|
|
|
@ -1,80 +1,11 @@
|
|
|
|
|
% TODO: unify changes
|
|
|
|
|
% a? <. T can be deleted in the last step
|
|
|
|
|
% delete wildcard tphs a? when needed
|
|
|
|
|
% aswell ass free variables:
|
|
|
|
|
% a <. T with fv(T) not empty and not in \Delta' must be removed by U = L
|
|
|
|
|
% also in T <. T constraints no free variables are allowed on both sides
|
|
|
|
|
% also in T <. T constraints no free variables are allowed on both sides (why? this is wrong i think)
|
|
|
|
|
% the algorithm only removes wildcards, never adds them
|
|
|
|
|
|
|
|
|
|
% lessdotCC constraint cannot be removed. we do not know what to capture
|
|
|
|
|
% example <X> add(List<X> l, X v)
|
|
|
|
|
% here we need to generate constraints p1 <c List<x>, p2 <c x
|
|
|
|
|
% because x can become List<a?>:
|
|
|
|
|
|
|
|
|
|
% class Box<X>{}
|
|
|
|
|
|
|
|
|
|
% class Test{
|
|
|
|
|
|
|
|
|
|
% static <X> Box<X> add(Box<X> b, X x){return null;}
|
|
|
|
|
% static <X> Box<X> empty(){return null;}
|
|
|
|
|
% static <X> Box<Box<X>> empty2(){return null;}
|
|
|
|
|
% public static void main(String args[]){
|
|
|
|
|
% Box<?> b = null;
|
|
|
|
|
% Box<? extends Box<?>> b2 = add(empty2(), b);
|
|
|
|
|
% }
|
|
|
|
|
% }
|
|
|
|
|
|
|
|
|
|
\section{Unify}\label{sec:unify}
|
|
|
|
|
|
|
|
|
|
%TODO: Remove lessdotC constraints. those have to be handeld during constraint generation
|
|
|
|
|
% is capture conversion for methods in the same class unsovable? Can it be reduced to polymorphic recursion?
|
|
|
|
|
% the other problem is, that there are infinite subtypes.
|
|
|
|
|
% For example for a type X^Infinite<X>.Infinite<X>
|
|
|
|
|
% here a correct subtype would be an instantiation of the class Omega extends Infinite<Omega>
|
|
|
|
|
|
|
|
|
|
The parameter types given to a generic method also affect their return type.
|
|
|
|
|
During constraint generation the algorithm does not know the parameter types yet.
|
|
|
|
|
We generate $\lessdotCC$ constraints and let \unify{} do the capture conversion.
|
|
|
|
|
$\lessdotCC$ constraints are kept until they reach the form $\type{G} \lessdotCC \type{G}$ and a capture conversion is possible.
|
|
|
|
|
|
|
|
|
|
% A method has infinte possibilities of being called and there is no most general type.
|
|
|
|
|
% P<X,Y> m(C<X> c, C<Y> c2)
|
|
|
|
|
% depending on
|
|
|
|
|
% A.P<A,A> <. A,B.P<A,B>
|
|
|
|
|
|
|
|
|
|
% % During the method call it is not sure what kind of return type is needed from the method.
|
|
|
|
|
% % The method P<A,B> make(A a, B b)
|
|
|
|
|
% % The type A,B.P<A,B> cannot be a subtype of P<X,X>
|
|
|
|
|
% % But if A^X_X and B^X_X
|
|
|
|
|
% % Could a constraint C<X> <. a? be expanded to a? = X^u?_l?.C<X>
|
|
|
|
|
|
|
|
|
|
% Why is there no most general type?
|
|
|
|
|
% - the return type depends on the parameter types
|
|
|
|
|
The most general type denotable in Java of a class $\exptype{C}{\ol{X}}$
|
|
|
|
|
is $\wctype{\ol{X}}{C}{\ol{X}}$
|
|
|
|
|
|
|
|
|
|
%Is there a direct subtype of a type N including generics? e.g. a <c C<C<x>>
|
|
|
|
|
% AND if yes! why is there not a most generic expression of a method head without the need of Capture Conversion?
|
|
|
|
|
% Pair<X,Y> m(List<X> l, List<Y> l2) => X,Y.Pair<X,Y> m()
|
|
|
|
|
% X.List<X> <. List<x>
|
|
|
|
|
% because we want the most specfic return type and the least specific parameter types!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A method is only equiped with generic parameters if they only appear in a <. T constraints
|
|
|
|
|
Polymorphic recursion makes it impossible to infer a generic type who is called in a more specific way.
|
|
|
|
|
Is it? Not ours for sure!
|
|
|
|
|
|
|
|
|
|
The problem is, that we don't know which type is the parameter of the method call.
|
|
|
|
|
And a method with a parameter \texttt{List<? extends A>} can have an infinite number of subtypes. %Does it?
|
|
|
|
|
% Y.List<Y> <c Z^List<x>.List<Z>
|
|
|
|
|
% Y <. List<x>
|
|
|
|
|
|
|
|
|
|
% X,Y^List<X>.List<Y> <c Z^List<x>.List<Z>
|
|
|
|
|
|
|
|
|
|
% The idea is to hold out until the left side of a $\lessdotCC$ constraint is known to be a named type
|
|
|
|
|
% and then check if the typing is still correct.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The wildcard placeholders are used for intermediat types.
|
|
|
|
|
It is not possible to create all super types of a type.
|
|
|
|
|
The General rule only creates the ones expressable by Java syntax, which still are infinitly many in some cases \cite{TamingWildcards}.
|
|
|
|
@ -93,46 +24,71 @@ $\set{\exptype{List}{String} \lessdot \tv{a}, \exptype{List}{Integer} \lessdot \
|
|
|
|
|
Those two constraints imply that we have to find a type replacement for type variable $\tv{a}$,
|
|
|
|
|
which is a supertype of $\exptype{List}{String}$ aswell as $\exptype{List}{Integer}$.
|
|
|
|
|
|
|
|
|
|
The algorithm works in a recursive fashion.
|
|
|
|
|
The input constraints are transformed until they reach a irreducible state,
|
|
|
|
|
which the last step of the algorithm eventually transforms into a solution.
|
|
|
|
|
A constraint set is convertable to a correct type solution if it only contains constraints of the form
|
|
|
|
|
$\tv{a} \doteq \type{T}$ (where $\tv{a} \notin \text{tph}(\type{T})$) and $\tv{a} \lessdot \type{T}$.
|
|
|
|
|
We call this \textit{Solved Form}.
|
|
|
|
|
The input constraints are transformed until they reach a solved form which is then converted to a type solution.
|
|
|
|
|
A constraint set is in solved form if it only consists of constraints of the form
|
|
|
|
|
$\tv{a} \doteq \type{T}$ and $\tv{a} \lessdot \type{T}$.
|
|
|
|
|
\unify{} is described as a nondeterministic algorithm.
|
|
|
|
|
Some constraints allow for multiple transformations from which
|
|
|
|
|
the algorithm has to pick the right one.
|
|
|
|
|
There are also cases where there is more than on correct transformation and
|
|
|
|
|
therefore more than one correct solution to the given input constraints.
|
|
|
|
|
For that case still only one correct solution is returned by this specification of the algorithm.
|
|
|
|
|
Our implementation of the algorithm considers this and tries every possible transformation option
|
|
|
|
|
and gathers all possible type solutions.
|
|
|
|
|
We skip the definition of this practice, because it is already described in \cite{TIforFGJ}
|
|
|
|
|
and only needed for a proof of completeness.
|
|
|
|
|
|
|
|
|
|
The \unify{} algorithm applies conversions according to the subtyping rules (depicted in figure \ref{fig:subtyping}).
|
|
|
|
|
At every step we try to find a reduction, which brings us closer to solved form without excluding any possible solution.
|
|
|
|
|
|
|
|
|
|
A $\bot \lessdot \type{T}$ constraint is always satisfied and can be ignored. It will be removed by the \rulename{Bot} rule.
|
|
|
|
|
\textit{Examples:}
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item A $\bot \lessdot \type{T}$ constraint is always satisfied and can be ignored. It will be removed by the \rulename{Bot} rule.
|
|
|
|
|
For the type placeholder $\tv{a}$ in the constraint $\tv{a} \lessdot \bot$ only the $\bot$ type is a possible substitution,
|
|
|
|
|
which is set by the \rulename{Pit} rule.
|
|
|
|
|
|
|
|
|
|
The \rulename{Reduce} rule represents the S-Exists type rule.
|
|
|
|
|
\item The \rulename{Reduce} rule represents the S-Exists type rule.
|
|
|
|
|
This rule uses wildcard placeholders ($\ol{\wtv{a}}$) to find a possible substitution for the wildcards on the right side.
|
|
|
|
|
The constraint $\type{N} \lessdot \wcNtype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{N'}$ is satisfied if
|
|
|
|
|
there is a substitution $[\ol{T}/\ol{X}]\type{N} = \type{N'}$ with $\ol{T}$ inside the bounds $\ol{U}$ and $\ol{L}$.
|
|
|
|
|
|
|
|
|
|
\textbf{Example:}
|
|
|
|
|
For example the constraint
|
|
|
|
|
$\exptype{List}{\tv{a}} \lessdot \wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}}$
|
|
|
|
|
The \rulename{Reduce} rule converts this to
|
|
|
|
|
is converted to
|
|
|
|
|
$\set{\tv{a} \doteq \wtv{x}, \wtv{x} \lessdot \type{Object}, \bot \lessdot \wtv{x} }$.
|
|
|
|
|
After applying \rulename{Swap} and \rulename{Subst-WC} on $\tv{a} \doteq \wtv{x}$ we get
|
|
|
|
|
$\set{\tv{a} \lessdot \type{Object}, \bot \lessdot \tv{a}}$ and can now apply the \rulename{Bot} rule.
|
|
|
|
|
This leaves us with $\set{\tv{a} \lessdot \type{Object}}$.
|
|
|
|
|
\item The \rulename{Erase} rule will remove redundant $\type{T} \doteq \type{T}$ constraints
|
|
|
|
|
\item \rulename{Equals} ensures equality of two types by ensuring they are mutual subtypes.
|
|
|
|
|
Constraints like $\wctype{\wildcard{X}{\tv{a}}{\tv{b}}}{List}{\rwildcard{X}} \doteq \wctype{\wildcard{Y}{\type{Object}}{\tv{String}}}{List}{\rwildcard{Y}}$
|
|
|
|
|
are transformed to
|
|
|
|
|
$\wctype{\wildcard{X}{\tv{a}}{\tv{b}}}{List}{\rwildcard{X}} \lessdot \wctype{\wildcard{Y}{\type{Object}}{\tv{String}}}{List}{\rwildcard{Y}}$
|
|
|
|
|
and $\wctype{\wildcard{Y}{\type{Object}}{\tv{String}}}{List}{\rwildcard{Y}} \lessdot \wctype{\wildcard{X}{\tv{a}}{\tv{b}}}{List}{\rwildcard{X}}$.
|
|
|
|
|
% The types $\wctype{\rwildcard{X}}{List}{\rwildcard{X}}$ and $\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}$
|
|
|
|
|
% are equal.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
The \rulename{Erase} rule will remove redundant $\type{T} \doteq \type{T}$ constraints.
|
|
|
|
|
But what about constraints like $\wctype{\wildcard{X}{\tv{a}}{\tv{b}}}{List}{\rwildcard{X}} \doteq \wctype{\wildcard{Y}{\type{Object}}{\tv{String}}}{List}{\rwildcard{Y}}$
|
|
|
|
|
The \rulename{Equals} rule converts this to
|
|
|
|
|
|
|
|
|
|
% The equals rule is complicated, because
|
|
|
|
|
% X.List<X> =. Y.List<Y> -> is the same
|
|
|
|
|
% X^String.List<X> =. X.List<X> -> is not!
|
|
|
|
|
|
|
|
|
|
% T =. T => T <. T
|
|
|
|
|
We define two types as equal if they are mutual subtypes of each other.
|
|
|
|
|
%This relation is symmetric, reflexive and transitive by the definition of subtyping.
|
|
|
|
|
%This definition is sufficient for proofing soundness.
|
|
|
|
|
\begin{definition}{Type Equality:}\label{def:equal}
|
|
|
|
|
$\Delta \vdash \type{S} = \type{T}$ if $\Delta \vdash \type{T} <: \type{S}$ and $\Delta \vdash \type{T} <: \type{S}$
|
|
|
|
|
\end{definition}
|
|
|
|
|
%This definition makes sense
|
|
|
|
|
% The symmetric subtyping allows this type to be substit
|
|
|
|
|
% We define types to be equal if they are symmetric subtypes.
|
|
|
|
|
% This allows the substitution of these types with eachother.
|
|
|
|
|
% If $\Delta \vdash \type{S} = \type{S'}$ and $\Delta \vdash \type{T} <: \type{T'}$,
|
|
|
|
|
% then $\Delta \vdash [\type{S}/\type{S'}]\type{T} <: \type{T'}$.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% Special cases: lessdotCC, Normalize/Tame rule,
|
|
|
|
|
The $\lessdotCC$ constraints and the wildcard placeholders $\wtv{a}$ are kept as long as possible.
|
|
|
|
|
%TODO: Example where lessdotCC constraints get spared until they can be captured
|
|
|
|
|
The equality relation on Capture constraints is not reflexive.
|
|
|
|
|
$(\type{T} \lessdotCC \type{S}) \neq (\type{T} \lessdotCC \type{S})$ eventhough it's the same constraint.
|
|
|
|
|
|
|
|
|
|
Capture conversion is done during the \unify{} algorithm.
|
|
|
|
|
\unify{} has to make two promises to ensure soundness of our type inference algorithm.
|
|
|
|
|
Capture conversion can only be applied at capture constraints.
|
|
|
|
|
Free variables are not allowed to leave their scope.
|
|
|
|
|
This is ensured by type variables which are not allowed to be assigned type holding free variables.
|
|
|
|
|
|
|
|
|
|
\subsection{Algorithm}
|
|
|
|
|
|
|
|
|
@ -155,15 +111,7 @@ The input constraints must be of the following format:
|
|
|
|
|
\noindent
|
|
|
|
|
Additional requirements:
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item Every wildcard $\rwildcard{X} \in \Delta'$ has to have an unique name which is not defined anywhere in the constraint set $C$.
|
|
|
|
|
\item The input only consists of $\lessdot$ constraints
|
|
|
|
|
% \item No free variables in type parameters.
|
|
|
|
|
% A constraint like $\tv{a} \lessdot \exptype{List}{\rwildcard{X}}$ is prohibited.
|
|
|
|
|
% $\tv{a} \lessdot \wctype{\rwildcard{X}}{List}{\rwildcard{X}}$ is valid.
|
|
|
|
|
\item the input is a list of constraints. It cannot be a set.
|
|
|
|
|
A constraint set containing the constraint $\tv{a} \lessdot \type{T}$ twice
|
|
|
|
|
is a different to one that contains it only once.
|
|
|
|
|
%\item every wildcard is bound to its enclosing type.
|
|
|
|
|
|
|
|
|
|
\item All types have to be well-formed: $\wcNtype{\Delta}{N} \in C \implies \Delta_{in} \vdash \wcNtype{\Delta}{N} \ \ok$
|
|
|
|
|
\item Naming scheme of every wildcard environment has to be the same.
|
|
|
|
|
%TODO: We need this so that wildcard substitutions get the correct name. also the Equals rule needs this condition
|
|
|
|
@ -259,11 +207,8 @@ $
|
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The capture constraints are preserved when applying the \rulename{Upper} rule.
|
|
|
|
|
%because \texttt{let} statements like
|
|
|
|
|
%let x : X = v in
|
|
|
|
|
%can be transformed to
|
|
|
|
|
%let x : U = v in
|
|
|
|
|
%The capture constraints are preserved when applying the \rulename{Upper} rule.
|
|
|
|
|
% This is legal: a T <c S constraint indicates a let-statement can be inserted. Therefore there must exist a type T' with T <. T' <c S
|
|
|
|
|
|
|
|
|
|
\begin{figure}
|
|
|
|
|
\begin{center}
|
|
|
|
@ -372,37 +317,38 @@ The capture constraints are preserved when applying the \rulename{Upper} rule.
|
|
|
|
|
\quad \type{T} \ \text{is no wildcard placeholder}
|
|
|
|
|
$
|
|
|
|
|
\\\\
|
|
|
|
|
% \rulename{Equals} %TODO
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash C \cup \, \set{ \type{N} \doteq \type{N'} } \\
|
|
|
|
|
% \hline
|
|
|
|
|
% \vspace*{-0.4cm}\\
|
|
|
|
|
% \wildcardEnv \vdash C \cup \,
|
|
|
|
|
% \set{
|
|
|
|
|
% \type{N} \lessdot \type{N'}, \type{N'} \lessdot \type{N}
|
|
|
|
|
% }
|
|
|
|
|
% \end{array} % \quad \text{fv}(\type{N}) = \text{fv}(\type{N'}) = \emptyset
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
\rulename{Equals} %TODO
|
|
|
|
|
& $
|
|
|
|
|
\begin{array}[c]{l}
|
|
|
|
|
\wildcardEnv \vdash C \cup \, \set{ \wctype{\Delta}{C}{\ol{T}} \doteq \wctype{\Delta}{C}{\ol{T'}} } \\
|
|
|
|
|
\wildcardEnv \vdash C \cup \, \set{ \wcNtype{\Delta}{N} \doteq \wcNtype{\Delta'}{N'} } \\
|
|
|
|
|
\hline
|
|
|
|
|
\vspace*{-0.4cm}\\
|
|
|
|
|
\wildcardEnv \vdash C \cup \,
|
|
|
|
|
\set{
|
|
|
|
|
\pi(\ol{T}) \doteq \pi(\ol{T'} )
|
|
|
|
|
%\ol{T} \doteq \ol{T'}
|
|
|
|
|
\wcNtype{\Delta}{N} \lessdot \wcNtype{\Delta'}{N'}, \wcNtype{\Delta'}{N'} \lessdot \wcNtype{\Delta}{N}
|
|
|
|
|
}
|
|
|
|
|
\end{array}
|
|
|
|
|
\quad \begin{array}{l}
|
|
|
|
|
\text{given a permutation}\ \pi\ \text{with:}\\
|
|
|
|
|
\pi(\Delta) = \pi(\Delta')
|
|
|
|
|
\end{array}
|
|
|
|
|
\end{array} %\quad |\Delta| = |\Delta'|
|
|
|
|
|
% \quad \text{fv}(\type{N}) = \text{fv}(\type{N'}) = \emptyset
|
|
|
|
|
$
|
|
|
|
|
\\\\
|
|
|
|
|
% \rulename{Equals} %TODO
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash C \cup \, \set{ \wctype{\Delta}{C}{\ol{T}} \doteq \wctype{\Delta}{C}{\ol{T'}} } \\
|
|
|
|
|
% \hline
|
|
|
|
|
% \vspace*{-0.4cm}\\
|
|
|
|
|
% \wildcardEnv \vdash C \cup \,
|
|
|
|
|
% \set{
|
|
|
|
|
% \pi(\ol{T}) \doteq \pi(\ol{T'} )
|
|
|
|
|
% %\ol{T} \doteq \ol{T'}
|
|
|
|
|
% }
|
|
|
|
|
% \end{array}
|
|
|
|
|
% \quad \begin{array}{l}
|
|
|
|
|
% \text{given a permutation}\ \pi\ \text{with:}\\
|
|
|
|
|
% \pi(\Delta) = \pi(\Delta')
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
\rulename{Erase}
|
|
|
|
|
& $
|
|
|
|
|
\begin{array}[c]{l}
|
|
|
|
@ -439,6 +385,11 @@ The capture constraints are preserved when applying the \rulename{Upper} rule.
|
|
|
|
|
\wildcardEnv \vdash C \cup \set{\type{N} \doteq \rwildcard{A}}\\
|
|
|
|
|
\hline
|
|
|
|
|
\wildcardEnv \vdash C \cup \set{\rwildcard{A} \doteq \type{N}}
|
|
|
|
|
\end{array} \quad
|
|
|
|
|
\begin{array}[c]{l}
|
|
|
|
|
\wildcardEnv \vdash C \cup \set{\ntv{a} \doteq \rwildcard{A}}\\
|
|
|
|
|
\hline
|
|
|
|
|
\wildcardEnv \vdash C \cup \set{\rwildcard{A} \doteq \ntv{a}}
|
|
|
|
|
\end{array}$
|
|
|
|
|
\end{tabular}}
|
|
|
|
|
\end{center}
|
|
|
|
@ -582,6 +533,46 @@ Their upper and lower bounds are fresh type variables.
|
|
|
|
|
\end{array}
|
|
|
|
|
\end{array}
|
|
|
|
|
$
|
|
|
|
|
\\\\
|
|
|
|
|
\rulename{Clear}
|
|
|
|
|
&
|
|
|
|
|
$
|
|
|
|
|
\begin{array}[c]{@{}ll}
|
|
|
|
|
\begin{array}[c]{l}
|
|
|
|
|
\wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}} \vdash
|
|
|
|
|
C \cup \, \set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T} } \\
|
|
|
|
|
\hline
|
|
|
|
|
\vspace*{-0.4cm}\\
|
|
|
|
|
\subst{\type{U}}{\rwildcard{A}}\wildcardEnv \vdash
|
|
|
|
|
[\type{U}/\rwildcard{A}]C \cup \, [\type{U}/\rwildcard{A}]\set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T}, \type{U} \doteq \type{L} } \\
|
|
|
|
|
\end{array}
|
|
|
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
|
|
|
\quad \begin{array}[c]{l}
|
|
|
|
|
\Delta \neq \emptyset\\
|
|
|
|
|
\rwildcard{A} \in \text{fv}(\type{T})
|
|
|
|
|
\end{array}
|
|
|
|
|
\end{array}
|
|
|
|
|
$
|
|
|
|
|
\\\\
|
|
|
|
|
\rulename{Exclude}
|
|
|
|
|
&
|
|
|
|
|
$
|
|
|
|
|
\begin{array}[c]{@{}ll}
|
|
|
|
|
\begin{array}[c]{l}
|
|
|
|
|
\wildcardEnv \vdash
|
|
|
|
|
C \cup \, \set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T} } \\
|
|
|
|
|
\hline
|
|
|
|
|
\vspace*{-0.4cm}\\
|
|
|
|
|
\subst{\tv{a}}{\wtv{a}}\wildcardEnv \vdash
|
|
|
|
|
[\tv{a}/\wtv{a}]C \cup \, [\tv{a}/\wtv{a}]\set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T}, \type{U} \doteq \type{L} } \\
|
|
|
|
|
\end{array}
|
|
|
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
|
|
|
\quad \begin{array}[c]{l}
|
|
|
|
|
\Delta \neq \emptyset\\
|
|
|
|
|
\wtv{a} \in \text{fv}(\type{T}), \tv{a} \ \text{fresh}
|
|
|
|
|
\end{array}
|
|
|
|
|
\end{array}
|
|
|
|
|
$
|
|
|
|
|
\\\\
|
|
|
|
|
\rulename{Adopt}
|
|
|
|
|
& $
|
|
|
|
@ -1002,137 +993,6 @@ This builds a search tree over multiple possible solutions.
|
|
|
|
|
\label{fig:step2-rules}
|
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
|
|
% \begin{figure}
|
|
|
|
|
% \begin{center}
|
|
|
|
|
% \fbox{
|
|
|
|
|
% \begin{tabular}[t]{l@{~}l}
|
|
|
|
|
% \rulename{Same}
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash
|
|
|
|
|
% C \cup \type{G} \lessdot \tv{a}\\
|
|
|
|
|
% \hline
|
|
|
|
|
% \wildcardEnv \vdash
|
|
|
|
|
% C \cup \set{
|
|
|
|
|
% \tv{a} \doteq \type{G}
|
|
|
|
|
% }
|
|
|
|
|
% \end{array} \quad \begin{array}[c]{l}
|
|
|
|
|
% \text{fv}(\type{G}) \in \Delta_{in}
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
% \rulename{\generalizeRule}
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash C \cup \wctype{\Delta}{C}{\ol{T}} \lessdot \tv{a}\\
|
|
|
|
|
% \hline
|
|
|
|
|
% \wildcardEnv \vdash C \cup \set{\wctype{\Delta}{C}{\ol{T}} \lessdot \tv{a},
|
|
|
|
|
% \tv{a} \doteq \wctype{\overline{\wildcard{X}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{X}}},
|
|
|
|
|
% %\overline{\tv{l} \lessdot \tv{u}}, % not needed, due to subst and reduce rule which are used afterwards
|
|
|
|
|
% \overline{\tv{u} \lessdot \type{S}}
|
|
|
|
|
% }
|
|
|
|
|
% \end{array} \quad \begin{array}[c]{l}
|
|
|
|
|
% \texttt{class} \ \exptype{C}{\ol{X \triangleleft \type{S}}} \triangleleft \exptype{D}{\ol{N}} \\
|
|
|
|
|
% \text{fresh}\ \overline{\wildcard{X}{\tv{u}}{\tv{l}}}
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
% \rulename{Subst-X}
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash
|
|
|
|
|
% C \cup \rwildcard{X} \lessdot \tv{a}\\
|
|
|
|
|
% \hline
|
|
|
|
|
% \wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash
|
|
|
|
|
% C \cup \set{
|
|
|
|
|
% \tv{a} \doteq \rwildcard{X}
|
|
|
|
|
% }
|
|
|
|
|
% \end{array} \quad \begin{array}[c]{l}
|
|
|
|
|
% \rwildcard{X} \in \Delta_{in}
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
% \rulename{Gen-X}
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash
|
|
|
|
|
% C \cup \rwildcard{X} \lessdot \tv{a}\\
|
|
|
|
|
% \hline
|
|
|
|
|
% \wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash
|
|
|
|
|
% C \cup \set{
|
|
|
|
|
% \type{U} \lessdot \tv{a}
|
|
|
|
|
% }
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
% \rulename{Super}
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash C \cup \wctype{\Delta}{C}{\ol{T}} \lessdot \tv{a}\\
|
|
|
|
|
% \hline
|
|
|
|
|
% \wildcardEnv \vdash C \cup \set{ \wctype{\Delta'}{D}{[\ol{T}/\ol{X}]\ol{N}} \lessdot \tv{a} }
|
|
|
|
|
% %\set{\wctype{\ol{\wtype{W}}}{D}{[\ol{X}/\ol{Y}]\ol{Z}} \lessdot \tv{a}}
|
|
|
|
|
% \end{array} \quad
|
|
|
|
|
% \begin{array}{l}
|
|
|
|
|
% \texttt{class} \ \exptype{C}{\ol{X}} \triangleleft \exptype{D}{\ol{N}} \\
|
|
|
|
|
% \ol{X} \notin \wildcardEnv \cup \Delta,\, \Delta' = \Delta \cap \text{fv}([\ol{T}/\ol{X}]\ol{N})
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
% \rulename{Settle}
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
|
|
|
|
% \tv{a} \lessdot \tv{b}}
|
|
|
|
|
% \\
|
|
|
|
|
% \hline
|
|
|
|
|
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \tv{b}, \tv{b} \lessdot \type{N} }
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
% \rulename{Raise}
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
|
|
|
|
% \tv{a} \lessdot \tv{b}}
|
|
|
|
|
% \\
|
|
|
|
|
% \hline
|
|
|
|
|
% \wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \type{N}, \type{N} \lessdot \tv{b} }
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
% \end{tabular}}
|
|
|
|
|
% \end{center}
|
|
|
|
|
% \caption{Step 2 branching: Multiple rules can be applied to the same constraint}
|
|
|
|
|
% \label{fig:step2-rules}
|
|
|
|
|
% \end{figure}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%For every $\type{T} \lessdot \tv{a}$ constraint, the unify algorithm has to consider every possible supertype of $\type{T}$.
|
|
|
|
|
%For every $\type{N}$ with $\type{T} \leq \type{N}$: ($\texttt{class} \ \exptype{T}{\ol{Y} \triangleleft \ol{N}} \triangleleft \type{N}$)
|
|
|
|
|
%There are two different ways of handling a $\type{T} \lessdot \tv{a}$ constraint:
|
|
|
|
|
%TODO: why the \generalizeRule is basically the Same rule for regular type placeholders
|
|
|
|
|
|
|
|
|
|
%where is the mistake in the old unify algorithm?
|
|
|
|
|
%when working with equality the problems arise! Free variables should not escape their scope
|
|
|
|
|
% Replacing regular type placeholders causes problems related to method calls and capture conversion.
|
|
|
|
|
|
|
|
|
|
% <X> List<X> same(List<X> a, List<X> b){}
|
|
|
|
|
|
|
|
|
|
% This program has no correct type. the same method requires
|
|
|
|
|
% \begin{lstlisting}
|
|
|
|
|
% List<?> f;
|
|
|
|
|
% List<?> problem(){
|
|
|
|
|
% return same(problem(), problem()) ?: f;
|
|
|
|
|
% }
|
|
|
|
|
% \end{lstlisting}
|
|
|
|
|
% \begin{constraints}
|
|
|
|
|
% r <. List<x?>
|
|
|
|
|
% r <. List<x?>
|
|
|
|
|
% X.List<X> <. r
|
|
|
|
|
% \end{constraints}
|
|
|
|
|
% %TODO
|
|
|
|
|
|
|
|
|
|
\unify{} generates wildcard types for constraints of the form $\type{N} \lessdot \tv{a}$ with the \rulename{\generalizeRule} rule.
|
|
|
|
|
Otherwise only the wildcards already defined in the input constraints will be included in the result.
|
|
|
|
|
\rulename{\generalizeRule} attempts to give $\tv{a}$ a more general type by replacing only the type parameters with fresh wildcards.
|
|
|
|
@ -1145,15 +1005,6 @@ need to be handled in a similiar fashion.
|
|
|
|
|
The type variable $\tv{b}$ could either be a sub or a supertype of the type $\type{N}$.
|
|
|
|
|
We have to consider both possibilities.
|
|
|
|
|
\\[1em]
|
|
|
|
|
% The specification of the \unify{} algorithm has only two rules generating $\doteq$-Constraints
|
|
|
|
|
% , \rulename{Reduce} and \rulename{Ground}.
|
|
|
|
|
% $\doteq$-Constraints and the accompaning substitutions are dangerous respective to the soundness of the algorithm.
|
|
|
|
|
% For the soundness proof of the \unify{} algorithm we have to show every generation of equals constraints
|
|
|
|
|
% and the subsequent application of the \rulename{subst} rule is correct.
|
|
|
|
|
% We try to use them as sparsely as possible to simplify the soundness proof.
|
|
|
|
|
% You can notice this at \rulename{Equals} or \rulename{Force}:
|
|
|
|
|
% Instead of setting $\type{U} \doteq \type{L}$, we say
|
|
|
|
|
% $\type{U} \lessdot \type{L}, \type{L} \lessdot \type{U}$.
|
|
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
|
\textbf{Step 3}
|
|
|
|
@ -1164,23 +1015,6 @@ If $C$ does not contain any wildcard variables the algorithm proceeds with step
|
|
|
|
|
\begin{center}
|
|
|
|
|
\fbox{
|
|
|
|
|
\begin{tabular}[t]{l@{~}l}
|
|
|
|
|
% \rulename{Remove} % kann beim Subst step gemacht werden und ist nur nötig wenn ein a =. T constraint mit wtv(T) > 1 entsteht
|
|
|
|
|
% & $
|
|
|
|
|
% \begin{array}[c]{@{}ll}
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash C \\
|
|
|
|
|
% % \cup \, \set{ \wtv{a} \lessdot \type{T} }\\
|
|
|
|
|
% \hline
|
|
|
|
|
% \vspace*{-0.4cm}\\
|
|
|
|
|
% \subst{\tv{a}}{\wtv{a}}\wildcardEnv \vdash [\tv{a}/\wtv{a}]C
|
|
|
|
|
% \end{array}
|
|
|
|
|
% &\begin{array}[c]{l}
|
|
|
|
|
% \wtv{a} \in C \\
|
|
|
|
|
% \tv{a} \ \text{fresh}
|
|
|
|
|
% \end{array}
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \\\\
|
|
|
|
|
\rulename{Remove-Cons} & $
|
|
|
|
|
\begin{array}[c]{l}
|
|
|
|
|
\wildcardEnv \vdash C \cup \set{\type{S} \lessdotCC \type{T} } \\
|
|
|
|
@ -1192,23 +1026,6 @@ If $C$ does not contain any wildcard variables the algorithm proceeds with step
|
|
|
|
|
\end{tabular}}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
% \textbf{Step 4:}
|
|
|
|
|
% If there are constraints of the form $(\tv{a} \lessdot \tv{b})$ remaining in the constraint set then
|
|
|
|
|
% apply the \rulename{Sub-Elim} rule and start over with step 1.
|
|
|
|
|
% Otherwise continue to step 5.
|
|
|
|
|
% \begin{center}
|
|
|
|
|
% \fbox{
|
|
|
|
|
% \begin{tabular}[t]{l@{~}l}
|
|
|
|
|
% \rulename{SubElim}
|
|
|
|
|
% & $\begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \tv{b}}\\
|
|
|
|
|
% \hline
|
|
|
|
|
% [\tv{a}/\tv{b}]\wildcardEnv \vdash [\tv{a}/\tv{b}]C \cup \set{ \tv{b} \doteq \tv{a} }
|
|
|
|
|
% \end{array}
|
|
|
|
|
% $
|
|
|
|
|
% \end{tabular}}
|
|
|
|
|
% \end{center}
|
|
|
|
|
|
|
|
|
|
\noindent
|
|
|
|
|
\textbf{Step 4:}
|
|
|
|
|
We apply the rules in figure \ref{fig:cleanup-rules} exhaustively and proceed with step 6.
|
|
|
|
@ -1242,43 +1059,6 @@ C \cup \set{ \tv{a} \doteq \bot }
|
|
|
|
|
%\text{length}( \overline{\tv{a} \lessdot \type{T}} ) > 1
|
|
|
|
|
\end{array}
|
|
|
|
|
\end{array}$
|
|
|
|
|
% \\\\ % The force rule is unnecessary because every type placeholder has an upper bound Object (a <. Object) The match rule eliminates those wildcards
|
|
|
|
|
% \rulename{Force} &$
|
|
|
|
|
% \begin{array}[c]{@{}ll}
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}}
|
|
|
|
|
% \vdash C \cup \, \set{
|
|
|
|
|
% \tv{a} \lessdot \type{N} } \\
|
|
|
|
|
% \hline
|
|
|
|
|
% \vspace*{-0.4cm}\\
|
|
|
|
|
% \wildcardEnv
|
|
|
|
|
% \vdash
|
|
|
|
|
% C \cup \, \set{ \tv{a} \lessdot [\type{U}/\rwildcard{X}]\type{N},
|
|
|
|
|
% \type{U} \doteq \type{L} }
|
|
|
|
|
% \end{array}
|
|
|
|
|
% &\begin{array}[c]{l}
|
|
|
|
|
% \type{X} \in \text{fv}(\type{N}) \\
|
|
|
|
|
% %\Delta' = \Delta \cup \set{\wildcard{X}{\type{U}}{\type{L}}}
|
|
|
|
|
% \end{array}
|
|
|
|
|
% \end{array}$
|
|
|
|
|
% \\\\
|
|
|
|
|
% \rulename{FlatOut} &$
|
|
|
|
|
% \begin{array}[c]{@{}ll}
|
|
|
|
|
% \begin{array}[c]{l}
|
|
|
|
|
% \wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}}
|
|
|
|
|
% \vdash C \cup \, \set{
|
|
|
|
|
% \tv{a} \lessdot \wcNtype{\Delta}{N} } \\
|
|
|
|
|
% \hline
|
|
|
|
|
% \vspace*{-0.4cm}\\
|
|
|
|
|
% \wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}}
|
|
|
|
|
% \vdash
|
|
|
|
|
% C
|
|
|
|
|
% \end{array}
|
|
|
|
|
% &\begin{array}[c]{l}
|
|
|
|
|
% \type{X} \in \text{fv}(\wcNtype{\Delta}{N}) \\
|
|
|
|
|
% \tv{a} \notin C , \, \tv{a} \notin \wildcardEnv, \tv{a} \notin \sigma
|
|
|
|
|
% \end{array}
|
|
|
|
|
% \end{array}$
|
|
|
|
|
\end{tabular}}
|
|
|
|
|
\end{center}
|
|
|
|
|
\caption{Cleanup rules}\label{fig:cleanup-rules}
|
|
|
|
|