Compare commits
No commits in common. "e562c65774451d268806a1fc81c2d7e32e910917" and "a1514159504a24996d0a175c44308477c7ac6793" have entirely different histories.
e562c65774
...
a151415950
@ -121,8 +121,8 @@
|
|||||||
\newcommand{\wtypestore}[3]{\ensuremath{#1 = \wtype{#2}{#3}}}
|
\newcommand{\wtypestore}[3]{\ensuremath{#1 = \wtype{#2}{#3}}}
|
||||||
%\newcommand{\wtype}[2]{\ensuremath{[#1\ #2]}}
|
%\newcommand{\wtype}[2]{\ensuremath{[#1\ #2]}}
|
||||||
\newcommand{\wtv}[1]{\ensuremath{\tv{#1}_?}}
|
\newcommand{\wtv}[1]{\ensuremath{\tv{#1}_?}}
|
||||||
\newcommand{\ntv}[1]{\ensuremath{\underline{\tv{#1}}}}
|
%\newcommand{\ntv}[1]{\ensuremath{\underline{\tv{#1}}}}
|
||||||
%\newcommand{\ntv}[1]{\tv{#1}}
|
\newcommand{\ntv}[1]{\tv{#1}}
|
||||||
\newcommand{\wcstore}{\ensuremath{\Delta}}
|
\newcommand{\wcstore}{\ensuremath{\Delta}}
|
||||||
|
|
||||||
%\newcommand{\rwildcard}[1]{\ensuremath{\mathtt{#1}_?}}
|
%\newcommand{\rwildcard}[1]{\ensuremath{\mathtt{#1}_?}}
|
||||||
|
40
unify.tex
40
unify.tex
@ -146,28 +146,21 @@ The \unify{} algorithm internally uses the following data types:
|
|||||||
The algorithm is split into multiple parts:
|
The algorithm is split into multiple parts:
|
||||||
\begin{description}
|
\begin{description}
|
||||||
\item[Step 1:]
|
\item[Step 1:]
|
||||||
Apply the rules depicted in the figures \ref{fig:normalizing-rules}, \ref{fig:reduce-rules} and \ref{fig:wildcard-rules} exhaustively,
|
Apply the rules depicted in the figures \ref{fig:normalizing-rules}, \ref{fig:reduce-rules} and \ref{fig:wildcard-rules} exhaustively.
|
||||||
starting with the \rulename{circle} rule.
|
Starting with the \rulename{circle} rule.
|
||||||
|
|
||||||
\item[Step 2:]
|
\item[Step 2:]
|
||||||
%If there are no $(\type{T} \lessdot \tv{a})$ constraints remaining in the constraint set $C$
|
%If there are no $(\type{T} \lessdot \tv{a})$ constraints remaining in the constraint set $C$
|
||||||
%resume with step 4.
|
%resume with step 4.
|
||||||
|
|
||||||
The second step is nondeterministic.
|
The rules in figure \ref{fig:step2-rules} offer multiple possibilities to deal with constraints of the form $\type{N} \lessdot \tv{a}$.
|
||||||
%\unify{} has to pick the right transformation for each constraint of the form $\type{N} \lessdot \tv{a}$.
|
This builds a search tree over multiple possible solutions.
|
||||||
%The rules in figure \ref{fig:step2-rules} offer three possibilities to deal with constraints $\type{N} \lessdot \tv{a}$.
|
\unify{} has to try each branch and accumulate the resulting solutions into a solution set.
|
||||||
For every $\type{T} \lessdot \tv{a}$ constraint \unify{} has to pick exactly one transformation from figure \ref{fig:step2-rules}.
|
|
||||||
The same principle goes for constraints of the form $\tv{a} \lessdot \type{N}, \tv{a} \lessdot \tv{b}$ and the two transformations in figure \ref{fig:step2-rules2}.
|
|
||||||
%They have to be applied until the constraint set holds no constraints of the form $\tv{a} \lessdot \type{N}, \tv{a} \lessdot \tv{b}$.
|
|
||||||
If atleast one transformation was applied in this step revert to step 1.
|
|
||||||
Otherwise proceed with step 3.
|
|
||||||
%This builds a search tree over multiple possible solutions.
|
|
||||||
%\unify{} has to try each branch and accumulate the resulting solutions into a solution set.
|
|
||||||
|
|
||||||
%$\type{T} \lessdot \ntv{a}$ constraints have three and $\type{T} \lessdot \wtv{a}$ constraints have five possible transformations.
|
$\type{T} \lessdot \ntv{a}$ constraints have three and $\type{T} \lessdot \wtv{a}$ constraints have five possible transformations.
|
||||||
|
|
||||||
\item[Step 3:]
|
\item[Step 3:]
|
||||||
Apply the rules in figure \ref{fig:cleanup-rules} exhaustively and move on with step 4.
|
We apply the rules in figure \ref{fig:cleanup-rules} exhaustively and proceed with step 4.
|
||||||
|
|
||||||
\item[Step 4:] \textit{(Generating Result)}
|
\item[Step 4:] \textit{(Generating Result)}
|
||||||
Apply the rules in figure \ref{fig:generation-rules} until $\wildcardEnv = \emptyset$ and $C = \emptyset$.
|
Apply the rules in figure \ref{fig:generation-rules} until $\wildcardEnv = \emptyset$ and $C = \emptyset$.
|
||||||
@ -270,12 +263,6 @@ To only rename the respective wildcards the reduce rule renames wildcards up to
|
|||||||
\item[Free Variables:]
|
\item[Free Variables:]
|
||||||
The $\text{fv}$ function assumes every wildcard type variable to be a free variable aswell.
|
The $\text{fv}$ function assumes every wildcard type variable to be a free variable aswell.
|
||||||
% TODO: describe a function which determines free variables? or do an example?
|
% TODO: describe a function which determines free variables? or do an example?
|
||||||
\begin{align*}
|
|
||||||
\text{fv}(\rwildcard{A}) &= \set{ \rwildcard{A} } \\
|
|
||||||
\text{fv}(\ntv{a}) &= \emptyset \\
|
|
||||||
\text{fv}(\wtv{a}) &= \set{\wtv{a}} \\
|
|
||||||
\text{fv}(\wctype{\Delta}{C}{\ol{T}}) &= \set{\text{fv}(\type{T}) \mid \type{T} \in \ol{T}} / \text{dom}(\Delta) \\
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
\item[Fresh Wildcards:]
|
\item[Fresh Wildcards:]
|
||||||
$\text{fresh}\ \overline{\wildcard{A}{\tv{u}}{\tv{l}}}$ generates fresh wildcards.
|
$\text{fresh}\ \overline{\wildcard{A}{\tv{u}}{\tv{l}}}$ generates fresh wildcards.
|
||||||
@ -458,11 +445,11 @@ $
|
|||||||
\hline
|
\hline
|
||||||
\vspace*{-0.4cm}\\
|
\vspace*{-0.4cm}\\
|
||||||
\wildcardEnv \vdash C
|
\wildcardEnv \vdash C
|
||||||
\end{array}
|
\end{array}
|
||||||
$
|
$
|
||||||
\quad
|
\\\\
|
||||||
\rulename{Pit}
|
\rulename{Pit}
|
||||||
$
|
& $
|
||||||
\begin{array}[c]{l}
|
\begin{array}[c]{l}
|
||||||
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot_1 \bot } \\
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot_1 \bot } \\
|
||||||
\hline
|
\hline
|
||||||
@ -543,7 +530,10 @@ $
|
|||||||
\vspace*{-0.4cm}\\
|
\vspace*{-0.4cm}\\
|
||||||
\wildcardEnv \vdash C
|
\wildcardEnv \vdash C
|
||||||
\end{array}
|
\end{array}
|
||||||
\quad
|
$
|
||||||
|
\\\\
|
||||||
|
\rulename{Erase}
|
||||||
|
& $
|
||||||
\begin{array}[c]{l}
|
\begin{array}[c]{l}
|
||||||
\wildcardEnv \vdash C \cup \, \set{ \type{T} \lessdot \type{T} } \\
|
\wildcardEnv \vdash C \cup \, \set{ \type{T} \lessdot \type{T} } \\
|
||||||
\hline
|
\hline
|
||||||
@ -980,7 +970,7 @@ $\set{\tv{a} \doteq \type{N}} \in C$ with $\text{fv}(\type{N}) \cap \Delta_{in}
|
|||||||
}
|
}
|
||||||
\end{center}
|
\end{center}
|
||||||
\caption{Step 2 branching: Multiple rules can be applied to the same constraint}
|
\caption{Step 2 branching: Multiple rules can be applied to the same constraint}
|
||||||
\label{fig:step2-rules2}
|
\label{fig:step2-rules}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
|
Loading…
Reference in New Issue
Block a user