\section{Syntax} $ \begin{array}{lrcl} \hline \text{Parameterized classes} & \mv N & ::= & \exptype{C}{\ol{W}} \\ \text{Types} & \type{S}, \type{T}, \type{U} & ::= & \type{X} \mid \wcNtype{\Delta}{N} \\ \text{Lower bounds} & \type{K}, \type{L} & ::= & \type{T} \mid \bot \\ \text{Type variable contexts} & \Delta & ::= & \overline{\wildcard{X}{T}{L}} \\ \text{Class declarations} & D & ::= & \texttt{class}\ \exptype{C}{\ol{X \triangleleft T}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M}} \\ \text{Method declarations} & \texttt{M} & ::= & \generics{\ol{X \triangleleft T}} \type{T} \ \texttt{m}(\overline{\type{T}\ x}) = t \\ \text{Terms} & t & ::= & x \\ & & \ \ | & \texttt{new} \ \exptype{C}{\ol{T}}(\overline{t})\\ & & \ \ | & t.f\\ & & \ \ | & t.\generics{\ol{T}}\texttt{m}(\overline{t})\\ & & \ \ | & t \elvis{} t\\ \text{Variable contexts} & \Gamma & ::= & \overline{x:\type{T}}\\ \hline \end{array} $ Each class type has a set of wildcard types $\overline{\Delta}$ attached to it. The type $\wctype{\overline{\Delta}}{C}{\ol{T}}$ defines a set of wildcards $\overline{\Delta}$, which can be used inside the type parameters $\ol{T}$. It is important that each wildcard declaration $\wildcard{X}{T}{L}$ is unique. \section{Type rules} \begin{figure}[tp] $\begin{array}{l} \typerule{S-Refl}\\ \begin{array}{@{}c} \Delta \vdash \type{T} <: \type{T} \end{array} \end{array}$ $\begin{array}{l} \typerule{S-Trans}\\ \begin{array}{@{}c} \Delta \vdash \type{S} <: \type{T}' \quad \quad \Delta \vdash \type{T}' <: \type{T} \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \type{S} <: \type{T} \end{array} \end{array}$ $\begin{array}{l} \typerule{S-Upper}\\ \begin{array}{@{}c} \wildcard{X}{U}{L} \in \Delta \\ \vspace*{-0.9em}\\ \hline \vspace*{-0.9em}\\ \Delta \vdash \type{X} <: \type{U} \end{array} \end{array}$ $\begin{array}{l} \typerule{S-Lower}\\ \begin{array}{@{}c} \wildcard{X}{U}{L} \in \Delta \\ \vspace*{-0.9em}\\ \hline \vspace*{-0.9em}\\ \Delta \vdash \type{L} <: \type{X} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{S-Extends}\\ \begin{array}{@{}c} \texttt{class}\ \exptype{C}{\overline{\type{X} \triangleleft \type{U}}} \triangleleft \exptype{D}{\ol{S}} \ \{ \ldots \} \\ \ol{X} \cap \text{dom}(\Delta) = \emptyset \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \wctype{\Delta'}{C}{\ol{T}} <: \wctype{\Delta'}{D}{[\ol{T}/\ol{X}]\ol{S}} \end{array} \end{array}$ $\begin{array}{l} \typerule{S-Exists}\\ \begin{array}{@{}c} \Delta', \Delta \vdash [\ol{T}/\ol{\type{X}}]\ol{L} <: \ol{T} \quad \quad \Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\ \text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \Delta') \quad \quad \text{dom}(\Delta') \cap \text{fv}(\wctype{\ol{\wildcard{X}{U}{L}}}{C}{\ol{S}}) = \emptyset \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \wctype{\Delta'}{C}{[\ol{T}/\ol{\type{X}}]\ol{S}} <: \wctype{\ol{\wildcard{X}{U}{L}}}{C}{\ol{S}} \end{array} \end{array}$ \caption{Subtyping}\label{fig:subtyping} \end{figure} \begin{figure}[tp] \begin{center} $\begin{array}{l} \typerule{WF-Bot}\\ \begin{array}{@{}c} \Delta \vdash \bot \ \ok \end{array} \end{array}$ $\begin{array}{l} \typerule{WF-Top}\\ \begin{array}{@{}c} \Delta \vdash \ol{L}, \ol{U} \ \ok \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \overline{\wildcard{W}{U}{L}}.\texttt{Object} \end{array} \end{array}$ $\begin{array}{l} \typerule{WF-Var}\\ \begin{array}{@{}c} \wildcard{W}{U}{L} \in \Delta \quad \quad \Delta \vdash \ol{L}, \ol{U} \ \ok \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \wildcard{W}{U}{L} \ \ok \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{WF-Class}\\ \begin{array}{@{}c} \Delta' = \ol{\wildcard{W}{U}{L}} \quad \quad \Delta, \Delta' \vdash \ol{T}, \ol{L}, \ol{U} \ \ok \quad \quad \Delta, \Delta' \vdash \ol{L} <: \ol{U} \\ \Delta, \Delta' \vdash \ol{T} <: [\ol{T}/\ol{X}] \ol{U'} \quad \quad \texttt{class}\ \exptype{C}{\ol{X \triangleleft U'}} \triangleleft \type{N} \ \{ \ldots \} \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \wctype{\ol{\wildcard{W}{U}{L}}}{C}{\ol{T}} \ \ok \end{array} \end{array}$ \end{center} \caption{Well-formedness}\label{fig:well-formedness} \end{figure} %TODO: Proof that well-formed (ok) implies that a type is witnessed We change the type rules to require the well-formedness instead of the witnessed property. See figure \ref{fig:well-formedness}. Our well-formedness criteria is more restrictive than the ones used for \wildFJ{}. \cite{WildcardsNeedWitnessProtection} works with the two different judgements $\ok$ and \texttt{witnessed}. With \texttt{witnessed} being the stronger one. We rephrased the $\ok$ judgement to include \texttt{witnessed} aswell. $\type{T} \ \ok$ in this paper means $\type{T} \ \ok$ and $\type{T} \ \texttt{witnessed}$ in the sense of the \wildFJ{} type rules. Java's type system is complex enough as it is. Simplification, when possible, is always appreciated. Our $\ok$ rule may not be able to express every corner of the Java type system, but is sufficient to show soundness regarding type inference for a Java core calculus. The \rulename{WF-Class} rule requires upper and lower bounds to be direct subtypes of each other $\type{L} <: \type{U}$. The type rules from \cite{WildcardsNeedWitnessProtection} use a witness type instead. Stating that a type is well formed (\texttt{witnessed}) if there exists atleast one simple type $\type{N}$ as a possible subtype: $\Delta \vdash \type{N} <: \wctype{\Delta'}{C}{\ol{T}}$. A witness type is easy to find by replacing every wildcard $\ol{W}$ in $\wctype{\ol{\wildcard{W}{U}{L}}}{C}{\ol{T}}$ by its upper bound: $\Delta \vdash \exptype{C}{[\ol{U}/\ol{W}]\ol{T}} <: \wctype{\ol{\wildcard{W}{U}{L}}}{C}{\ol{T}}$. $\Delta \vdash \exptype{C}{[\ol{U}/\ol{W}]\ol{T}} \ \texttt{witnessed}$ is given due to $\Delta \vdash \ol{T}, \ol{L}, \ol{U} \ \ok$ and $\Delta \vdash \wctype{\ol{\wildcard{W}{U}{L}}}{C}{\ol{T}} \ \ok$. %Not necessary! % Additionally we do not allow nested wildcards. %TODO: Unify cannot create them (or does it?) What is when the input contains them % The \unify{} algorithm is not capable of generating types like $\wctype{\rwildcard{X}, \wildcard{Y}{\bot}{\rwildcard{X}}}{Pair}{\rwildcard{X}, \rwildcard{Y}}$. % %But they could be created in intermidiate types (\ol{S}) in method calls by capture conversion: % class WList extends List> % m(List l) % TODO % m(X.Wlist) % S = Y^X.List % X.WList <. List % X.List> <. List % x =. Y^X.List % %TODO: do we need \Delta' \Delta \vdash T, L ,U ok ? or is \Delta \vdashh ... sufficient? % % m(List l) % %This is important because it means different things maybe for the proof of our OK being more restrictive than "witnessed" % % where can nested wildcards occur? % WBox extends Box> % WBox => Y.WBox <: Y.Box> % Everything else regarding subtyping stays the same as in \cite{WildcardsNeedWitnessProtection}. % \begin{lemma} % If $\Delta \vdash $ % \end{lemma} Figure \ref{fig:tletexpr} shows type rules for fields and method calls. They have been merged with let statements and simplified. The let statements and the type $\wcNtype{\Delta'}{N}$, which the type inference algorithm can freely choose, are necessary for the soundness proof. \begin{figure}[tp] $\begin{array}{l} \typerule{T-Var}\\ \begin{array}{@{}c} x : \type{T} \in \Gamma \\ \hline \vspace*{-0.3cm}\\ \Delta | \Gamma \vdash x : \type{T} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-New}\\ \begin{array}{@{}c} \Delta, \overline{\Delta} \vdash \exptype{C}{\ol{T}} \ \ok \quad \quad \text{fields}(\exptype{C}{\ol{T}}) = \overline{\type{U}\ f} \quad \quad \Delta | \Gamma \vdash \overline{t : \type{S}} \quad \quad \Delta \vdash \overline{\type{S}} <: \overline{\wcNtype{\Delta}{N}} \\ \Delta, \overline{\Delta} \vdash \overline{\type{N}} <: \overline{\type{U}} \quad \quad \Delta, \overline{\Delta} \vdash \exptype{C}{\ol{T}} <: \type{T} \quad \quad \overline{\text{dom}(\Delta) \subseteq \text{fv}(\type{N})} \quad \quad \Delta \vdash \type{T}, \overline{\wcNtype{\Delta}{N}} \ \ok \\ \hline \vspace*{-0.3cm}\\ \Delta | \Gamma \vdash \letstmt{\ol{x} : \ol{\wcNtype{\Delta}{N}} = \ol{t}}{\texttt{new} \ \exptype{C}{\ol{T}}(\overline{t})} : \type{T} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Field}\\ \begin{array}{@{}c} \Delta | \Gamma \vdash \texttt{t} : \type{T} \quad \quad \Delta \vdash \type{T} <: \wcNtype{\Delta'}{N} \quad \quad \textit{fields}(\type{N}) = \ol{U\ f} \\ \Delta, \Delta' \vdash \type{U}_i <: \type{S} \quad \quad \text{dom}(\Delta') \subseteq \text{fv}(\type{N}) \quad \quad \Delta \vdash \type{S}, \wcNtype{\Delta'}{N} \ \ok \\ \hline \vspace*{-0.3cm}\\ \Delta | \Gamma \vdash \texttt{let}\ x : \wcNtype{\Delta'}{N} = \texttt{t} \ \texttt{in}\ x.\texttt{f}_i : \type{S} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Call}\\ \begin{array}{@{}c} \Delta, \Delta', \overline{\Delta} \vdash \ol{\type{N}} <: [\ol{S}/\ol{X}]\ol{U} \quad \quad \textit{mtype}(\texttt{m}, \type{N}) = \generics{\ol{X \triangleleft U'}} \ol{U} \to \type{U} \quad \quad \Delta, \Delta', \overline{\Delta} \vdash \ol{S} <: [\ol{S}/\ol{X}]\ol{U'} \\ \Delta, \Delta', \overline{\Delta} \vdash \ol{S} \ \ok \quad \quad \Delta | \Gamma \vdash \texttt{t}_r : \type{T}_r \quad \quad \Delta | \Gamma \vdash \ol{t} : \ol{T} \quad \quad \Delta \vdash \type{T}_r <: \wcNtype{\Delta'}{N} \quad \quad \Delta \vdash \ol{T} <: \ol{\wcNtype{\Delta}{N}} \\ \Delta \vdash \type{T}, \wcNtype{\Delta'}{N}, \overline{\wcNtype{\Delta}{N}} \ \ok \quad \quad \Delta, \Delta', \Delta'' \vdash [\ol{S}/\ol{X}]\type{U} <: \type{T} \quad \quad \text{dom}(\Delta') \subseteq \text{fv}(\type{N}) \quad \quad \overline{\text{dom}(\Delta) \subseteq \text{fv}(\type{N})} \\ \hline \vspace*{-0.3cm}\\ \Delta | \Gamma \vdash \letstmt{x : \wcNtype{\Delta'}{N} = t_r, \ol{x} : \ol{\wcNtype{\Delta}{N}} = \ol{t}} {\texttt{x}.\generics{\ol{S}}\texttt{m}(\ol{x})} : \type{T} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Elvis}\\ \begin{array}{@{}c} \Delta | \Gamma \vdash t_1 : \type{T}_1 \quad \quad \Delta | \Gamma \vdash t_2 : \type{T}_2 \quad \quad \Delta \vdash \type{T}_1 <: \type{T} \quad \quad \Delta \vdash \type{T}_2 <: \type{T} \\ \hline \vspace*{-0.3cm}\\ \Delta | \Gamma \vdash t_1 \elvis{} t_2 : \type{T} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Method}\\ \begin{array}{@{}c} \text{dom}(\Delta)=\ol{X} \quad \quad \Delta' = \overline{\type{Y} : \bot .. \type{U}} \quad \quad \Delta, \Delta' \vdash \ol{U}, \type{T}, \ol{T}\ \ok \quad \quad \texttt{class}\ \exptype{C}{\ol{X \triangleleft \_ }} \triangleleft \type{N} \set{\ldots} \\ \Delta, \Delta' | \overline{x:\type{T}}, \texttt{this} : \exptype{C}{\ol{X}} \vdash t:\type{S} \quad \quad \Delta, \Delta' \vdash \type{S} <: \type{T} \quad \quad \text{override}(\texttt{m}, \type{N}, \generics{\ol{Y \triangleleft U}}\ol{T} \to \type{T}) \\ \hline \vspace*{-0.3cm}\\ \Delta \vdash \generics{\ol{Y \triangleleft U}} \type{T} \ \texttt{m}(\overline{\type{T} \ x}) = t \ \ok \ \texttt{in C} \end{array} \end{array}$ \\[1em] $\begin{array}{l} \typerule{T-Class}\\ \begin{array}{@{}c} \Delta = \overline{\type{X} : \bot .. \type{U}} \quad \quad \Delta \vdash \ol{U}, \ol{T} \ \ok \quad \quad \Delta \vdash \type{N} \ \ok \quad \quad \Delta \vdash \ol{M} \ \ok \texttt{ in C} \\ \hline \vspace*{-0.3cm}\\ \texttt{class}\ \exptype{C}{\ol{X \triangleleft U}} \triangleleft \type{N} \set{\overline{\type{T}\ f}; \ol{M} } \ \ok \end{array} \end{array}$ \caption{T-Call and T-Field} \label{fig:tletexpr} \end{figure}