Compare commits
3 Commits
master
...
completene
Author | SHA1 | Date | |
---|---|---|---|
|
5371824a55 | ||
|
c6571879b7 | ||
|
3620f0c781 |
11
tRules.tex
11
tRules.tex
@ -460,15 +460,18 @@ $\begin{array}{l}
|
||||
\end{array}$
|
||||
\\[1em]
|
||||
$\begin{array}{l}
|
||||
%TODO: why is dom(\Delta) subset of fv(N) a restriction. This excludes X,Y^X.Pair<X,Y>?
|
||||
%TODO: we do not allow X.Pair<X,X> in the t-let (could we allow it? what about L and U being WTVs?)
|
||||
\typerule{T-Let}\\
|
||||
\begin{array}{@{}c}
|
||||
\Delta | \Gamma \vdash \expr{t}_1 : \type{T}_1 \quad \quad
|
||||
\Delta \vdash \type{T}_1 <: \wcNtype{\Delta'}{N}
|
||||
%\Delta \vdash \type{T}_1 <: \wcNtype{\Delta'}{N}
|
||||
\Delta \vdash \type{T}_1 <: \wctype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{C}{\ol{X}}
|
||||
\\
|
||||
\Delta, \Delta' | \Gamma, \expr{x} : \wcNtype{}{N} \vdash \expr{t}_2 : \type{T}_2 \quad \quad
|
||||
\Delta, \Delta' | \Gamma, \expr{x} : \wctype{}{C}{\ol{X}} \vdash \expr{t}_2 : \type{T}_2 \quad \quad
|
||||
\Delta, \Delta' \vdash \type{T}_2 <: \type{T} \quad \quad
|
||||
\text{dom}(\Delta') \subseteq \text{fv}(\type{N}) \quad \quad
|
||||
\Delta \vdash \type{T}, \wcNtype{\Delta'}{N} \ \ok
|
||||
% \text{dom}(\Delta') \subseteq \text{fv}(\type{N}) \quad \quad
|
||||
\Delta \vdash \type{T}, \wctype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{C}{\ol{X}} \ \ok
|
||||
\\
|
||||
\hline
|
||||
\vspace*{-0.3cm}\\
|
||||
|
52
unify.tex
52
unify.tex
@ -1177,3 +1177,55 @@ C \cup \set{ \tv{a} \lessdot \wctype{\Delta'}{C}{[\ol{U}/\ol{X}]\ol{S}}}
|
||||
% a unifier of the form $\tv{a} \to \tv{b}$.
|
||||
% Otherwise the found solution is incorrect.
|
||||
% This only happens if the input constraints contain type variables with no upper bound constraint like $\tv{a} \lessdot \type{N}$.
|
||||
|
||||
% FOLLOWING IS WRONG AND JUST COMMENTS:
|
||||
The motivating use case example for existential types in \cite{aModelForJavaWithWildcards} is not
|
||||
type correct in \TamedFJ{} unfortunately. %Unify can calculate it though!
|
||||
At least if we use the A-normal form transformation defined in chapter \cite{sec:anfTransformation}.
|
||||
\begin{lstlisting}[style=java]
|
||||
<X> boolean cmp(Pair<X,X> p)
|
||||
<X> Pair<X,X> make(List<X> l)
|
||||
|
||||
X.List<X> l = ...
|
||||
m(l) {
|
||||
return cmp(make(l));
|
||||
}
|
||||
\end{lstlisting}
|
||||
|
||||
\begin{lstlisting}[style=tamedfj]
|
||||
let v = { let x = l in make(x) } in cmp(v)
|
||||
\end{lstlisting}
|
||||
x <. l, x <c List<a?>, Pair<a?,a?> <. v, v <c Pair<b?,b?>
|
||||
|
||||
It will not infer a wildcard type. But a wildcard type can still be used to call m(l :: X.List<X>)
|
||||
|
||||
is it complete? Our no free variable restriction is too restrictive for let statement.
|
||||
Not for method params. Only Java types are allowed. (no free variables)
|
||||
|
||||
would it be complete if we allow free variables everywhere?
|
||||
Are there still supertypes that are not covered?
|
||||
Box<Pair<String,String>> <. a
|
||||
Box<Pair<Integer,Integer>> <. a
|
||||
a =. X.Box<Pair<X,X>>
|
||||
|
||||
% TODO: find an example which is not inferred by our TI!
|
||||
|
||||
$\wctype{\rwildcard{X}}{Pair}{\rwildcard{X}, \rwildcard{X}}$ is a correct type for \texttt{v}.
|
||||
But the T-Let rule does only allow a type in the form of $\wctype{\rwildcard{X},\rwildcard{Y}}{Pair}{\rwildcard{X},\rwildcard{Y}}$.
|
||||
%why is X,Y^X_X.Pair<X,Y> not a valid type?
|
||||
X,Y.Pair<X,Y> <. Pair<a,a>
|
||||
Y =. X
|
||||
l =. x
|
||||
u =. X
|
||||
|
||||
|
||||
|
||||
let v : X,Y.Pair<X,Y> = { let x = l in make(x) } in cmp(v)
|
||||
|
||||
Fix:
|
||||
let x : X.List<X> = l in cmp(make(x))
|
||||
% Does Unify calculate this solution?
|
||||
x <c List<a>, Pair<a,a> <c Pair<b,b>
|
||||
|
||||
% which types are not allowed? the Same rule is the problem: here T <. a -> a =. T(without free variables)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user