\section{Syntax and Typing}\label{sec:tifj} The input syntax for our algorithm is shown in figure \ref{fig:syntax} and the respective type rules in figure \ref{fig:expressionTyping} and \ref{fig:typing}. Our algorithm is an extension of the \emph{Global Type Inference for Featherweight Generic Java}\cite{TIforFGJ} algorithm. The input language is designed to showcase type inference involving existential types. Method call rule T-Call is the most interesting part, because it emulates the behaviour of a Java method call, where existential types are implicitly \textit{opened} and \textit{closed}. Example: %TODO \begin{verbatim} class List { A head; List tail; add(v) = new List(v, this); } \end{verbatim} %The rules depicted here are type inference rules. It is not possible to derive a distinct typing from a given input program. %The T-Elvis rule mimics the type judgement of a branch expression like \texttt{if-else}. %and is solely used for examples. The calculus does not include method overriding for simplicity reasons. Type inference for that is described in \cite{TIforFGJ} and can be added to this algorithm accordingly. Our algorithm is designed for extensibility with the final goal of full support for Java. \unify{} is the core of the algorithm and can be used for any calculus sharing the same subtype relations as depicted in \ref{fig:subtyping}. Additional language constructs can be added by implementing the respective constraint generation functions in the same fashion as described in chapter \ref{chapter:constraintGeneration}. %Additional features like overriding methods and method overloading can be added by copying the respective parts from there. %Additional features can be easily added by generating the respective constraints (Plümicke hier zitieren) % The type system in \cite{WildcardsNeedWitnessProtection} allows a method to \textit{override} an existing method declaration in one of its super classes, % but only by a method with the exact same type. % The type system presented here does not allow the \textit{overriding} of methods. % Our type inference algorithm consumes the input classes in succession and could only do a type check instead of type inference % on overriding methods, because their type is already determined. % Allowing overriding therefore has no implication on our type inference algorithm. The syntax forces every expression to undergo a capture conversion before it can be used as a method argument. Even variables have to be catched by a let statement first. This behaviour emulates Java's implicit capture conversion. \begin{figure} $ \begin{array}{lrcl} \hline \text{Parameterized classes} & \mv N & ::= & \exptype{C}{\ol{T}} \\ \text{Types} & \type{S}, \type{T}, \type{U} & ::= & \type{X} \mid \wcNtype{\Delta}{N} \\ \text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\ \text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\ \text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\ \text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{\expr{x}}) \set{ \texttt{return}\ t;} \\ \text{Terms} & t & ::= & \expr{x} \\ & & \ \ | & \texttt{let}\ \overline{\expr{x}_c} = \overline{t} \ \texttt{in}\ \texttt{new} \ \type{C}(\overline{\expr{x}_c}) \\ & & \ \ | & \texttt{let}\ \expr{x}_c = t \ \texttt{in}\ \expr{x}_c.f \\ & & \ \ | & \texttt{let}\ \expr{x}_c = t \ \texttt{in}\ \texttt{let}\ \overline{\expr{x}_c} = \overline{t} \ \texttt{in}\ \expr{x}_c.\texttt{m}(\overline{\expr{x}_c}) \\ & & \ \ | & t \elvis{} t \\ \text{Variable contexts} & \Gamma & ::= & \overline{\expr{x}:\type{T}}\\ \hline \end{array} $ \caption{\TamedFJ{} Syntax}\label{fig:syntax} \end{figure} % \begin{figure} % $ % \begin{array}{lrcl} % \hline % \text{Parameterized classes} & \mv N & ::= & \exptype{C}{\ol{T}} \\ % \text{Types} & \type{S}, \type{T}, \type{U} & ::= & \type{X} \mid \wcNtype{\Delta}{N} \\ % \text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\ % \text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\ % \text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\ % \text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{\expr{x}}) = t \\ % \text{Values} & v & ::= & \expr{x} \\ % \text{Terms} & t & ::= & v \\ % & & \ \ | & \texttt{let} \ \expr{x} = \texttt{new} \ \type{C}(\overline{v}) \ \texttt{in} \ t \\ % & & \ \ | & \texttt{let} \ \expr{x} = v.f \ \texttt{in} \ t \\ % & & \ \ | & \texttt{let} \ \expr{x} = v.\texttt{m}(\overline{v}) \ \texttt{in} \ t \\ % & & \ \ | & \texttt{let} \ \expr{x} = v \elvis{} v \ \texttt{in} \ t \\ % \text{Variable contexts} & \Gamma & ::= & \overline{\expr{x}:\type{T}}\\ % \hline % \end{array} % $ % \caption{Input Syntax}\label{fig:syntax} % \end{figure} % \begin{figure} % $ % \begin{array}{lrcl} % \hline % \text{Parameterized classes} & \mv N & ::= & \exptype{C}{\ol{T}} \\ % \text{Types} & \type{S}, \type{T}, \type{U} & ::= & \type{X} \mid \wcNtype{\Delta}{N} \\ % \text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\ % \text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\ % \text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\ % \text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{\expr{x}}) = t \\ % \text{Terms} & t & ::= & \expr{x} \\ % & & \ \ | & \texttt{let} \ \expr{x} = t \ \texttt{in} \ t \\ % & & \ \ | & \expr{x}.f \\ % & & \ \ | & \expr{x}.\texttt{m}(\overline{\expr{x}}) \\ % & & \ \ | & t \elvis{} t \\ % \text{Variable contexts} & \Gamma & ::= & \overline{\expr{x}:\type{T}}\\ % \hline % \end{array} % $ % \caption{Input Syntax}\label{fig:syntax} % \end{figure} % \begin{figure} % $ % \begin{array}{lrcl} % \hline % \text{Parameterized classes} & \mv N & ::= & \exptype{C}{\ol{T}} \\ % \text{Types} & \type{S}, \type{T}, \type{U} & ::= & \type{X} \mid \wcNtype{\Delta}{N} \\ % \text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\ % \text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\ % \text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\ % \text{Method declarations} & \texttt{M} & ::= & \texttt{m}(\overline{x}) = t \\ % \text{Terms} & t & ::= & x \\ % & & \ \ | & \texttt{new} \ \type{C}(\overline{t})\\ % & & \ \ | & t.f\\ % & & \ \ | & t.\texttt{m}(\overline{t})\\ % & & \ \ | & t \elvis{} t\\ % \text{Variable contexts} & \Gamma & ::= & \overline{x:\type{T}}\\ % \hline % \end{array} % $ % \caption{Input Syntax}\label{fig:syntax} % \end{figure} \subsection{ANF transformation}\label{sec:anfTransformation} \newcommand{\anf}[1]{\ensuremath{\tau}(#1)} %https://en.wikipedia.org/wiki/A-normal_form) Featherweight Java's syntax involves no \texttt{let} statement and terms can be nested freely. This is similar to Java's syntax. To convert it to \TamedFJ{} additional let statements have to be added. This is done by a \textit{A-Normal Form} \cite{aNormalForm} transformation shown in figure \ref{fig:anfTransformation}. The input of this transformation is a Featherweight Java program in the syntax given \ref{fig:inputSyntax} and the output is a \TamedFJ{} program. \textit{Example:}\\ \noindent \begin{minipage}{0.45\textwidth} \begin{lstlisting}[style=fgj,caption=Featherweight Java] m(l, v){ return l.add(v); } \end{lstlisting} \end{minipage}% \hfill \begin{minipage}{0.5\textwidth} \begin{lstlisting}[style=tfgj,caption=\TamedFJ{} representation] m(l, v) = let x1 = l in let x2 = v in x1.add(x2) \end{lstlisting} \end{minipage} % $ % \begin{array}{|lrcl|l} % \hline % & & & \textbf{Featherweight Java Terms}\\ % \text{Terms} & t & ::= % & \expr{x} % \\ % & & \ \ | % & \texttt{new} \ \type{C}(\overline{t}) % \\ % & & \ \ | % & t.f % \\ % & & \ \ | % & t.\texttt{m}(\overline{t}) % \\ % & & \ \ | % & t \elvis{} t\\ % % % \hline % \end{array} % $ \begin{figure} \begin{center} $\begin{array}{lrcl} %\text{ANF} & \anf{\expr{x}} & = & \expr{x} \\ & \anf{\texttt{new} \ \type{C}(\overline{t})} & = & \texttt{let}\ \overline{\expr{x}} = \anf{\overline{t}} \ \texttt{in}\ \texttt{new} \ \type{C}(\overline{\expr{x}}) \\ & \anf{t.f} & = & \texttt{let}\ \expr{x} = \anf{t} \ \texttt{in}\ \expr{x}.f \\ & \anf{t.\texttt{m}(\overline{t})} & = & \texttt{let}\ \expr{x} = \anf{t} \ \texttt{in}\ \texttt{let}\ \overline{\expr{x}} = \anf{\overline{t}} \ \texttt{in}\ \expr{x}.\texttt{m}(\overline{\expr{x}}) \\ & \anf{t_1 \elvis{} t_2} & = & \anf{t_1} \elvis{} \anf{t_2} \end{array}$ \end{center} \caption{ANF Transformation}\label{fig:anfTransformation} \end{figure} % $ % \begin{array}{lrcl|l} % \hline % & & & \textbf{Featherweight Java} & \textbf{A-Normal form} \\ % \text{Terms} & t & ::= % & \expr{x} % & \expr{x} % \\ % & & \ \ | % & \texttt{new} \ \type{C}(\overline{t}) % & \texttt{let}\ \overline{x} = \overline{t} \ \texttt{in}\ \texttt{new} \ \type{C}(\overline{x}) % \\ % & & \ \ | % & t.f % & \texttt{let}\ x = t \ \texttt{in}\ x.f % \\ % & & \ \ | % & t.\texttt{m}(\overline{t}) % & \texttt{let}\ x_1 = t \ \texttt{in}\ \texttt{let}\ \overline{x} = \overline{t} \ \texttt{in}\ x_1.\texttt{m}(\overline{x}) % \\ % & & \ \ | % & t \elvis{} t % & t \elvis{} t\\ % % % \hline % \end{array} % $ % Each class type has a set of wildcard types $\overline{\Delta}$ attached to it. % The type $\wctype{\overline{\Delta}}{C}{\ol{T}}$ defines a set of wildcards $\overline{\Delta}$, % which can be used inside the type parameters $\ol{T}$. \begin{figure}[tp] \begin{center} $\begin{array}{l} \typerule{S-Refl}\\ \begin{array}{@{}c} \Delta \vdash \type{T} <: \type{T} \end{array} \end{array}$ $\begin{array}{l} \typerule{S-Trans}\\ \begin{array}{@{}c} \Delta \vdash \type{S} <: \type{T}' \quad \quad \Delta \vdash \type{T}' <: \type{T} \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \type{S} <: \type{T} \end{array} \end{array}$ $\begin{array}{l} \typerule{S-Upper}\\ \begin{array}{@{}c} \wildcard{X}{U}{L} \in \Delta \\ \vspace*{-0.9em}\\ \hline \vspace*{-0.9em}\\ \Delta \vdash \type{X} <: \type{U} \end{array} \end{array}$ $\begin{array}{l} \typerule{S-Lower}\\ \begin{array}{@{}c} \wildcard{X}{U}{L} \in \Delta \\ \vspace*{-0.9em}\\ \hline \vspace*{-0.9em}\\ \Delta \vdash \type{L} <: \type{X} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{S-Extends}\\ \begin{array}{@{}c} \texttt{class}\ \exptype{C}{\overline{\type{X} \triangleleft \type{U}}} \triangleleft \type{N} \ \{ \ldots \} \\ \ol{X} \cap \text{dom}(\Delta) = \emptyset \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \wctype{\Delta'}{C}{\ol{T}} <: \wcNtype{\Delta'}{[\ol{T}/\ol{X}]\type{N}} \end{array} \end{array}$ $\begin{array}{l} \typerule{S-Exists}\\ \begin{array}{@{}c} \Delta', \Delta \vdash [\ol{T}/\ol{\type{X}}]\ol{L} <: \ol{T} \quad \quad \Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\ \text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \Delta') \quad \text{dom}(\Delta') \cap \text{fv}(\wcNtype{\ol{\wildcard{X}{U}{L}}}{N}) = \emptyset \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \wcNtype{\Delta'}{[\ol{T}/\ol{X}]\type{N}} <: \wcNtype{\ol{\wildcard{X}{U}{L}}}{N} \end{array} \end{array}$ \end{center} \caption{Subtyping}\label{fig:subtyping} \end{figure} \begin{figure}[tp] \begin{center} $\begin{array}{l} \typerule{WF-Bot}\\ \begin{array}{@{}c} \Delta \vdash \bot \ \ok \end{array} \end{array}$ $\begin{array}{l} \typerule{WF-Top}\\ \begin{array}{@{}c} \Delta \vdash \ol{L}, \ol{U} \ \ok \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \overline{\wildcard{W}{U}{L}}.\texttt{Object} \end{array} \end{array}$ $\begin{array}{l} \typerule{WF-Var}\\ \begin{array}{@{}c} \wildcard{W}{U}{L} \in \Delta \quad \quad \Delta \vdash \ol{L}, \ol{U} \ \ok \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \wildcard{W}{U}{L} \ \ok \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{WF-Class}\\ \begin{array}{@{}c} \Delta' = \ol{\wildcard{W}{U}{L}} \quad \quad \Delta, \Delta' \vdash \ol{T}, \ol{L}, \ol{U} \ \ok \quad \quad \Delta, \Delta' \vdash \ol{L} <: \ol{U} \\ \Delta, \Delta' \vdash \ol{T} <: [\ol{T}/\ol{X}] \ol{U'} \quad \quad \texttt{class}\ \exptype{C}{\ol{X \triangleleft U'}} \triangleleft \type{N} \ \{ \ldots \} \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \wctype{\ol{\wildcard{W}{U}{L}}}{C}{\ol{T}} \ \ok \end{array} \end{array}$ \end{center} \caption{Well-formedness}\label{fig:well-formedness} \end{figure} \begin{figure}[tp] \begin{center} $\begin{array}{l} \typerule{T-Var}\\ \begin{array}{@{}c} \texttt{x} : \type{T} \in \Gamma \\ \hline \vspace*{-0.3cm}\\ \triangle | \Gamma \vdash \texttt{x} : \type{T} \end{array} \end{array}$ \hfill $\begin{array}{l} \typerule{T-Field}\\ \begin{array}{@{}c} \Delta | \Gamma \vdash \expr{v} : \type{T} \quad \quad \Delta \vdash \type{T} <: \wcNtype{}{N} \quad \quad \textit{fields}(\type{N}) = \ol{U\ f} \\ \hline \vspace*{-0.3cm}\\ \Delta | \Gamma \vdash \expr{v}.\texttt{f}_i : \type{U}_i \end{array} \end{array}$ \\[1em] % $\begin{array}{l} % \typerule{T-Field}\\ % \begin{array}{@{}c} % \Delta | \Gamma \vdash \texttt{e} : \type{T} \quad \quad % \Delta \vdash \type{T} <: \wcNtype{\Delta'}{N} \quad \quad % \textit{fields}(\type{N}) = \ol{U\ f} \\ % \Delta, \Delta' \vdash \type{U}_i <: \type{S} \quad \quad % \text{dom}(\Delta') \subseteq \text{fv}(\type{N}) \quad \quad % \Delta \vdash \type{S}, \wcNtype{\Delta'}{N} \ \ok % \\ % \hline % \vspace*{-0.3cm}\\ % \Delta | \Gamma \vdash \texttt{e}.\texttt{f}_i : \type{S} % \end{array} % \end{array}$ % \\[1em] % $\begin{array}{l} % \typerule{T-New}\\ % \begin{array}{@{}c} % \Delta, \overline{\Delta} \vdash \exptype{C}{\ol{T}} \ \ok \quad \quad % \text{fields}(\exptype{C}{\ol{T}}) = \overline{\type{U}\ f} \quad \quad % \Delta | \Gamma \vdash \overline{t : \type{S}} \quad \quad % \Delta \vdash \overline{\type{S}} <: \overline{\wcNtype{\Delta}{N}} \\ % \Delta, \overline{\Delta} \vdash \overline{\type{N}} <: \overline{\type{U}} \quad \quad % \Delta, \overline{\Delta} \vdash \exptype{C}{\ol{T}} <: \type{T} \quad \quad % \overline{\text{dom}(\Delta) \subseteq \text{fv}(\type{N})} \quad \quad % \Delta \vdash \type{T}, \overline{\wcNtype{\Delta}{N}} \ \ok % \\ % \hline % \vspace*{-0.3cm}\\ % \triangle | \Gamma \vdash \texttt{new}\ \type{C}(\ol{t}) : \exptype{C}{\ol{T}} % \end{array} % \end{array}$ % \\[1em] $\begin{array}{l} \typerule{T-New}\\ \begin{array}{@{}c} \Delta, \overline{\Delta} \vdash \exptype{C}{\ol{T}} \ \ok \quad \quad \Delta \vdash \overline{\type{S}} <: \overline{\type{U}} \\ \Delta | \Gamma \vdash \overline{\expr{v} : \type{S}} \quad \quad \text{fields}(\exptype{C}{\ol{T}}) = \overline{\type{U}\ f} \\ \hline \vspace*{-0.3cm}\\ \triangle | \Gamma \vdash \texttt{new}\ \type{C}(\ol{v}) : \exptype{C}{\ol{T}} \end{array} \end{array}$ \hfill % $\begin{array}{l} % \typerule{T-Call}\\ % \begin{array}{@{}c} % \Delta, \Delta', \overline{\Delta} \vdash \ol{\type{N}} <: [\ol{S}/\ol{X}]\ol{U} \quad \quad % \generics{\ol{X \triangleleft U'}} \ol{U} \to \type{U} \in \Pi(\texttt{m}) \quad \quad % \Delta, \Delta', \overline{\Delta} \vdash \ol{S} <: [\ol{S}/\ol{X}]\ol{U'} % \\ % \Delta, \Delta', \overline{\Delta} \vdash \ol{S} \ \ok \quad \quad % \Delta | \Gamma \vdash \texttt{e}, \ol{e} : \ol{T} \quad \quad % \Delta \vdash \ol{T} <: \overline{\wcNtype{\Delta}{N}} % \\ % \Delta \vdash \type{T}, \overline{\wcNtype{\Delta}{N}} \ \ok \quad \quad % \Delta, \Delta', \overline{\Delta} \vdash [\ol{S}/\ol{X}]\type{U} <: \type{T} \quad \quad % \text{dom}(\Delta') \subseteq \text{fv}(\type{N}) \quad \quad % \overline{\text{dom}(\Delta) \subseteq \text{fv}(\type{N})} % \\ % \hline % \vspace*{-0.3cm}\\ % \Delta | \Gamma \vdash \texttt{e}.\texttt{m}(\ol{e}) : \type{T} % \end{array} % \end{array}$ % \\[1em] $\begin{array}{l} \typerule{T-Call}\\ \begin{array}{@{}c} \generics{\ol{X \triangleleft U'}} \ol{U} \to \type{U} \in \Pi(\texttt{m}) \quad \quad \Delta \vdash \ol{S} <: [\ol{S}/\ol{X}]\ol{U'} \\ \Delta \vdash \ol{S} \ \ok \quad \quad \Delta | \Gamma \vdash \expr{v}, \ol{v} : \ol{T} \quad \quad \Delta \vdash \ol{T} <: [\ol{S}/\ol{X}]\ol{U} \\ \hline \vspace*{-0.3cm}\\ \Delta | \Gamma \vdash \expr{v}.\texttt{m}(\ol{v}) : \type{T} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Let}\\ \begin{array}{@{}c} \Delta | \Gamma \vdash \expr{t}_1 : \type{T}_1 \quad \quad \Delta \vdash \type{T}_1 <: \wcNtype{\Delta'}{N} \\ \Delta, \Delta' | \Gamma, \expr{x} : \wcNtype{}{N} \vdash \expr{t}_2 : \type{T}_2 \quad \quad \Delta, \Delta' \vdash \type{T}_2 <: \type{T} \quad \quad \text{dom}(\Delta') \subseteq \text{fv}(\type{N}) \quad \quad \Delta \vdash \type{T}, \wcNtype{\Delta'}{N} \ \ok \\ \hline \vspace*{-0.3cm}\\ \Delta | \Gamma \vdash \texttt{let}\ \expr{x} = \expr{t}_1 \ \texttt{in} \ \expr{t}_2 : \type{T} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Elvis}\\ \begin{array}{@{}c} \triangle | \Gamma \vdash \texttt{t} : \type{T}_1 \quad \quad \triangle | \Gamma \vdash \texttt{t}_2 : \type{T}_2 \quad \quad \triangle \vdash \type{T}_1 <: \type{T} \quad \quad \triangle \vdash \type{T}_2 <: \type{T} \quad \quad \\ \hline \vspace*{-0.3cm}\\ \triangle | \Gamma \vdash \texttt{t}_1 \ \texttt{?:} \ \texttt{t}_2 : \type{T} \end{array} \end{array}$ \end{center} \caption{Expression Typing}\label{fig:expressionTyping} \end{figure} \begin{figure} \begin{center} $\begin{array}{l} \typerule{T-Method}\\ \begin{array}{@{}c} (\type{T'},\ol{T}) \to \type{T} \in \mathtt{\Pi}(\texttt{m})\quad \quad \triangle' = \overline{\type{Y} : \bot .. \type{P}} \quad \quad \triangle, \triangle' \vdash \ol{P}, \type{T}, \ol{T} \ \ok \\ \text{dom}(\triangle) = \ol{X} \quad \quad %\texttt{class}\ \exptype{C}{\ol{X \triangleleft \_ }} \triangleleft \type{N} \ \{ \ldots \} \\ \mathtt{\Pi} | \triangle, \triangle' | \ol{x : T}, \texttt{this} : \exptype{C}{\ol{X}} \vdash \texttt{e} : \type{S} \quad \quad \triangle \vdash \type{S} <: \type{T} \\ \hline \vspace*{-0.3cm}\\ \mathtt{\Pi} | \triangle \vdash \texttt{m}(\ol{x}) = \texttt{e} \ \ok \text{ in C with } \generics{\ol{Y \triangleleft P}} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Class}\\ \begin{array}{@{}c} \mathtt{\Pi}' = \mathtt{\Pi} \cup \set{ \texttt{m} : (\exptype{C}{\ol{X}}, \ol{T_\texttt{m}}) \to \type{T}_\texttt{m} \mid \texttt{m} \in \ol{M}} \\ \mathtt{\Pi}'' = \mathtt{\Pi} \cup \set{ \texttt{m} : \generics{\ol{X \triangleleft \type{N}}, \ol{Y \triangleleft P}}(\exptype{C}{\ol{X}},\ol{T_\texttt{m}}) \to \type{T}_\texttt{m} \mid \texttt{m} \in \ol{M} } \\ \triangle = \overline{\type{X} : \bot .. \type{U}} \quad \quad \triangle \vdash \ol{U}, \ol{T}, \type{N} \ \ok \quad \quad \mathtt{\Pi}' | \triangle \vdash \ol{M} \ \ok \text{ in C with} \ \generics{\ol{Y \triangleleft P}} \\ \hline \vspace*{-0.3cm}\\ \texttt{class}\ \exptype{C}{\ol{X \triangleleft U}} \triangleleft \type{N} \{ \ol{T\ f}; \ol{M} \} : \mathtt{\Pi}'' \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Program}\\ \begin{array}{@{}c} \emptyset \vdash \texttt{L}_1 : \mathtt{\Pi}_1 \quad \quad \mathtt{\Pi}_1 \vdash \texttt{L}_2 : \mathtt{\Pi}_1 \quad \quad \ldots \quad \quad \mathtt{\Pi}_{n-1} \vdash \texttt{L}_n : \mathtt{\Pi}_n \quad \quad \\ \hline \vspace*{-0.3cm}\\ \vdash \ol{L} : \mathtt{\Pi}_n \end{array} \end{array}$ \end{center} \caption{Class and Method Typing rules}\label{fig:typing} \end{figure} \begin{figure} $\text{fields}(\exptype{Object}{}) = \emptyset$ \quad \quad $\begin{array}{l} \typerule{F-Class}\\ \begin{array}{@{}c} \texttt{class}\ \exptype{C}{\ol{X \triangleleft \_ }} \triangleleft \type{N} \set{\ol{S\ f}; \ol{M}} \quad \quad \text{fields}([\ol{T}/\ol{X}]\type{N}) = \ol{U\ g} \\ \hline \vspace*{-0.3cm}\\ \text{fields}(\exptype{C}{\ol{T}}) = \ol{U\ g}, [\ol{T}/\ol{X}]\ol{S\ f} \end{array} \end{array}$ \caption{Field access} \end{figure}