\section{Constraint generation}\label{chapter:constraintGeneration} % Our type inference algorithm is split into two parts. % A constraint generation step \textbf{TYPE} and a \unify{} step. % Method names are not unique. % It is possible to define the same method in multiple classes. % The \TYPE{} algorithm accounts for that by generating Or-Constraints. % This can lead to multiple possible solutions. %\subsection{Well-Formedness} There are two different types of constraints: \begin{description} \item[$\lessdot$] \textit{Example:} $\exptype{List}{String} \lessdot \tv{a}, \exptype{List}{Integer} \lessdot \tv{a}$ \noindent Those two constraints imply that we have to find a type replacement for type variable $\tv{a}$, which is a supertype of $\exptype{List}{String}$ aswell as $\exptype{List}{Integer}$. This paper describes a \unify{} algorithm to solve these constraints and calculate a type solution $\sigma$. For the example above a correct solution would be $\sigma(\tv{a}) = \wctype{\rwildcard{X}}{List}{\rwildcard{X}}$. \item[$\lessdotCC$] TODO % The \fjtype{} algorithm assumes capture conversions for every method parameter. \end{description} %Why do we need a constraint generation step? %% The problem is NP-Hard %% a method call, does not know which type it will produce %% depending on its type the %NO equals constraints during the constraint generation step! \begin{figure}[tp] \begin{align*} % Type \type{T}, \type{U} &::= \tv{a} \mid \wtv{a} \mid \mv{X} \mid {\wcNtype{\Delta}{N}} && \text{types and type placeholders}\\ \type{N} &::= \exptype{C}{\il{T}} && \text{class type (with type variables)} \\ % Constraints \simpleCons &::= \type{T} \lessdot \type{U} && \text{subtype constraint}\\ \orCons{} &::= \set{\set{\overline{\simpleCons_1}}, \ldots, \set{\overline{\simpleCons_n}}} && \text{or-constraint}\\ \constraint &::= \simpleCons \mid \orCons && \text{constraint}\\ \consSet &::= \set{\constraints} && \text{constraint set}\\ % Method assumptions: \methodAssumption &::= \exptype{C}{\ol{X} \triangleleft \ol{N}}.\texttt{m} : \exptype{}{\ol{Y} \triangleleft \ol{P}}\ \ol{\type{T}} \to \type{T} && \text{method type assumption}\\ \localVarAssumption &::= \texttt{x} : \itype{T} && \text{parameter assumption}\\ \mtypeEnvironment & ::= \overline{\methodAssumption} & & \text{method type environment} \\ \typeAssumptionsSymbol &::= ({\mtypeEnvironment} ; \overline{\localVarAssumption}) \end{align*} \caption{Syntax of constraints and type assumptions.} \label{fig:syntax-constraints} \end{figure} \begin{figure}[tp] \begin{gather*} \begin{array}{@{}l@{}l} \fjtype & ({\mtypeEnvironment}, \mathtt{class } \ \exptype{C}{\ol{X} \triangleleft \ol{N}} \ \mathtt{ extends } \ \mathtt{N \{ \overline{T} \ \overline{f}; \, K \, \overline{M} \}}) =\\ & \begin{array}{ll@{}l} \textbf{let} & \forall \texttt{m} \in \ol{M}: \tv{a}_\texttt{m}, \ol{\tv{a}_m} \ \text{fresh} \\ & \ol{\methodAssumption} = \begin{array}[t]{l} \set{ \mv{m'} : (\exptype{C}{\ol{X} \triangleleft \ol{N}} \to \ol{\tv{a}} \to \tv{a}) \mid \mv{m'} \in \ol{M} \setminus \set{\mv{m}}, \, \tv{a}\, \ol{\tv{a}}\ \text{fresh} } \\ \ \cup \, \set{\mv{m} : (\exptype{C}{\ol{X} \triangleleft \ol{N}} \to \ol{\tv{a}_m} \to \tv{a}_\mv{m})} \end{array} \\ & C_m = \typeExpr(\mtypeEnvironment \cup \set{\mv{this} : \exptype{C}{\ol{X}} , \, \ol{x} : \ol{\tv{a}_m} }, \texttt{e}, \tv{a}_\texttt{m}) \\ \textbf{in} & { ( \mtypeEnvironment \cup \ol{\methodAssumption}, \, \bigcup_{\texttt{m} \in \ol{M}} C_m ) } \end{array} \end{array} \end{gather*} \caption{Constraint generation for classes} \label{fig:constraints-for-classes} \end{figure} % \textbf{Method Assumptions} % %$\Pi$ is a set of method assumptions used by the $\fjtype{}$ algorithm. % % \begin{verbatim} % % class Example { % % Y m(Example p){ ... } % % } % % \end{verbatim} % In Featherweight Java a method type is bound to a specific class. % The class \texttt{Example} shown above contains one method \texttt{m}: % \begin{displaymath} % \textit{mtype}({\texttt{m}, \exptype{Example}{\type{X}}}) = \generics{\type{Y}} \ \exptype{Example}{\type{Y}} \to \type{Y} % \end{displaymath} % $\Pi$ is a set of method assumptions used by the $\fjtype{}$ algorithm. % It's a map of method types to method names. % Every method name has a set of possible types, % because there could be more than one method with the same name in a program consisting out of multiple classes. % To simplify the syntax of method assumptions, we add the inheriting class type to the parameter list: % \begin{displaymath} % \Pi = \set{ \texttt{m} : \generics{\type{X}, \type{Y}} \ (\exptype{Example}{\type{X}}, \exptype{Example}{\type{Y}}) \to \type{Y}} % \end{displaymath} % \begin{verbatim} % class Example { } % Y m(Example this, Example p){ ... } % \end{verbatim} \begin{displaymath} \begin{array}{@{}l@{}l} \typeExpr{} &({\mtypeEnvironment} , \texttt{e}.\texttt{f}, \tv{a}) = \\ & \begin{array}{ll} \textbf{let} & \tv{r} \ \text{fresh} \\ & \consSet_R = \typeExpr({\mtypeEnvironment}, \texttt{e}, \tv{r})\\ & \constraint = \begin{array}[t]{@{}l@{}l} \orCons\set{ \set{ & \tv{r} \lessdotCC \exptype{C}{\ol{\wtv{a}}} , [\overline{\wtv{a}}/\ol{X}]\type{T} \lessdot \tv{a} , \ol{\wtv{a}} \lessdot [\overline{\wtv{a}}/\ol{X}]\ol{N} } \\ & \quad \mid \mv{T}\ \mv{f} \in \texttt{class}\ \exptype{C}{\ol{X} \triangleleft \ol{N}} \set{ \ol{T\ f}; \ldots} , \, \overline{\wtv{a}} \text{ fresh} }\end{array}\\ {\mathbf{in}} & { \consSet_R \cup \set{\constraint}} \end{array} \end{array} \end{displaymath} The set of method assumptions returned by the \textit{mtypes} function is used to generate the constraints for a method call expression: There are two kinds of method calls. The ones to already typed methods and calls to untyped methods. \begin{displaymath} \begin{array}{@{}l@{}l} \typeExpr{} & ({\mtypeEnvironment} , \texttt{e}.\mathtt{m}(\overline{\texttt{e}}), \tv{a} ) = \\ & \begin{array}{ll} \textbf{let} & \tv{r}, \ol{\tv{r}} \text{ fresh} \\ & \consSet_R = \typeExpr(({\mtypeEnvironment} ; \overline{\localVarAssumption}), \texttt{e}, \tv{r})\\ & \overline{\consSet} = \typeExpr({\mtypeEnvironment}, \ol{e}, \ol{\tv{r}}) \\ & \begin{array}{@{}l@{}l} \constraint = \orCons\set{ & \begin{array}[t]{l} [\overline{\wtv{a}}/\ol{X}] [\overline{\wtv{b}}/\ol{Y}] \{ \tv{r} \lessdot \exptype{C}{\ol{X}}, \overline{\tv{r}} \lessdot \ol{T}, \type{T} \lessdot \tv{a}, \ol{X} \lessdot \ol{N}, \ol{Y} \lessdot \ol{N'} \} \end{array}\\ & \ |\ (\exptype{C}{\ol{X} \triangleleft \ol{N}}.\texttt{m} : \generics{\ol{Y} \triangleleft \ol{N'}}\overline{\type{T}} \to \type{T}) \in {\mtypeEnvironment} , \, \overline{\wtv{a}} \text{ fresh}, \, \overline{\wtv{b}} \text{ fresh} } \end{array}\\ \mathbf{in} & \consSet_R \cup \overline{\consSet} \cup \constraint \end{array} \end{array} \end{displaymath} \\[1em] \noindent \textbf{Example:} \begin{verbatim} class Class1{ X m(List lx, List lt){ ... } List wGet(){ ... } List get() { ... } } class Class2{ example(c1){ return c1.m(c1.get(), c1.wGet()); } } \end{verbatim} %This example comes with predefined type annotations. We assume the class \texttt{Class1} has already been processed by our type inference algorithm, which has lead to the given type annotations for \texttt{Class1}. Now we call the $\fjtype{}$ function with the class \texttt{Class2} and the method assumptions for the preceeding class: \begin{displaymath} \mtypeEnvironment = \left\{\begin{array}{l} \type{Class1}.\texttt{m}: \generics{\type{X} \triangleleft \type{Object}} \ (\exptype{List}{\type{X}}, \, \wctype{\wildcard{A}{\type{X}}{\bot}}{List}{\wildcard{A}{\type{X}}{\bot}}) \to \type{X}, \\ \type{Class1}.\texttt{wGet}: () \to \wctype{\wildcard{A}{\type{Object}}{\type{String}}}{List}{\wildcard{A}{\type{Object}}{\type{String}}}, \\ \type{Class1}.\texttt{get}: () \to \exptype{List}{\type{String}} \end{array} \right\} \end{displaymath} The result of the $\typeExpr{}$ function is the constraint set \begin{displaymath} C = \left\{ \begin{array}{l} \tv{c1} \lessdot \type{Class1}, \\ \tv{p1} \lessdot \exptype{List}{\wtv{x}}, \\ \exptype{List}{\type{String}} \lessdot \tv{p1}, \\ \tv{p2} \lessdot \wctype{\wildcard{A}{\wtv{x}}{\bot}}{List}{\rwildcard{A}}, \\ \wctype{\wildcard{A}{\type{String}}{\bot}}{List}{\rwildcard{A}} \lessdot \tv{p2} \end{array} \right\} \end{displaymath} The first parameter of a method assumption is the receiver type $\type{T}_r$. \texttt{Class1} for this example. Therefore the $(\tv{c1} \lessdot \type{Class1})$ constraint. The type variable $\tv{c1}$ is assigned to the parameter \texttt{c1} of the \texttt{example} method. or a simplified version: \begin{displaymath} C = \left\{ \begin{array}{l} \tv{c1} \lessdot \type{Class1}, \\ \exptype{List}{\type{String}} \lessdot \exptype{List}{\wtv{x}}, \\ \wctype{\wildcard{A}{\type{String}}{\bot}}{List}{\rwildcard{A}} \lessdot \wctype{\wildcard{A}{\wtv{x}}{\bot}}{List}{\rwildcard{A}} \end{array} \right\} \end{displaymath} $\wtv{x}$ is a type variable we use for the generic $\type{X}$. It is flagged as a free type variable. %TODO: Do an example where wildcards are inserted and we need capture conversion \unify{} returns the solution $(\sigma = \set{ \tv{x} \to \type{String} })$ % \\[1em] % \noindent % \textbf{Example:} % \begin{verbatim} % class Class1 { % Pair make(List l){ ... } % boolean compare(Pair p) { ... } % example(l){ % return compare(make(l)); % } % } % \end{verbatim} % The method call \texttt{make(l)} generates the constraints % \begin{displaymath} % \tv{l} \lessdot \exptype{List}{\tv{x}}, \exptype{Pair}{\tv{x}, \tv{x}} \lessdot \tv{m} % \end{displaymath} % with $\tv{l}$ being the type placeholder for the variable \texttt{l} % and $\tv{m}$ is the type variable for the return type of the method call. % $\tv{m}$ is then used as the parameter for the \texttt{compare} method: % \begin{displaymath} % \tv{m} \lessdot \exptype{Pair}{\tv{y}, \tv{y}} % \end{displaymath} % Note the conversion of the generic parameters \texttt{X} and \texttt{Y} to type variables $\tv{x}$ and $\tv{y}$. % Step 3 of the \unify{} algorithm has to look for every possible supertype of $\exptype{Pair}{\tv{x}, \tv{x}}$, % when processing the $\exptype{Pair}{\tv{x}, \tv{x}} \lessdot \tv{m}$ constraint. \begin{displaymath} \begin{array}{@{}l@{}l} \typeExpr{} &({\mtypeEnvironment} , e_1 \elvis{} e_2, \tv{a}) = \\ & \begin{array}{ll} \textbf{let} & \tv{r}_1, \tv{r}_2 \ \text{fresh} \\ & \consSet_1 = \typeExpr({\mtypeEnvironment}, e_1, \tv{r}_2)\\ & \consSet_2 = \typeExpr({\mtypeEnvironment}, e_2, \tv{r}_2)\\ {\mathbf{in}} & { \consSet_1 \cup \consSet_2 \cup \set{\tv{r}_1 \lessdot \tv{a}, \tv{r}_2 \lessdot \tv{a}}} \end{array} \end{array} \end{displaymath} %We could skip wfresh here: \begin{displaymath} \begin{array}{@{}l@{}l} \typeExpr{} &({\mtypeEnvironment} , x, \tv{a}) = \mtypeEnvironment(x) \end{array} \end{displaymath} \begin{displaymath} \begin{array}{@{}l@{}l} \typeExpr{} &({\mtypeEnvironment} , \texttt{new}\ \type{C}(\overline{e}), \tv{a}) = \\ & \begin{array}{ll} \textbf{let} & \ol{\tv{r}} \ \text{fresh} \\ & \overline{\consSet} = \typeExpr({\mtypeEnvironment}, \overline{e}, \ol{\tv{r}}) \\ & C = \set{\ol{\tv{r}} \lessdot [\ol{\tv{a}}/\ol{X}]\ol{T}, \ol{\tv{a}} \lessdot \ol{N} \mid \texttt{class}\ \exptype{C}{\ol{X} \triangleleft \ol{N}} \set{ \ol{T\ f}; \ldots}} \\ {\mathbf{in}} & { \overline{\consSet} \cup \set{\tv{a} \doteq \exptype{C}{\ol{a}}}} \end{array} \end{array} \end{displaymath} % Problem: % > void t2(List l){} % void test(List> l){ % t2(l); % } % Problem: % List> <. List, a <. List % Y.List =. a % Z.List <. List % These constraints should fail! % \section{Result Generation} % If \unify{} returns atleast one type solution $(\Delta, \sigma)$ % the last step of the type inference algorithm is to generate a typed class. % This section presents our type inference algorithm. % The algorithm is given method assumptions $\mv\Pi$ and applied to a % single class $\mv L$ at a time: % \begin{gather*} % \fjtypeinference(\mtypeEnvironment, \texttt{class}\ \exptype{C}{\ol{X} % \triangleleft \ol{N}} \triangleleft \type{N}\ \{ \overline{\type{T} \ f};\ \ol{M} \}) = \\ % \quad \quad \begin{array}[t]{rll} % \textbf{let}\ % (\overline{\methodAssumption}, \consSet) &= \fjtype{}(\mv{\Pi}, \texttt{class}\ \exptype{C}{\ol{X} % \triangleleft \ol{N}} \triangleleft \type{N}\ \{ \ldots \}) & % \text{// constraint generation}\\ % {(\Delta, \sigma)} &= \unify{}(\consSet,\, \ol{X} <: \ol{N}) & \text{// constraint solving}\\ % \generics{\ol{Y} \triangleleft \ol{S}} &= \set{ \type{Y} \triangleleft \type{S} \mid \wildcard{Y}{\type{P}}{\bot} \in \Delta} \\ % \ol{M'} &= \set{ \generics{\ol{Y} \triangleleft \ol{S}}\ \sigma(\tv{a}) \ \texttt{m}(\ol{\sigma(\tv{a})\ x}) = \texttt{e} \mid (\mathtt{m}(\ol{x})\ = \mv e) \in \ol{M}, (\exptype{C}{\ol{X} \triangleleft \ol{N}}.\mv{m} : \ol{\tv{a}} \to \tv{a}) \in \overline{\methodAssumption}} % %TODO: Describe whole algorithm (Insert types, try out every unify solution by backtracking (describe it as Non Deterministic algorithm)) % \end{array}\\ % \textbf{in}\ \texttt{class}\ \exptype{C}{\ol{X} % \triangleleft \ol{N}} \triangleleft \type{N}\ \{ \overline{\type{T} \ f};\ \ol{M'} \} \\ % \textbf{in}\ \mtypeEnvironment \cup % \set{(\exptype{C}{\ol{X} \triangleleft \ol{N}}.\mv{m} : \generics{\ol{Y} \triangleleft \ol{S}}\ \ol{\sigma(\tv{a})} \to \sigma(\tv{a})) \ |\ (\exptype{C}{\ol{X} \triangleleft \ol{N}}.\mv{m} : \ol{\tv{a}} \to \tv{a}) \in \overline{\methodAssumption}} % % \fjtypeInsert(\overline{\methodAssumption}, (\sigma, \unifyGenerics{}) ) % \end{gather*} % The overall algorithm is nondeterministic. The function $\unify{}$ may % return finitely many times as there may be multiple solutions for a constraint % set. A local solution for class $\mv C$ may not % be compatible with the constraints generated for a subsequent class. In this case, we have to backtrack to $\mv C$ and proceed to the next % local solution; if thats fail we have to backtrack further to an earlier class. % \begin{gather*} % \textbf{ApplyTypes}(\mtypeEnvironment, \texttt{class}\ \exptype{C}{\ol{X} % \triangleleft \ol{N}} \triangleleft \type{N}\ \{ \overline{\type{T} \ f};\ \ol{M} \}) = \\ % \quad \quad \begin{array}[t]{rl} % \textbf{let}\ % \ol{M'} &= \set{ \generics{\ol{Y} \triangleleft \ol{S}}\ \sigma(\tv{a}) \ \texttt{m}(\ol{\sigma(\tv{a})\ x}) = \texttt{e} \mid (\mathtt{m}(\ol{x})\ = \mv e) \in \ol{M}, (\exptype{C}{\ol{X} \triangleleft \ol{N}}.\mv{m} : \ol{\tv{a}} \to \tv{a}) \in \overline{\methodAssumption}} % \end{array}\\ % \textbf{in}\ \texttt{class}\ \exptype{C}{\ol{X} % \triangleleft \ol{N}} \triangleleft \type{N}\ \{ \overline{\type{T} \ f};\ \ol{M'} \} \\ % \end{gather*} % %TODO: Rules to create let statements % % Input is type solution and untyped program. % % Output is typed program % % describe conversion for each expression % Given a result $(\Delta, \sigma)$ and the type placeholders generated by $\TYPE{}$ % we can construct a \wildFJ{} program. % %TODO: show soundness by comparing constraints and type rules % % untyped expression | constraints | typed expression (making use of constraints and sigma) % $\begin{array}{l|c|r} % m(x) = e & r m(p x) = e & \Delta \sigma(r) m(\sigma(p) x) = |e| \\ % e \elvis{} e' \\ % e.m(\ol{e}) & (e:a).m(\ol{e:p}) & a <. T, p <. T & let x : sigma(a) = e in e.m(x); %TODO % \end{array}$ % \begin{displaymath} % \begin{array}[c]{l} % \\ % \hline % \vspace*{-0.4cm}\\ % \wildcardEnv % \vdash C \cup \, \set{ % \ol{\type{S}} \doteq [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{\type{T}}, % \ol{\wtv{a}} \lessdot [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{U}, [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{L} \lessdot \ol{\wtv{a}} } % \end{array} % \end{displaymath}