Compare commits
2 Commits
bf401f1f08
...
b546da831d
Author | SHA1 | Date | |
---|---|---|---|
b546da831d | |||
b9e0b1fa6d |
@ -271,15 +271,25 @@ $\Delta \vdash \sigma(C') \implies \Delta \vdash \sigma(C)$
|
||||
%\item[Capture, Reduce] are always applied together. We have to destinct between two cases:
|
||||
\item[Prepare]
|
||||
To show
|
||||
$\Delta \vdash \wctype{\overline{\wildcard{B}{U}{L}}}{C}{\ol{S}} <: \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}$ by S-Exists we have to proof:
|
||||
$\Delta \vdash \wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}} <: \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}$ by S-Exists we have to proof:
|
||||
We know
|
||||
\begin{gather}
|
||||
\ol{S} = \ol{T}\\
|
||||
\text{fv}(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) = \emptyset\\
|
||||
\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
|
||||
%TODO
|
||||
\end{gather}
|
||||
|
||||
\begin{gather}
|
||||
\Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\
|
||||
\Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\
|
||||
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta) \\
|
||||
\label{rp:3}
|
||||
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\
|
||||
\label{rp:4}
|
||||
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{X}{U}{L}}}{C}{\ol{S}}) = \emptyset
|
||||
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset
|
||||
\end{gather}
|
||||
\ref{rp:4} is always true.
|
||||
Due to $\text{fv}(\sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}})) = \emptyset$ implies \ref{rp:3}.
|
||||
|
||||
\item[Capture]
|
||||
If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) = \emptyset$ the preposition holds by Assumption and S-Exists.
|
||||
|
@ -380,10 +380,10 @@ Their upper and lower bounds are fresh type variables.
|
||||
\begin{array}[c]{@{}ll}
|
||||
\begin{array}[c]{l}
|
||||
\wildcardEnv \vdash
|
||||
C \cup \, \set{ \wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}} \lessdot \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}} } \\
|
||||
C \cup \, \set{ \wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}} \lessdot \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}} } \\
|
||||
\hline
|
||||
\vspace*{-0.4cm}\\
|
||||
\wildcardEnv \cup \overline{\wildcard{B}{\type{U}}{\type{L}}}
|
||||
\wildcardEnv \cup \overline{\wildcard{B}{\type{U'}}{\type{L'}}}
|
||||
\vdash C \cup \, \set{
|
||||
\ol{\type{S}} \doteq [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{\type{T}},
|
||||
\ol{\wtv{a}} \lessdot [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{U}, [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{L} \lessdot \ol{\wtv{a}} }
|
||||
@ -391,7 +391,7 @@ Their upper and lower bounds are fresh type variables.
|
||||
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
||||
\quad \begin{array}[c]{l}
|
||||
\ol{\rwildcard{C}} \ \text{fresh}\\
|
||||
\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset\\
|
||||
\text{fv}(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}}) = \emptyset\\
|
||||
\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
|
||||
\end{array}
|
||||
\end{array}
|
||||
|
Loading…
x
Reference in New Issue
Block a user