables? or do an example?
|
||||
|
||||
\item[Fresh Wildcards:]
|
||||
$\text{fresh}\ \overline{\wildcard{A}{\tv{u}}{\tv{l}}}$ generates fresh wildcards.
|
||||
The new names $\ol{A}$ are fresh, aswell as the type variables $\ol{\tv{u}}$ and $\ol{\tv{l}}$,
|
||||
which are used for the upper and lower bounds.
|
||||
\end{description}
|
||||
% \noindent
|
||||
% \textbf{Example: (reduce-rule)}
|
||||
% %The \ruleReduceWC{} resembles the \texttt{S-Exists} subtyping rule.
|
||||
% %It converts wildcard types to fresh type variables.
|
||||
% %For example take the input constraint $\exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$.
|
||||
% %First we apply the \ruleReduceWC{} rule, which replaces $\wildcard{A}{\tv{c}}{\tv{d}}$ with a fresh type variable $\tv{a}$:
|
||||
% We assume the input constraints $C = \exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$.
|
||||
% The type on the right side $\wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$
|
||||
% \begin{align*}
|
||||
% \ddfrac{
|
||||
% \exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}
|
||||
% }{
|
||||
% \ntype{Object} \doteq \tv{a}, \tv{b} \doteq \tv{a}, \tv{a} \lessdot \tv{c}, \tv{d} \lessdot \tv{a}
|
||||
% } \ruleReduceWC{}
|
||||
% \end{align*}
|
||||
|
||||
% By substition we get the result: % $\tv{a} \doteq \type{Object}$, $\tv{a} \doteq \type{Object}$, $\ldots$.
|
||||
|
||||
% \begin{align*}
|
||||
% \ddfrac{
|
||||
% \ntype{Object} \doteq \tv{a}, \tv{b} \doteq \tv{a}, \tv{a} \lessdot \tv{c}, \tv{d} \lessdot \tv{a}
|
||||
% }{
|
||||
% \tv{a} \doteq \ntype{Object} , \tv{b} \doteq \ntype{Object}, \ntype{Object} \lessdot \tv{c}, \tv{d} \lessdot \ntype{Object}
|
||||
% } \rulename{Subst}
|
||||
% \end{align*}
|
||||
% \\[1em]
|
||||
|
||||
|
||||
The cleanup step prepares the constraint set for the last step by applying the following concepts:
|
||||
%Two transformations are done which also help to remove unnecessary types from the solution set.
|
||||
\begin{description}
|
||||
\item[Bottom type]
|
||||
The bottom type $\bot$ is used to generate \texttt{? extends} wildcard definitions.
|
||||
This is the only possible solution when dealing with multiple upper bounds:
|
||||
$\tv{a} \lessdot \type{T}, \tv{a} \lessdot \type{S}$ is usually not a correct solution (given $\type{S}$ and $\type{T}$ are no subtypes of eachother).
|
||||
But if $\tv{a}$ is a lower bound of a wildcard it can be set to $\bot$.
|
||||
Those constraints only stay in the constraint set after the first step if $\type{S}$ and $\type{T}$ do not have a common subtype.
|
||||
The \rulename{Ground} rule uses this concept to generate \texttt{extends} Wildcards.
|
||||
|
||||
\end{description}
|
||||
|
||||
|
||||
% \textbf{Example:}
|
||||
% \begin{displaymath}
|
||||
% \begin{array}[c]{@{}ll}
|
||||
% \begin{array}[c]{l}
|
||||
% \wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash
|
||||
% C \cup \, \set{ \type{Object} \doteq \type{X}, \tv{l} \lessdot \tv{u} } \\
|
||||
% \hline
|
||||
% \vspace*{-0.4cm}\\
|
||||
% \wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash C \cup \,
|
||||
% \set{\type{Object} \lessdot \type{X}, \type{X} \lessdot \type{Object}, \tv{l} \lessdot \tv{u}
|
||||
% }\\
|
||||
% \hline
|
||||
% \vspace*{-0.4cm}\\
|
||||
% \wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash C \cup \,
|
||||
% \set{\type{Object} \lessdot \tv{l}, \tv{u} \lessdot \type{Object}, \tv{l} \lessdot \tv{u}
|
||||
% }\\
|
||||
% \hline
|
||||
% \vspace*{-0.4cm}\\
|
||||
% \ldots\\
|
||||
% \hline
|
||||
% \vspace*{-0.4cm}\\
|
||||
% \wildcardEnv \cup \set{ \wildcard{X}{\type{Object}}{\type{Object}} } \vdash C \\
|
||||
% \end{array}
|
||||
% \end{array}
|
||||
% \end{displaymath}
|
||||
|
||||
Capture conversion removes a types bounding environment $\Delta$.
|
||||
Type variables used in its type parameters are now bound to a global scope and not locally anymore.
|
||||
|
||||
\begin{figure}
|
||||
\begin{center}
|
||||
@ -569,6 +365,10 @@ $
|
||||
\caption{Constraint normalize rules}\label{fig:normalizing-rules}
|
||||
\end{figure}
|
||||
|
||||
The \rulename{match} rule generates fresh wildcards $\overline{\wildcard{A}{\tv{u}}{\tv{l}}}$.
|
||||
Their upper and lower bounds are fresh type variables.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\begin{center}
|
||||
\leavevmode
|
||||
@ -652,7 +452,7 @@ $
|
||||
C \cup \, \set{ \wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}} \lessdotCC \type{T} } \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \cup \overline{\wildcard{C}{[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}]\type{U}}{[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}]\type{L}}}
|
||||
\wildcardEnv \cup \overline{\wildcard{C}{\type{U}}{\type{L}}}
|
||||
\vdash C \cup \, \set{
|
||||
[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}] \exptype{C}{\ol{S}} \lessdot \type{T} }
|
||||
\end{array}
|
||||
@ -779,11 +579,67 @@ $
|
||||
\end{array}
|
||||
\end{array}
|
||||
$
|
||||
\\\\
|
||||
\rulename{Crunch}
|
||||
& $\begin{array}[c]{@{}ll}
|
||||
\begin{array}[c]{l}
|
||||
\wildcardEnv \vdash C \cup \, \set{ \tv{a} \doteq \wctype{\Delta', \set{\overline{\wildcard{X}{\type{U}}{\type{L}}}}}{C}{\ol{S}} } \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \vdash
|
||||
C \cup \set{ \tv{a} \doteq \wctype{\Delta'}{C}{[\ol{U}/\ol{X}]\ol{S}}}
|
||||
\end{array}
|
||||
&\begin{array}[c]{l}
|
||||
\ol{U} = \ol{L}
|
||||
\end{array}
|
||||
\end{array}$
|
||||
\\\\
|
||||
\rulename{Crunch}
|
||||
& $\begin{array}[c]{@{}ll}
|
||||
\begin{array}[c]{l}
|
||||
\wildcardEnv \vdash C \cup \, \set{ \tv{a} \lessdot \wctype{\Delta', \set{\overline{\wildcard{X}{\type{U}}{\type{L}}}}}{C}{\ol{S}} } \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \vdash
|
||||
C \cup \set{ \tv{a} \lessdot \wctype{\Delta'}{C}{[\ol{U}/\ol{X}]\ol{S}}}
|
||||
\end{array}
|
||||
&\begin{array}[c]{l}
|
||||
\ol{U} = \ol{L}
|
||||
\end{array}
|
||||
\end{array}$
|
||||
\end{tabular}}
|
||||
\end{center}
|
||||
\caption{Constraint reduce rules}\label{fig:reduce-rules}
|
||||
\end{figure}
|
||||
|
||||
Capture constraints are treated like regular subtype constraints.
|
||||
All transformations for subtype constraints work for capture constraints aswell.
|
||||
For clarification Subtype constraints are marked with a number.
|
||||
Subtype constraints holding the same number keep their respective type.
|
||||
Newly created subtype constraints are always regular subtype constrains unless stated otherwise.
|
||||
The \rulename{Adopt} rule for example takes multiple subtype constraints and adds a new one.
|
||||
Having the constraints
|
||||
$\ntv{a} \lessdotCC \wtv{b}, \ntv{a} \lessdot \type{String}, \wtv{b} \lessdot \type{Object}$
|
||||
would lead to
|
||||
$\wtv{b} \lessdot \type{String}, \ntv{a} \lessdotCC \wtv{b}, \ntv{a} \lessdot \type{String}, \wtv{b} \lessdotCC \type{Object}$
|
||||
after applying \rulename{Adopt}.
|
||||
The new generated constraint $\wtv{b} \lessdot \type{String}$ is a normal subtype constraint.
|
||||
The type placeholders which are annotated as wildcard placeholders also stay wildcard placeholders.
|
||||
The only rule that replaces wildcard type placeholders with regular placeholders is the \rulename{Normalize} rule.
|
||||
|
||||
The algorithm holds two sets.
|
||||
The input constraints and a wildcard environment $\wildcardEnv{}$ keeping free variables.
|
||||
The algorithm starts with an empty wildcard environment $\wildcardEnv{}$.
|
||||
Only the \rulename{Capture} rule adds wildcards to that environment.
|
||||
And every added wildcard gets a fresh unique name.
|
||||
This ensures the wildcard environment $\wildcardEnv{}$ never
|
||||
gets the same wildcard twice.
|
||||
|
||||
|
||||
\textbf{Step 1:}
|
||||
Apply the rules depicted in the figures \ref{fig:normalizing-rules}, \ref{fig:reduce-rules} and \ref{fig:wildcard-rules} exhaustively.
|
||||
Starting with the \rulename{circle} rule. Afterwards the other rules in figure \ref{fig:normalizing-rules}.
|
||||
|
||||
\begin{figure}
|
||||
If we find an illicit constraint assigning a type containing free variables to a type placeholder not flagged as a wildcard placeholder the algorithm fails.
|
||||
|
||||
@ -795,6 +651,131 @@ $\set{\tv{a} \doteq \type{N}} \in C$ with $\text{fv}(\type{N}) \cap \Delta_{in}
|
||||
\caption{Fail conditions}
|
||||
\end{figure}
|
||||
|
||||
The first step of the algorithm is able to remove wildcards.
|
||||
Removing a wildcard works by setting its lower and upper bound to be equal.
|
||||
(Def: $\type{Object} = \wildcard{A}{Object}{Object}$).
|
||||
The \rulename{Equals} rule is responsible for this.
|
||||
|
||||
The subtype constraints are a subset of the capture constraints $(\type{T} \lessdot \type{S}) \implies (\type{T} \lessdotCC \type{S})$.
|
||||
Every transformation on a subtype constraint can also be applied to a capture constraint, but the capture constraints need to be preserved.
|
||||
We indicate this by numbering the constraints in each transformation.
|
||||
Constraints with the same number stay the same type.
|
||||
|
||||
\textbf{Example:}
|
||||
\begin{displaymath}
|
||||
\begin{array}[c]{@{}ll}
|
||||
\begin{array}[c]{l}
|
||||
\wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash
|
||||
C \cup \, \set{ \type{Object} \doteq \type{X}, \tv{l} \lessdot \tv{u} } \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash C \cup \,
|
||||
\set{\type{Object} \lessdot \type{X}, \type{X} \lessdot \type{Object}, \tv{l} \lessdot \tv{u}
|
||||
}\\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash C \cup \,
|
||||
\set{\type{Object} \lessdot \tv{l}, \tv{u} \lessdot \type{Object}, \tv{l} \lessdot \tv{u}
|
||||
}\\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\ldots\\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \cup \set{ \wildcard{X}{\type{Object}}{\type{Object}} } \vdash C \\
|
||||
\end{array}
|
||||
\end{array}
|
||||
\end{displaymath}
|
||||
|
||||
\textbf{Helper functions:}
|
||||
\begin{description}
|
||||
\item[$\tph{}$] returns all type placeholders inside a given type.
|
||||
|
||||
\textit{Example:} $\tph(\wctype{\wildcard{X}{\tv{a}}{\bot}}{Pair}{\wtv{b},\rwildcard{X}}) = \set{\tv{a}, \wtv{b}}$
|
||||
\item [$\ll$ relation:]
|
||||
The $\ll$ relation is the reflexive and transitive closure of the \texttt{extends} relations:
|
||||
\begin{displaymath}
|
||||
\begin{array}[c]{c}
|
||||
\exptype{C}{\ol{X} \triangleleft \ol{N}} \triangleleft \exptype{D}{\ol{N}} \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\texttt{C} \ll \texttt{D}
|
||||
\end{array}
|
||||
\quad
|
||||
\begin{array}[c]{l}
|
||||
\\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\texttt{C} \ll \texttt{C}
|
||||
\end{array}
|
||||
\quad
|
||||
\begin{array}[c]{l}
|
||||
\texttt{C} \ll \texttt{D}, \texttt{D} \ll \texttt{E} \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\texttt{C} \ll \texttt{E}
|
||||
\end{array}
|
||||
\end{displaymath}
|
||||
The algorithm uses it to determine if two types are possible subtypes of one another.
|
||||
This is needed in the \rulename{adapt} and \rulename{match} rules.
|
||||
|
||||
%\textbf{Wildcard renaming}\\
|
||||
\item[Wildcard renaming:]
|
||||
The \rulename{reduce} rule separates wildcards from their environment.
|
||||
At this point each wildcard gets a new and unique name.
|
||||
To only rename the respective wildcards the reduce rule renames wildcards up to alpha conversion:
|
||||
($[\ol{C}/\ol{B}]$ in the \rulename{reduce} rule)
|
||||
\begin{align*}
|
||||
[\type{A}/\type{B}]\type{B} &= \type{A} \\
|
||||
[\type{A}/\type{B}]\type{C} &= \type{C} & \text{if}\ \type{B} \neq \type{C}\\
|
||||
[\type{A}/\type{B}]\wcNtype{\Delta}{N} &= \wcNtype{\Delta}{[\type{A}/\type{B}]N} & \text{if}\ \type{B} \notin \Delta \\
|
||||
[\type{A}/\type{B}]\wcNtype{\Delta}{N} &= \wcNtype{\Delta}{N} & \text{if}\ \type{B} \in \Delta \\
|
||||
\end{align*}
|
||||
|
||||
\item[Free Variables:]
|
||||
The $\text{fv}$ function assumes every wildcard type variable to be a free variable aswell.
|
||||
|
||||
%\textbf{Fresh Wildcards}\\
|
||||
\item[Fresh Wildcards:]
|
||||
$\text{fresh}\ \overline{\wildcard{A}{\tv{u}}{\tv{l}}}$ generates fresh wildcards.
|
||||
The new names $\ol{A}$ are fresh, aswell as the type variables $\ol{\tv{u}}$ and $\ol{\tv{l}}$,
|
||||
which are used for the upper and lower bounds.
|
||||
\end{description}
|
||||
% \noindent
|
||||
% \textbf{Example: (reduce-rule)}
|
||||
% %The \ruleReduceWC{} resembles the \texttt{S-Exists} subtyping rule.
|
||||
% %It converts wildcard types to fresh type variables.
|
||||
% %For example take the input constraint $\exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$.
|
||||
% %First we apply the \ruleReduceWC{} rule, which replaces $\wildcard{A}{\tv{c}}{\tv{d}}$ with a fresh type variable $\tv{a}$:
|
||||
% We assume the input constraints $C = \exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$.
|
||||
% The type on the right side $\wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$
|
||||
% \begin{align*}
|
||||
% \ddfrac{
|
||||
% \exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}
|
||||
% }{
|
||||
% \ntype{Object} \doteq \tv{a}, \tv{b} \doteq \tv{a}, \tv{a} \lessdot \tv{c}, \tv{d} \lessdot \tv{a}
|
||||
% } \ruleReduceWC{}
|
||||
% \end{align*}
|
||||
|
||||
% By substition we get the result: % $\tv{a} \doteq \type{Object}$, $\tv{a} \doteq \type{Object}$, $\ldots$.
|
||||
|
||||
% \begin{align*}
|
||||
% \ddfrac{
|
||||
% \ntype{Object} \doteq \tv{a}, \tv{b} \doteq \tv{a}, \tv{a} \lessdot \tv{c}, \tv{d} \lessdot \tv{a}
|
||||
% }{
|
||||
% \tv{a} \doteq \ntype{Object} , \tv{b} \doteq \ntype{Object}, \ntype{Object} \lessdot \tv{c}, \tv{d} \lessdot \ntype{Object}
|
||||
% } \rulename{Subst}
|
||||
% \end{align*}
|
||||
% \\[1em]
|
||||
|
||||
\noindent
|
||||
\textbf{Step 2:}
|
||||
%If there are no $(\type{T} \lessdot \tv{a})$ constraints remaining in the constraint set $C$
|
||||
%resume with step 4.
|
||||
|
||||
The rules in figure \ref{fig:step2-rules} offer multiple possibilities to deal with constraints of the form $\type{N} \lessdot \tv{a}$.
|
||||
This builds a search tree over multiple possible solutions.
|
||||
\unify{} has to try each branch and accumulate the resulting solutions into a solution set.
|
||||
\def\boxit#1#2{%
|
||||
\smash{\color{red}\fboxrule=1pt\relax\fboxsep=2pt\relax%
|
||||
\llap{\rlap{\fbox{\phantom{\rule{#1}{#2}}}}~}}\ignorespaces
|
||||
@ -940,6 +921,8 @@ $\set{\tv{a} \doteq \type{N}} \in C$ with $\text{fv}(\type{N}) \cap \Delta_{in}
|
||||
\label{fig:step2-rules}
|
||||
\end{figure}
|
||||
|
||||
$\type{T} \lessdot \ntv{a}$ constraints have three and $\type{T} \lessdot \wtv{a}$ constraints have five possible transformations.
|
||||
|
||||
\begin{figure}
|
||||
\begin{center}
|
||||
\fbox{
|
||||
@ -973,6 +956,23 @@ $\set{\tv{a} \doteq \type{N}} \in C$ with $\text{fv}(\type{N}) \cap \Delta_{in}
|
||||
\label{fig:step2-rules}
|
||||
\end{figure}
|
||||
|
||||
\unify{} generates wildcard types for constraints of the form $\type{N} \lessdot \tv{a}$ with the \rulename{\generalizeRule} rule.
|
||||
Otherwise only the wildcards already defined in the input constraints will be included in the result.
|
||||
\rulename{\generalizeRule} attempts to give $\tv{a}$ a more general type by replacing only the type parameters with fresh wildcards.
|
||||
The second variation sets $\tv{a}$ to the direct supertype of type \texttt{C}.
|
||||
For the constraint $\texttt{Object} \lessdot \tv{a}$ the algorithm can only apply $\tv{a} \doteq \texttt{Object}$,
|
||||
because \texttt{Object} has no other supertype than itself.
|
||||
|
||||
Constraints of the form $\set{ \tv{a} \lessdot \type{N}, \tv{a} \lessdot^* \tv{b}}$
|
||||
need to be handled in a similiar fashion.
|
||||
The type variable $\tv{b}$ could either be a sub or a supertype of the type $\type{N}$.
|
||||
We have to consider both possibilities.
|
||||
\\[1em]
|
||||
|
||||
\noindent
|
||||
\textbf{Step 3:}
|
||||
We apply the rules in figure \ref{fig:cleanup-rules} exhaustively and proceed with step 4.
|
||||
|
||||
\begin{figure}
|
||||
\begin{center}
|
||||
\leavevmode
|
||||
@ -1007,6 +1007,70 @@ C \cup \set{ \tv{a} \doteq \bot }
|
||||
\caption{Cleanup rules}\label{fig:cleanup-rules}
|
||||
\end{figure}
|
||||
|
||||
The cleanup step prepares the constraint set for the last step by applying the following concepts:
|
||||
%Two transformations are done which also help to remove unnecessary types from the solution set.
|
||||
\begin{description}
|
||||
\item[Bottom type]
|
||||
The bottom type $\bot$ is used to generate \texttt{? extends} wildcard definitions.
|
||||
This is the only possible solution when dealing with multiple upper bounds:
|
||||
$\tv{a} \lessdot \type{T}, \tv{a} \lessdot \type{S}$ is usually not a correct solution (given $\type{S}$ and $\type{T}$ are no subtypes of eachother).
|
||||
But if $\tv{a}$ is a lower bound of a wildcard it can be set to $\bot$.
|
||||
Those constraints only stay in the constraint set after the first step if $\type{S}$ and $\type{T}$ do not have a common subtype.
|
||||
The \rulename{Ground} rule uses this concept to generate \texttt{extends} Wildcards.
|
||||
|
||||
\item[Eliminating Wildcards]
|
||||
Wildcards that have the same upper and lower bounds can be removed.
|
||||
This is done by the \rulename{Crunch} rule.
|
||||
|
||||
\textit{Example:} The type $\wctype{\wildcard{X}{\type{String}}{\type{String}}}{List}{\rwildcard{X}}$
|
||||
becomes $\exptype{List}{\type{String}}$.
|
||||
|
||||
|
||||
%TODO: The a =. T (with T containing free variables) could be removed here.
|
||||
% Not needed for the soundness of the algorithm, but handy for the implementation (check this when implementing the algorithm)
|
||||
\end{description}
|
||||
|
||||
\noindent
|
||||
\textbf{Step 6 (Generating Result):}
|
||||
Apply the rules in figure \ref{fig:generation-rules} until $\wildcardEnv = \emptyset$ and $C = \emptyset$.
|
||||
The resulting $\Delta, \sigma$ is a correct solution.
|
||||
|
||||
For this step to succeed there should only be four kinds of constraints left.
|
||||
\begin{enumerate}
|
||||
%\item\label{item:3} $\tv{a} \lessdot \tv{b}$ %, with $a$ and $b$ both isolated type variables
|
||||
\item $\tv{a} \doteq \tv{b}$
|
||||
%\item $\wtv{a} \doteq \type{G}$
|
||||
\item\label{item:1} $\tv{a} \lessdot \wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}$, with $\text{fv}(\wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}) \subseteq \Delta_in$
|
||||
\item\label{item:2} $\tv{a} \doteq \wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}$, with $\tv{a} \notin \ol{\type{T}}$ % and $\text{fv}(\wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}) = \emptyset$
|
||||
\item\label{item:3} $\tv{a} \doteq \rwildcard{X}$
|
||||
\end{enumerate}
|
||||
% Constraints of the form $\tv{a} \doteq \rwildcard{X}$ are also possible.
|
||||
% should we add those to the \Delta environment?
|
||||
% How about removing them completely from the result set? Check with soundness condition
|
||||
|
||||
%Each type placeholder $\tv{a}$ must solely appear on the left side of a constraint.
|
||||
\unify{} fails if there is any $\tv{a} \doteq \type{T}$ such that $\tv{a}$ occurs in $\type{T}$.
|
||||
For the cases \ref{item:1}, \ref{item:2}, and \ref{item:3} the placeholder $\tv{a}$
|
||||
cannot appear anywhere else in the constraint set.
|
||||
Otherwise the generation rules \rulename{GenSigma} and \rulename{GenDelta} will not be able to process every constraint.
|
||||
|
||||
% After applying the GenDelta and GenSigma rules unifiers $\sigma$ do not contain
|
||||
% a unifier of the form $\tv{a} \to \tv{b}$.
|
||||
% Otherwise the found solution is incorrect.
|
||||
% This only happens if the input constraints contain type variables with no upper bound constraint like $\tv{a} \lessdot \type{N}$.
|
||||
|
||||
% \begin{displaymath}
|
||||
% \deduction{
|
||||
% \wildcardEnv \cup \set{\wildcard{B}{\type{G}}{\type{G'}}} \vdash C \implies \Delta, \sigma
|
||||
% }{
|
||||
% \wildcardEnv \vdash C \implies \Delta \cup \set{\wildcard{B}{\type{G}}{\type{G'}}}, \sigma
|
||||
% }\quad \text{tph}(\type{G}) = \emptyset, \text{tph}(\type{G'}) = \emptyset,
|
||||
% \rwildcard{B} \notin \text{dom}(\Delta)
|
||||
% \quad \rulename{AddDelta}
|
||||
% \end{displaymath}
|
||||
|
||||
\dashbox{The \text{tph} function returns all type placeholders inside a given type.}
|
||||
|
||||
\begin{figure}
|
||||
\begin{center}
|
||||
\fbox{
|
||||
@ -1124,7 +1188,6 @@ The General rule only creates the ones expressable by Java syntax, which still a
|
||||
%thats not true. it can spawn X^T_T2.List<X> where T and T2 are types and we need to choose one inbetween them
|
||||
Otherwise the algorithm could generate more solutions, but they have to be filterd out afterwards, because they cannot be translated into Java.
|
||||
|
||||
\letfj{} is not able to represent all Java programs. %TODO: this makes ist impossible for our algorithm to be complete on Java
|
||||
|
||||
\subsection{Implementation}
|
||||
%List this under implementation details
|
||||
@ -1132,48 +1195,3 @@ Every constraint that is not in solved form and is not able to be processed by a
|
||||
|
||||
The new constraint generated by the adopt rule may be eliminated by the match rule.
|
||||
The adopt rule still needs to be applied only once per constraint.
|
||||
|
||||
|
||||
\textbf{Eliminating Wildcards}
|
||||
Wildcards that have the same upper and lower bounds can be removed.
|
||||
This is done by the \rulename{Crunch} rule.
|
||||
|
||||
\textit{Example:} The type $\wctype{\wildcard{X}{\type{String}}{\type{String}}}{List}{\rwildcard{X}}$
|
||||
becomes $\exptype{List}{\type{String}}$.
|
||||
|
||||
\begin{tabular}[t]{l@{~}l}
|
||||
\\\\
|
||||
\rulename{Crunch}
|
||||
& $\begin{array}[c]{@{}ll}
|
||||
\begin{array}[c]{l}
|
||||
\wildcardEnv \vdash C \cup \, \set{ \tv{a} \doteq \wctype{\Delta', \set{\overline{\wildcard{X}{\type{U}}{\type{L}}}}}{C}{\ol{S}} } \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \vdash
|
||||
C \cup \set{ \tv{a} \doteq \wctype{\Delta'}{C}{[\ol{U}/\ol{X}]\ol{S}}}
|
||||
\end{array}
|
||||
&\begin{array}[c]{l}
|
||||
\ol{U} = \ol{L}
|
||||
\end{array}
|
||||
\end{array}$
|
||||
\\\\
|
||||
\rulename{Crunch}
|
||||
& $\begin{array}[c]{@{}ll}
|
||||
\begin{array}[c]{l}
|
||||
\wildcardEnv \vdash C \cup \, \set{ \tv{a} \lessdot \wctype{\Delta', \set{\overline{\wildcard{X}{\type{U}}{\type{L}}}}}{C}{\ol{S}} } \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \vdash
|
||||
C \cup \set{ \tv{a} \lessdot \wctype{\Delta'}{C}{[\ol{U}/\ol{X}]\ol{S}}}
|
||||
\end{array}
|
||||
&\begin{array}[c]{l}
|
||||
\ol{U} = \ol{L}
|
||||
\end{array}
|
||||
\end{array}$
|
||||
\end{tabular}
|
||||
|
||||
|
||||
% After applying the GenDelta and GenSigma rules unifiers $\sigma$ do not contain
|
||||
% a unifier of the form $\tv{a} \to \tv{b}$.
|
||||
% Otherwise the found solution is incorrect.
|
||||
% This only happens if the input constraints contain type variables with no upper bound constraint like $\tv{a} \lessdot \type{N}$.
|
||||
|
Loading…
Reference in New Issue
Block a user