1433 lines
60 KiB
TeX
1433 lines
60 KiB
TeX
% TODO: unify changes
|
|
% delete wildcard tphs a? when needed
|
|
% aswell ass free variables:
|
|
% a <. T with fv(T) not empty and not in \Delta' must be removed by U = L
|
|
% also in T <. T constraints no free variables are allowed on both sides (why? this is wrong i think)
|
|
% the algorithm only removes wildcards, never adds them
|
|
|
|
\section{Unify}\label{sec:unify}
|
|
|
|
\subsection{Description}
|
|
The \unify{} algorithm tries to find a solution for a set of constraints like
|
|
$\set{\exptype{List}{String} \lessdot \tv{a}, \exptype{List}{Integer} \lessdot \tv{a}}$.
|
|
Those two constraints imply that we have to find a type replacement for type variable $\tv{a}$,
|
|
which is a supertype of $\exptype{List}{String}$ aswell as $\exptype{List}{Integer}$.
|
|
|
|
The input constraints are transformed until they reach a solved form which is then converted to a type solution.
|
|
A constraint set is in solved form if it only consists of constraints of the form
|
|
$\tv{a} \doteq \type{T}$ and $\tv{a} \lessdot \type{T}$.
|
|
\unify{} is described as a nondeterministic algorithm.
|
|
Some constraints allow for multiple transformations from which
|
|
the algorithm has to pick the right one.
|
|
There are also cases where there is more than on correct transformation and
|
|
therefore more than one correct solution to the given input constraints.
|
|
For that case still only one correct solution is returned by this specification of the algorithm.
|
|
Our implementation of the algorithm considers this and tries every possible transformation option
|
|
and gathers all possible type solutions.
|
|
We skip the definition of this practice, because it is already described in \cite{TIforFGJ}
|
|
and only needed for a proof of completeness.
|
|
|
|
The \unify{} algorithm applies conversions according to the subtyping rules (depicted in figure \ref{fig:subtyping}).
|
|
At every step we try to find a reduction, which brings us closer to solved form without excluding any possible solution.
|
|
\textit{Examples:}
|
|
\begin{itemize}
|
|
\item A $\bot \lessdot \type{T}$ constraint is always satisfied and can be ignored. It will be removed by the \rulename{Bot} rule.
|
|
For the type placeholder $\tv{a}$ in the constraint $\tv{a} \lessdot \bot$ only the $\bot$ type is a possible substitution,
|
|
which is set by the \rulename{Pit} rule.
|
|
\item The \rulename{Reduce} rule represents the S-Exists type rule.
|
|
This rule uses wildcard placeholders ($\ol{\wtv{a}}$) to find a possible substitution for the wildcards on the right side.
|
|
The constraint $\type{N} \lessdot \wcNtype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{N'}$ is satisfied if
|
|
there is a substitution $[\ol{T}/\ol{X}]\type{N} = \type{N'}$ with $\ol{T}$ inside the bounds $\ol{U}$ and $\ol{L}$.
|
|
|
|
For example the constraint
|
|
$\exptype{List}{\tv{a}} \lessdot \wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}}$
|
|
is converted to
|
|
$\set{\tv{a} \doteq \wtv{x}, \wtv{x} \lessdot \type{Object}, \bot \lessdot \wtv{x} }$.
|
|
After applying \rulename{Swap} and \rulename{Subst-WC} on $\tv{a} \doteq \wtv{x}$ we get
|
|
$\set{\tv{a} \lessdot \type{Object}, \bot \lessdot \tv{a}}$ and can now apply the \rulename{Bot} rule.
|
|
This leaves us with $\set{\tv{a} \lessdot \type{Object}}$.
|
|
\item The \rulename{Erase} rule will remove redundant $\type{T} \doteq \type{T}$ constraints
|
|
\item \rulename{Equals} ensures equality of two types by ensuring they are mutual subtypes.
|
|
Constraints like $\wctype{\wildcard{X}{\tv{a}}{\tv{b}}}{List}{\rwildcard{X}} \doteq \wctype{\wildcard{Y}{\type{Object}}{\tv{String}}}{List}{\rwildcard{Y}}$
|
|
are transformed to
|
|
$\wctype{\wildcard{X}{\tv{a}}{\tv{b}}}{List}{\rwildcard{X}} \lessdot \wctype{\wildcard{Y}{\type{Object}}{\tv{String}}}{List}{\rwildcard{Y}}$
|
|
and $\wctype{\wildcard{Y}{\type{Object}}{\tv{String}}}{List}{\rwildcard{Y}} \lessdot \wctype{\wildcard{X}{\tv{a}}{\tv{b}}}{List}{\rwildcard{X}}$.
|
|
% The types $\wctype{\rwildcard{X}}{List}{\rwildcard{X}}$ and $\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}$
|
|
% are equal.
|
|
\end{itemize}
|
|
|
|
We define two types as equal if they are mutual subtypes of each other.
|
|
%This relation is symmetric, reflexive and transitive by the definition of subtyping.
|
|
%This definition is sufficient for proofing soundness.
|
|
\begin{definition}{Type Equality:}\label{def:equal}
|
|
$\Delta \vdash \type{S} = \type{T}$ if $\Delta \vdash \type{T} <: \type{S}$ and $\Delta \vdash \type{T} <: \type{S}$
|
|
\end{definition}
|
|
%This definition makes sense
|
|
% The symmetric subtyping allows this type to be substit
|
|
% We define types to be equal if they are symmetric subtypes.
|
|
% This allows the substitution of these types with eachother.
|
|
% If $\Delta \vdash \type{S} = \type{S'}$ and $\Delta \vdash \type{T} <: \type{T'}$,
|
|
% then $\Delta \vdash [\type{S}/\type{S'}]\type{T} <: \type{T'}$.
|
|
|
|
|
|
\textbf{Capture Constraints:}
|
|
The equality relation on Capture constraints is not reflexive.
|
|
A capture constraint is never equal to another capture constraint even when structurally the same
|
|
($\type{T} \lessdotCC \type{S} \neq \type{T} \lessdotCC \type{S}$).
|
|
An implementation of the algorithm has to take this into account.
|
|
All constraints are stored in a set and there are no dublicates of subtype constraints in a constraint set.
|
|
Capture constraints however have to be stored as a list or have an unique number assigned
|
|
so that duplicates don't get automatically discarded.
|
|
|
|
Capture constraints are treated like regular subtype constraints.
|
|
All transformations for subtype constraints work for capture constraints aswell.
|
|
For clarification Subtype constraints are marked with a number.
|
|
Constraints with the same number stay the same type.
|
|
Newly created subtype constraints are always regular subtype constrains unless stated otherwise.
|
|
The \rulename{Adopt} rule for example takes multiple subtype constraints and adds a new one.
|
|
Having the constraints
|
|
$\ntv{a} \lessdotCC \wtv{b}, \ntv{a} \lessdot \type{String}, \wtv{b} \lessdot \type{Object}$
|
|
would lead to
|
|
$\wtv{b} \lessdot \type{String}, \ntv{a} \lessdotCC \wtv{b}, \ntv{a} \lessdot \type{String}, \wtv{b} \lessdotCC \type{Object}$
|
|
after applying \rulename{Adopt}.
|
|
The new generated constraint $\wtv{b} \lessdot \type{String}$ is a normal subtype constraint.
|
|
The type placeholders which are annotated as wildcard placeholders also stay wildcard placeholders.
|
|
The only rule that replaces wildcard type placeholders with regular placeholders is the \rulename{Normalize} rule.
|
|
|
|
\textbf{Wildcard Environment:}
|
|
Additional to a constraint set \unify{} holds a wildcard environment $\wildcardEnv{}$ keeping free variables.
|
|
The algorithm starts with an empty wildcard environment $\wildcardEnv{}$.
|
|
Only the \rulename{Capture} rule adds wildcards to that environment
|
|
and every added wildcard gets a fresh unique name.
|
|
This ensures the wildcard environment $\wildcardEnv{}$ never
|
|
gets the same wildcard twice.
|
|
|
|
% \subsection{Capture Conversion}
|
|
% % TODO: Describe Capture conversion
|
|
% Capture conversion is done during the \unify{} algorithm.
|
|
% \unify{} has to make two promises to ensure soundness of our type inference algorithm.
|
|
% Capture conversion can only be applied at capture constraints.
|
|
% Free variables are not allowed to leave their scope.
|
|
% This is ensured by type variables which are not allowed to be assigned type holding free variables.
|
|
|
|
\textbf{Wildcard Placeholders:}
|
|
The vital part are the \rulename{Subst} and \rulename{Normalize} rules.
|
|
They assert that a normal type placeholder is never replaced by a type containing free variables.
|
|
\rulename{Normalize} replaces Wildcard placeholders with normal placeholders right before they get substituted by \rulename{Subst}.
|
|
The idea is to keep the possibility of replacing a wildcard placeholder with a free variable as long as possible.
|
|
As soon as they appear in a $\ntv{a} \doteq \type{T}$ constraint they have to be replaced with normal placeholders.
|
|
|
|
A type solution for a normal type placeholder will never contain free variables.
|
|
This is needed to guarantee well-formed type solutions and also keep free variables inside their scope.
|
|
|
|
\begin{example}{Free variables must not leave the scope of the surrounding \texttt{let} statement}
|
|
|
|
\noindent
|
|
\begin{minipage}{0.40\textwidth}
|
|
\begin{lstlisting}
|
|
m(l) = let v = l in v.get()
|
|
\end{lstlisting}
|
|
\end{minipage}%
|
|
\hfill
|
|
\begin{minipage}{0.59\textwidth}
|
|
\begin{constraintset}
|
|
$\tv{l} \lessdot \tv{v}, \tv{v} \lessdotCC \exptype{List}{\wtv{x}},
|
|
\wtv{x} \lessdot \tv{r}$
|
|
\end{constraintset}
|
|
\end{minipage}
|
|
Lets assume the variables \texttt{l} and \texttt{v}
|
|
get the type $\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}}$ assigned to them.
|
|
After application of the \rulename{Capture} and \rulename{SubstWC} rules the constraint set looks like this:
|
|
|
|
$\begin{array}[c]{l}
|
|
\wctype{\wildcard{X}{\type{Object}}{\type{String}}}{List}{\rwildcard{X}} \lessdotCC \exptype{List}{\wtv{x}}, \wtv{x} \lessdot \ntv{r}
|
|
\\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcard{X}{\type{Object}}{\type{String}} \vdash \wtv{x} \doteq \rwildcard{X}, \rwildcard{X} \lessdot \ntv{r}
|
|
\end{array}
|
|
$
|
|
|
|
Replacing $\tv{r}$ with $\rwildcard{X}$ would solve the constraint set but lead to the method type
|
|
|
|
\texttt{X m(List<? super String> l)} which makes no sense.
|
|
The normal type placeholder $\ntv{r}$ has to be replaced by a type without free type variables
|
|
($\ntv{r} \doteq \type{Object}$) leading to
|
|
|
|
\texttt{Object m(List<? super String> l)}.
|
|
\end{example}
|
|
|
|
\subsection{Algorithm}
|
|
|
|
\newcommand{\gtype}[1]{\type{#1}}
|
|
%\newcommand{\tw}[1]{\tv{#1}_?}
|
|
\begin{description}
|
|
\item[Input:] An environment $\Delta'$
|
|
and a set of constraints $C = \set{ \type{T} \lessdot \type{T}, \type{T} \doteq \type{T} \ldots}$
|
|
and a list of constraints $C' = \set{ \type{T} \lessdotCC \type{T}}$.
|
|
The input constraints must be of the following format:
|
|
|
|
\begin{tabular}{lcll}
|
|
$c $ &$::=$ & $\type{T} \lessdot \type{T}, \type{T} \lessdotCC \type{T}$ & Constraint \\
|
|
$\type{T}, \type{U}, \type{L} $ & $::=$ & $\ntv{a} \mid \wtv{a} \mid \ntype{N}$ & Type variable or Wildcard Variable or Type \\
|
|
$\ntype{N}, \ntype{S}$ & $::=$ & $\wctype{\overline{\wildcard{X}{U}{L}}}{C}{\ol{T}} $ & Class Type \\
|
|
\end{tabular}\\[0.5em]
|
|
|
|
\item[Output:]
|
|
Set of unifiers $Uni = \set{\sigma_1, \ldots, \sigma_n}$ and an environment $\Delta$
|
|
\end{description}
|
|
|
|
The \unify{} algorithm internally uses the following data types:
|
|
|
|
\begin{tabular}{lcll}
|
|
$C $ &$::=$ &$\overline{c}$ & Constraint set \\
|
|
$c $ &$::=$ & $\type{T} \lessdot \type{T} \mid \type{T} \lessdotCC \type{T} \mid \type{T} \doteq \type{T}$ & Constraint \\
|
|
$\type{T}, \type{U}, \type{L} $ & $::=$ & $\tv{a} \mid \gtype{G}$ & Type placeholder or Type \\
|
|
$\tv{a}$ & $::=$ & $\ntv{a} \mid \wtv{a}$ & Normal and wildcard type placeholder \\
|
|
$\gtype{G}$ & $::=$ & $\type{X} \mid \ntype{N}$ & Wildcard, or Class Type \\
|
|
$\ntype{N}, \ntype{S}$ & $::=$ & $\wctype{\triangle}{C}{\ol{T}} $ & Class Type \\
|
|
$\triangle$ & $::=$ & $\overline{\wtype{W}}$ & Wildcard Environment \\
|
|
$\wtype{W}$ & $::=$ & $\wildcard{X}{U}{L}$ & Wildcard \\
|
|
\end{tabular}
|
|
|
|
The algorithm is split into multiple parts:
|
|
\begin{description}
|
|
\item[Step 1:]
|
|
Apply the rules depicted in the figures \ref{fig:normalizing-rules}, \ref{fig:reduce-rules} and \ref{fig:wildcard-rules} exhaustively,
|
|
starting with the \rulename{circle} rule.
|
|
|
|
\item[Step 2:]
|
|
%If there are no $(\type{T} \lessdot \tv{a})$ constraints remaining in the constraint set $C$
|
|
%resume with step 4.
|
|
|
|
The second step is nondeterministic.
|
|
%\unify{} has to pick the right transformation for each constraint of the form $\type{N} \lessdot \tv{a}$.
|
|
%The rules in figure \ref{fig:step2-rules} offer three possibilities to deal with constraints $\type{N} \lessdot \tv{a}$.
|
|
For every $\type{T} \lessdot \tv{a}$ constraint \unify{} has to pick exactly one transformation from figure \ref{fig:step2-rules}.
|
|
The same principle goes for constraints of the form $\tv{a} \lessdot \type{N}, \tv{a} \lessdot \tv{b}$ and the two transformations in figure \ref{fig:step2-rules2}.
|
|
%They have to be applied until the constraint set holds no constraints of the form $\tv{a} \lessdot \type{N}, \tv{a} \lessdot \tv{b}$.
|
|
If atleast one transformation was applied in this step revert to step 1.
|
|
Otherwise proceed with step 3.
|
|
%This builds a search tree over multiple possible solutions.
|
|
%\unify{} has to try each branch and accumulate the resulting solutions into a solution set.
|
|
|
|
%$\type{T} \lessdot \ntv{a}$ constraints have three and $\type{T} \lessdot \wtv{a}$ constraints have five possible transformations.
|
|
|
|
\item[Step 3:]
|
|
Apply the rules in figure \ref{fig:cleanup-rules} exhaustively.
|
|
\rulename{Ground} and \rulename{Flatten} deal with constraints containing free variables.
|
|
If a type placeholder is solely used as lower bound \rulename{Ground} can replace it with the bottom type.
|
|
Otherwise the \rulename{Flatten} rule has to remove the wildcards responsible for the free variable.
|
|
\text{Note:} Only one of those rules has to be applied per constraint.
|
|
If the constraint set has been changed by one of these rules the algorithm must return to step 1.
|
|
But if only the \rulename{SubElim} rule is applied or the constraint set is not changed at all,
|
|
the algorithm can proceed with step 4.
|
|
|
|
The cleanup step prepares the constraint set for the last step by applying the following concepts:
|
|
%Two transformations are done which also help to remove unnecessary types from the solution set.
|
|
\begin{description}
|
|
\item[Bottom type]
|
|
The bottom type $\bot$ is used to generate \texttt{? extends} wildcard definitions.
|
|
This is the only possible solution when dealing with multiple upper bounds:
|
|
$\tv{a} \lessdot \type{T}, \tv{a} \lessdot \type{S}$ is usually not a correct solution (given $\type{S}$ and $\type{T}$ are no subtypes of eachother).
|
|
But if $\tv{a}$ is a lower bound of a wildcard it can be set to $\bot$.
|
|
Those constraints only stay in the constraint set after the first step if $\type{S}$ and $\type{T}$ do not have a common subtype.
|
|
The \rulename{Ground} rule uses this concept to generate \texttt{extends} Wildcards.
|
|
|
|
\end{description}
|
|
|
|
\item[Step 4:] \textit{(Generating Result)}
|
|
Apply the rules in figure \ref{fig:generation-rules} until $\wildcardEnv = \emptyset$ and $C = \emptyset$.
|
|
The resulting $\Delta, \sigma$ is a correct solution.
|
|
|
|
For this step to succeed there should only be four kinds of constraints left.
|
|
\begin{enumerate}
|
|
%\item\label{item:3} $\tv{a} \lessdot \tv{b}$ %, with $a$ and $b$ both isolated type variables
|
|
\item $\tv{a} \doteq \tv{b}$
|
|
%\item $\wtv{a} \doteq \type{G}$
|
|
\item\label{item:1} $\tv{a} \lessdot \wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}$, with $\text{fv}(\wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}) \subseteq \Delta_in$
|
|
\item\label{item:2} $\tv{a} \doteq \wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}$, with $\tv{a} \notin \ol{\type{T}}$ % and $\text{fv}(\wctype{\ol{\wtype{W}}}{C}{\ol{\type{T}}}) = \emptyset$
|
|
\item\label{item:3} $\tv{a} \doteq \rwildcard{X}$
|
|
\end{enumerate}
|
|
|
|
%Each type placeholder $\tv{a}$ must solely appear on the left side of a constraint.
|
|
\unify{} fails if there is any $\tv{a} \doteq \type{T}$ such that $\tv{a}$ occurs in $\type{T}$.
|
|
For the cases \ref{item:1}, \ref{item:2}, and \ref{item:3} the placeholder $\tv{a}$
|
|
cannot appear anywhere else in the constraint set.
|
|
Otherwise the generation rules \rulename{GenSigma} and \rulename{GenDelta} will not be able to process every constraint.
|
|
|
|
% \begin{displaymath}
|
|
% \deduction{
|
|
% \wildcardEnv \cup \set{\wildcard{B}{\type{G}}{\type{G'}}} \vdash C \implies \Delta, \sigma
|
|
% }{
|
|
% \wildcardEnv \vdash C \implies \Delta \cup \set{\wildcard{B}{\type{G}}{\type{G'}}}, \sigma
|
|
% }\quad \text{tph}(\type{G}) = \emptyset, \text{tph}(\type{G'}) = \emptyset,
|
|
% \rwildcard{B} \notin \text{dom}(\Delta)
|
|
% \quad \rulename{AddDelta}
|
|
% \end{displaymath}
|
|
\end{description}
|
|
|
|
|
|
The $\wtv{a}$ type variables are flagged as wildcard type variables.
|
|
These type variables can be substituted by a wildcard or a type with free wildcard variables.
|
|
As long as a type variable is flagged as $\wtv{a}$ it can be used by the \rulename{Subst-WC} rule in step 1.
|
|
|
|
With \texttt{C} being class names and \texttt{A} being wildcard names.
|
|
The wildcard type $\wildcard{X}{U}{L}$ consist of an upper bound $\type{U}$, a lower bound $\type{L}$
|
|
and a name $\mathtt{X}$.
|
|
|
|
The \rulename{Tame} rule eliminates wildcards. %TODO
|
|
This is done by setting the upper and lower bound to the same value.
|
|
|
|
\unify{} applies a capture conversion everywhere it is possible (see \rulename{Capture} rule).
|
|
Capture conversion removes a types bounding environment $\Delta$ and adds the included wildcard definitions to the global environment $\wildcardEnv{}$.
|
|
%Type variables used in its type parameters are now bound to a global scope and not locally anymore.
|
|
|
|
The \rulename{match} rule generates fresh wildcards $\overline{\wildcard{A}{\tv{u}}{\tv{l}}}$.
|
|
Their upper and lower bounds are fresh type variables.
|
|
|
|
\unify{} is able to remove wildcards by assigning their upper and lower bounds the same type
|
|
(Def: $\type{Object} = \wildcard{A}{Object}{Object}$ by definition \ref{def:equal}).
|
|
This is used by the \rulename{Tame} rule.
|
|
|
|
\textbf{Helper functions:}
|
|
\begin{description}
|
|
\item[$\tph{}$] returns all type placeholders inside a given type.
|
|
|
|
\textit{Example:} $\tph(\wctype{\wildcard{X}{\tv{a}}{\bot}}{Pair}{\wtv{b},\rwildcard{X}}) = \set{\tv{a}, \wtv{b}}$
|
|
\item [$\ll$ relation:]
|
|
The $\ll$ relation is the reflexive and transitive closure of the \texttt{extends} relations:
|
|
\begin{displaymath}
|
|
\begin{array}[c]{c}
|
|
\exptype{C}{\ol{X} \triangleleft \ol{N}} \triangleleft \exptype{D}{\ol{N}} \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\texttt{C} \ll \texttt{D}
|
|
\end{array}
|
|
\quad
|
|
\begin{array}[c]{l}
|
|
\\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\texttt{C} \ll \texttt{C}
|
|
\end{array}
|
|
\quad
|
|
\begin{array}[c]{l}
|
|
\texttt{C} \ll \texttt{D}, \texttt{D} \ll \texttt{E} \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\texttt{C} \ll \texttt{E}
|
|
\end{array}
|
|
\end{displaymath}
|
|
The algorithm uses it to determine if two types are possible subtypes of one another.
|
|
This is needed in the \rulename{adapt} and \rulename{match} rules.
|
|
|
|
%\textbf{Wildcard renaming}\\
|
|
\item[Wildcard renaming:]
|
|
The \rulename{reduce} rule separates wildcards from their environment.
|
|
At this point each wildcard gets a new and unique name.
|
|
To only rename the respective wildcards the reduce rule renames wildcards up to alpha conversion:
|
|
($[\ol{C}/\ol{B}]$ in the \rulename{reduce} rule)
|
|
\begin{align*}
|
|
[\type{A}/\type{B}]\type{B} &= \type{A} \\
|
|
[\type{A}/\type{B}]\type{C} &= \type{C} & \text{if}\ \type{B} \neq \type{C}\\
|
|
[\type{A}/\type{B}]\wcNtype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{N} &= \wcNtype{\overline{\wildcard{X}{[\type{A}/\type{B}]\type{U}}{[\type{A}/\type{B}]\type{L}}}}{[\type{A}/\type{B}]N} & \text{if}\ \type{B} \notin \overline{\rwildcard{X}} \\
|
|
[\type{A}/\type{B}]\wcNtype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{N} &= \wcNtype{\overline{\wildcard{X}{\type{U}}{\type{L}}}}{N} & \text{if}\ \type{B} \in \overline{\rwildcard{X}} \\
|
|
\end{align*}
|
|
\item[Free Variables:]
|
|
The $\text{fv}$ function assumes every wildcard type variable to be a free variable aswell.
|
|
% TODO: describe a function which determines free variables? or do an example?
|
|
\begin{align*}
|
|
\text{fv}(\rwildcard{A}) &= \set{ \rwildcard{A} } \\
|
|
\text{fv}(\tv{a}) &= \emptyset \\
|
|
%\text{fv}(\wtv{a}) &= \set{\wtv{a}} \\
|
|
\text{fv}(\wctype{\Delta}{C}{\ol{T}}) &= \set{\text{fv}(\type{T}) \mid \type{T} \in \ol{T}} / \text{dom}(\Delta) \\
|
|
\end{align*}
|
|
|
|
\item[Fresh Wildcards:]
|
|
$\text{fresh}\ \overline{\wildcard{A}{\tv{u}}{\tv{l}}}$ generates fresh wildcards.
|
|
The new names $\ol{A}$ are fresh, aswell as the type variables $\ol{\tv{u}}$ and $\ol{\tv{l}}$,
|
|
which are used for the upper and lower bounds.
|
|
\end{description}
|
|
% \noindent
|
|
% \textbf{Example: (reduce-rule)}
|
|
% %The \ruleReduceWC{} resembles the \texttt{S-Exists} subtyping rule.
|
|
% %It converts wildcard types to fresh type variables.
|
|
% %For example take the input constraint $\exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$.
|
|
% %First we apply the \ruleReduceWC{} rule, which replaces $\wildcard{A}{\tv{c}}{\tv{d}}$ with a fresh type variable $\tv{a}$:
|
|
% We assume the input constraints $C = \exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$.
|
|
% The type on the right side $\wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}$
|
|
% \begin{align*}
|
|
% \ddfrac{
|
|
% \exptype{Pair}{\ntype{Object},\tv{b}} \lessdot \wctype{\wildcard{A}{\tv{c}}{\tv{d}}}{Pair}{\wildcard{A}{\tv{c}}{\tv{d}},\wildcard{A}{\tv{c}}{\tv{d}}}
|
|
% }{
|
|
% \ntype{Object} \doteq \tv{a}, \tv{b} \doteq \tv{a}, \tv{a} \lessdot \tv{c}, \tv{d} \lessdot \tv{a}
|
|
% } \ruleReduceWC{}
|
|
% \end{align*}
|
|
|
|
% By substition we get the result: % $\tv{a} \doteq \type{Object}$, $\tv{a} \doteq \type{Object}$, $\ldots$.
|
|
|
|
% \begin{align*}
|
|
% \ddfrac{
|
|
% \ntype{Object} \doteq \tv{a}, \tv{b} \doteq \tv{a}, \tv{a} \lessdot \tv{c}, \tv{d} \lessdot \tv{a}
|
|
% }{
|
|
% \tv{a} \doteq \ntype{Object} , \tv{b} \doteq \ntype{Object}, \ntype{Object} \lessdot \tv{c}, \tv{d} \lessdot \ntype{Object}
|
|
% } \rulename{Subst}
|
|
% \end{align*}
|
|
% \\[1em]
|
|
|
|
% \textbf{Example:}
|
|
% \begin{displaymath}
|
|
% \begin{array}[c]{@{}ll}
|
|
% \begin{array}[c]{l}
|
|
% \wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash
|
|
% C \cup \, \set{ \type{Object} \doteq \type{X}, \tv{l} \lessdot \tv{u} } \\
|
|
% \hline
|
|
% \vspace*{-0.4cm}\\
|
|
% \wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash C \cup \,
|
|
% \set{\type{Object} \lessdot \type{X}, \type{X} \lessdot \type{Object}, \tv{l} \lessdot \tv{u}
|
|
% }\\
|
|
% \hline
|
|
% \vspace*{-0.4cm}\\
|
|
% \wildcardEnv \cup \set{ \wildcard{X}{\tv{u}}{\tv{l}} } \vdash C \cup \,
|
|
% \set{\type{Object} \lessdot \tv{l}, \tv{u} \lessdot \type{Object}, \tv{l} \lessdot \tv{u}
|
|
% }\\
|
|
% \hline
|
|
% \vspace*{-0.4cm}\\
|
|
% \ldots\\
|
|
% \hline
|
|
% \vspace*{-0.4cm}\\
|
|
% \wildcardEnv \cup \set{ \wildcard{X}{\type{Object}}{\type{Object}} } \vdash C \\
|
|
% \end{array}
|
|
% \end{array}
|
|
% \end{displaymath}
|
|
|
|
|
|
% if there are a <. List<x?> constraints remaining in the end, then this can be a sign of a irregular input constraint set.
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\leavevmode
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{Subst} &
|
|
$\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{\ntv{a} \doteq \type{T}}\\
|
|
\hline
|
|
[\type{T}/\tv{a}]\wildcardEnv \vdash [\type{T}/\tv{a}]
|
|
C \cup \set{\ntv{a} \doteq \type{T}}
|
|
\end{array}
|
|
\quad \begin{array}{c}
|
|
\ntv{a} \notin \type{T} \\
|
|
\text{fv}(\type{T}) \subseteq \Delta', \, \text{wtv}(\type{T}) = \emptyset
|
|
\end{array}$\\
|
|
\\
|
|
\rulename{Subst-WC} &$
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{\wtv{a} \doteq \rwildcard{T}}\\
|
|
\hline
|
|
[\type{T}/\wtv{a}]\wildcardEnv \vdash [\type{T}/\wtv{a}]C
|
|
\end{array} \quad \wtv{a} \notin \type{T}
|
|
$\\
|
|
\\
|
|
\rulename{Normalize} &
|
|
$\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{\ntv{a} \doteq \type{T}}\\
|
|
\hline
|
|
[\ntv{b}/\wtv{b}]\wildcardEnv \vdash [\ntv{b}/\wtv{b}]
|
|
C \cup \set{\ntv{a} \doteq [\ntv{b}/\wtv{b}]\type{T}}
|
|
\end{array}
|
|
\quad \begin{array}{c}
|
|
\wtv{b} \in \text{wtv}(\type{T})\\
|
|
\ntv{b} \ \text{fresh}
|
|
\end{array}$\\
|
|
\\
|
|
\rulename{Contract} &
|
|
$\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}} \vdash C \cup \set{\ntv{a} \doteq \type{T}}\\
|
|
\hline
|
|
[\type{U}/\type{A}]\wildcardEnv \vdash [\type{U}/\type{A}]
|
|
C \cup [\type{U}/\type{A}]\set{\ntv{a} \doteq \type{T}, \type{L} \doteq \type{U}}
|
|
\end{array}
|
|
\quad \begin{array}{c}
|
|
\rwildcard{A} \in \text{fv}(\type{T})\\
|
|
\end{array}$\\
|
|
\end{tabular}}
|
|
\end{center}
|
|
\caption{Substitution rules}\label{fig:subst-rules}
|
|
\end{figure}
|
|
|
|
% all possible variations have to be converted
|
|
There are n different rules to deal with $\type{N} \lessdot \type{N}$ constraints.
|
|
Prepare, Capture, Reduce, Trim, Clear, Exclude, Adapt
|
|
|
|
% % TODO:
|
|
% a <c C<X>
|
|
% -------------
|
|
% a <. X.C<X>, X.C<X> <c C<X>
|
|
|
|
% a <. C<X>
|
|
% ---------
|
|
% a <. C<U>, U = L
|
|
|
|
%The capture constraints are preserved when applying the \rulename{Upper} rule.
|
|
% This is legal: a T <c S constraint indicates a let-statement can be inserted. Therefore there must exist a type T' with T <. T' <c S
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\leavevmode
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
% \rulename{normalize}
|
|
% & $
|
|
% \begin{array}[c]{l}
|
|
% \wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}, \wildcard{B}{U'}{L'}} \vdash C \cup \, \set{ \rwildcard{A} \doteq \rwildcard{B} } \\
|
|
% \hline
|
|
% \vspace*{-0.4cm}\\
|
|
% \wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}, \wildcard{B}{U'}{L'}} \vdash C \cup \, \set{ \type{L} \doteq \type{U} , \type{U} \doteq \type{U'}, \type{L} \doteq \type{L'} }
|
|
% \end{array}
|
|
% $
|
|
% \\\\
|
|
\rulename{Upper}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \, \set{ \type{A} \lessdot_1 \type{G} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \, \set{ \type{U} \lessdot_1 \type{G} }
|
|
\end{array}
|
|
$
|
|
% \quad \quad
|
|
% \begin{array}[c]{l} %TODO: can the second part be removed by adding a X.C<X> <. C<a?> constraint at method invocation?
|
|
% \wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \, \set{ \type{A} \lessdotCC \type{G} } \\
|
|
% \hline
|
|
% \vspace*{-0.4cm}\\
|
|
% \wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \, \set{ \type{U} \lessdotCC \type{G} }
|
|
% \end{array}
|
|
% $
|
|
\\\\
|
|
\rulename{Lower}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \set{ \type{G} \lessdot_1 \type{A} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \set{ \type{G} \lessdot_1 \type{L} }
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Lower}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \set{ \ntv{a} \lessdot_1 \type{A} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \cup \set{\wildcard{A}{U}{L}} \vdash C \cup \set{ \ntv{a} \lessdot_1 \type{L} }
|
|
\end{array} \quad \type{A} \notin \Delta_{in}
|
|
$ %TODO: a <. X with X in Delta_in => a =. X
|
|
% other possibliity: is it allowed to see X extends List<X> as class X extends List<X> {}
|
|
% other way round: every class declaration comes in Delta_in
|
|
\\\\
|
|
\rulename{Bot}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{ \bot \lessdot_1 \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C
|
|
\end{array}
|
|
$
|
|
\quad
|
|
\rulename{Pit}
|
|
$
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot_1 \bot } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \doteq \bot }
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\end{tabular}}
|
|
\end{center}
|
|
\caption{Wildcard reduce rules}\label{fig:wildcard-rules}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\leavevmode
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
% \rulename{normalize} %obsolete because of Tame
|
|
% & $
|
|
% \begin{array}[c]{l}
|
|
% \wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}, \wildcard{B}{U'}{L'}} \vdash C \cup \, \set{ \rwildcard{A} \doteq \rwildcard{B} } \\
|
|
% \hline
|
|
% \vspace*{-0.4cm}\\
|
|
% \wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}, \wildcard{B}{U'}{L'}} \vdash C \cup \, \set{ \type{L} \doteq \type{U} , \type{U'} \doteq \type{L'}, \type{U} \doteq \type{U'} }
|
|
% \end{array}
|
|
% % \quad \text{fv}(\type{U}, \type{U'}, \type{L}, \type{L'}) \subseteq \Delta_in
|
|
% $
|
|
% \\\\
|
|
\rulename{Tame}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}} \vdash C \cup \, \set{ \rwildcard{A} \doteq \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}} \vdash C \cup \, \set{ \type{L} \doteq \type{T}, \type{U} \doteq \type{T} }
|
|
\end{array} %\quad \text{fv}(\type{U}, \type{L}) \subseteq \Delta_in
|
|
\quad \type{T} \ \text{is no wildcard placeholder}
|
|
$
|
|
\\\\
|
|
\rulename{Equals} %TODO
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{ \wcNtype{\Delta}{N} \doteq \wcNtype{\Delta'}{N'} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C \cup \,
|
|
\set{
|
|
\wcNtype{\Delta}{N} \lessdot \wcNtype{\Delta'}{N'}, \wcNtype{\Delta'}{N'} \lessdot \wcNtype{\Delta}{N}
|
|
}
|
|
\end{array} %\quad |\Delta| = |\Delta'|
|
|
% \quad \text{fv}(\type{N}) = \text{fv}(\type{N'}) = \emptyset
|
|
$
|
|
\\\\
|
|
% \rulename{Equals} %TODO
|
|
% & $
|
|
% \begin{array}[c]{l}
|
|
% \wildcardEnv \vdash C \cup \, \set{ \wctype{\Delta}{C}{\ol{T}} \doteq \wctype{\Delta}{C}{\ol{T'}} } \\
|
|
% \hline
|
|
% \vspace*{-0.4cm}\\
|
|
% \wildcardEnv \vdash C \cup \,
|
|
% \set{
|
|
% \pi(\ol{T}) \doteq \pi(\ol{T'} )
|
|
% %\ol{T} \doteq \ol{T'}
|
|
% }
|
|
% \end{array}
|
|
% \quad \begin{array}{l}
|
|
% \text{given a permutation}\ \pi\ \text{with:}\\
|
|
% \pi(\Delta) = \pi(\Delta')
|
|
% \end{array}
|
|
% $
|
|
% \\\\
|
|
\rulename{Erase}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{ \type{T} \doteq \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C
|
|
\end{array}
|
|
\quad
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{ \type{T} \lessdot \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Swap} & $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{\type{G} \doteq \tv{a}}\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{\tv{a} \doteq \type{G}}
|
|
\end{array}
|
|
\quad
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{\type{T} \doteq \wtv{a}}\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{\wtv{a} \doteq \type{T}}
|
|
\end{array} \quad
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{\type{N} \doteq \rwildcard{A}}\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{\rwildcard{A} \doteq \type{N}}
|
|
\end{array} \quad
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{\ntv{a} \doteq \rwildcard{A}}\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{\rwildcard{A} \doteq \ntv{a}}
|
|
\end{array}$
|
|
\end{tabular}}
|
|
\end{center}
|
|
\caption{Constraint normalize rules}\label{fig:normalizing-rules}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\leavevmode
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{Circle} & $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{\tv{a}_1 \lessdot
|
|
\tv{a}_2, \tv{a}_2 \lessdot \tv{a}_3, \dots, \tv{a}_n \lessdot \tv{a}_1}\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \, \set{\tv{a}_1 \doteq \tv{a}_2, \tv{a}_2 \doteq \tv{a}_3, \dots , \tv{a}_n \doteq \tv{a}_1}
|
|
\end{array} \quad n>0
|
|
$
|
|
\end{tabular}}
|
|
\end{center}
|
|
\caption{Rules for normal placeholders}\label{fig:reduce-rules}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\leavevmode
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{Match}
|
|
& $
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{
|
|
\tv{a} \lessdot_1 \wctype{\Delta}{D}{\ol{T}}, \tv{a} \lessdot_2 \wctype{\Delta'}{D'}{\ol{T'}} }\\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C \cup \, \left\{ \begin{array}[c]{l}
|
|
\tv{a} \lessdot \wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}},
|
|
\ol{\tv{l}} \lessdot \ol{\tv{u}}, \\
|
|
\wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}}
|
|
\lessdot_1 \wctype{\Delta}{D}{\ol{T}}, \\
|
|
\wctype{\overline{\wildcard{A}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{A}}}
|
|
\lessdot_2 \wctype{\Delta'}{D'}{\ol{T'}}
|
|
\end{array}
|
|
\right\}
|
|
\end{array}
|
|
&\begin{array}[c]{l}
|
|
\text{fresh}\ \overline{\wildcard{A}{\tv{u}}{\tv{l}}} \\
|
|
\type{C} \ll \type{D}\\
|
|
\type{C} \ll \type{D'} % TODO: THe match rule has to pick the most general type for C
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\ruleReduceWC{}
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \exptype{C}{\ol{S}} \lessdot
|
|
\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv
|
|
\vdash C \cup \, \set{
|
|
\ol{\type{S}} \doteq [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{\type{T}},
|
|
\ol{\wtv{a}} \lessdot [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{U}, [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{L} \lessdot \ol{\wtv{a}} }
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\ol{\wtv{a}} \ \text{fresh}\\
|
|
%\text{fv}(\exptype{C}{\ol{S}}) \subseteq \text{dom}(\overline{\wildcard{B}{\type{U'}}{\type{L'}}})
|
|
%\text{dom}(\overline{\wildcard{A}{\type{U}}{\type{L}}}) \subseteq \text{fv}(\exptype{C}{\ol{T}}) \\
|
|
%\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Capture}
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}} \lessdotCC \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \cup \overline{\wildcard{C}{[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}]\type{U}}{[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}]\type{L}}}
|
|
\vdash C \cup \, \set{
|
|
[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}] \exptype{C}{\ol{S}} \lessdot \type{T} }
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\ol{\rwildcard{C}} \ \text{fresh}\\
|
|
%\text{fv}(\type{T}) \neq \emptyset
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Prepare} %The lessdotCC constraint only ensures that the left side looses its wildcardEnvironment.
|
|
%It does not ensure that the left side doesn't contain free variables. If you want to ensure that you have to give the left side a normal placeholder
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \wctype{\Delta'}{C}{\ol{T}} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \wctype{\Delta}{C}{\ol{S}} \lessdotCC \wctype{\Delta'}{C}{\ol{T}} } \\
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\text{fv}(\wctype{\Delta'}{C}{\ol{T}}) \subseteq \Delta_{in}
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Trim}
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \wctype{\Delta,\Delta'}{C}{\ol{S}} \lessdot \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T} } \\
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\text{fv}(\ol{S}) \cap \Delta' = \emptyset
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Clear}
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{A}{\type{U}}{\type{L}}} \vdash
|
|
C \cup \, \set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\subst{\type{U}}{\rwildcard{A}}\wildcardEnv \vdash
|
|
[\type{U}/\rwildcard{A}]C \cup \, [\type{U}/\rwildcard{A}]\set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T}, \type{U} \doteq \type{L} } \\
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\Delta \neq \emptyset\\
|
|
\rwildcard{A} \in \text{fv}(\type{T})
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Exclude}
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\subst{\tv{a}}{\wtv{a}}\wildcardEnv \vdash
|
|
[\tv{a}/\wtv{a}]C \cup \, [\tv{a}/\wtv{a}]\set{ \wctype{\Delta}{C}{\ol{S}} \lessdot \type{T}, \type{U} \doteq \type{L} } \\
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\Delta \neq \emptyset\\
|
|
\wtv{a} \in \text{fv}(\type{T}), \tv{a} \ \text{fresh}
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Adopt}
|
|
& $
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{
|
|
\tv{b} \lessdot_1 \tv{a},
|
|
\tv{a} \lessdot_2 \type{N}, \tv{b} \lessdot_3 \type{N'}} \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C \cup \, \set{
|
|
\tv{b} \lessdot \type{N},
|
|
\tv{b} \lessdot_1 \tv{a},
|
|
\tv{a} \lessdot_2 \type{N} , \tv{b} \lessdot_3 \type{N'}
|
|
}
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Adapt}
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{ \wctype{\Delta}{C}{\ol{T}} \lessdot
|
|
\wctype{\Delta'}{D'}{\ol{T'}} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C \cup \, \set{ \wctype{\Delta}{D}{[\ol{\type{T}}/\ol{X}]\ol{S}} \lessdot \wctype{\Delta'}{D'}{\ol{T'}} }
|
|
|
|
\end{array}
|
|
& \begin{array}[c]{l}
|
|
\type{C} \ll \type{D'} \\
|
|
\texttt{class} \ \exptype{C}{\ol{X} \triangleleft \ol{N}} \triangleleft \exptype{D}{\ol{S}}
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\end{tabular}}
|
|
\end{center}
|
|
\caption{Constraint reduce rules}\label{fig:reduce-rules}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
If we find an illicit constraint assigning a type containing free variables to a type placeholder not flagged as a wildcard placeholder the algorithm fails.
|
|
|
|
$\set{\tv{a} \doteq \type{N}} \in C$ with $\text{fv}(\type{N}) \cap \Delta_{in} \neq \emptyset$ $\implies$ fail!
|
|
|
|
% if T <. S with not T << S
|
|
% T <. S with fv(T) cup fv(S) not empty (free variables in a non capture conversion constraint)
|
|
|
|
\caption{Fail conditions}
|
|
\end{figure}
|
|
|
|
\def\boxit#1#2{%
|
|
\smash{\color{red}\fboxrule=1pt\relax\fboxsep=2pt\relax%
|
|
\llap{\rlap{\fbox{\phantom{\rule{#1}{#2}}}}~}}\ignorespaces
|
|
}
|
|
\begin{figure}
|
|
\begin{center}
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{Same}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \type{G} \lessdot \tv{a}\\
|
|
\hline
|
|
\wildcardEnv \vdash
|
|
C \cup \set{
|
|
\tv{a} \doteq \type{G}
|
|
}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
% \cdashline{1-2} \\
|
|
% \rulename{Same}
|
|
% & $
|
|
% \begin{array}[c]{l}
|
|
% \wildcardEnv \cup \set{\overline{\wildcard{A}{\type{U}}{\type{L}}}} \vdash
|
|
% C \cup \wctype{\Delta'}{C}{\ol{X}} \lessdot \ntv{a}\\
|
|
% \hline
|
|
% \wildcardEnv \cup \set{\overline{\wildcard{A}{\type{U}}{\type{L}}}} \vdash
|
|
% C \cup \set{
|
|
% \ntv{a} \doteq \wctype{\Delta',\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{X}}
|
|
% }
|
|
% \end{array} \quad \begin{array}[c]{l}
|
|
% \text{fv}(\wctype{\Delta'}{C}{\ol{X}}) / \Delta_{in} = \overline{\rwildcard{A}}
|
|
% \end{array}
|
|
% $
|
|
% \\\\
|
|
\cdashline{1-2} \\
|
|
\rulename{\generalizeRule}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \wctype{\Delta}{C}{\ol{T}} \lessdot \ntv{a}\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{\wctype{\Delta}{C}{\ol{T}} \lessdot \ntv{a},
|
|
\ntv{a} \doteq \wctype{\overline{\wildcard{X}{\tv{u}}{\tv{l}}}}{C}{\overline{\rwildcard{X}}},
|
|
%\overline{\tv{l} \lessdot \tv{u}}, % not needed, due to subst and reduce rule which are used afterwards
|
|
\overline{\tv{u} \lessdot \type{S}}
|
|
}
|
|
\end{array} \quad \begin{array}[c]{l}
|
|
\texttt{class} \ \exptype{C}{\ol{X \triangleleft \type{S}}} \triangleleft \exptype{D}{\ol{N}} \\
|
|
\text{fresh}\ \overline{\wildcard{X}{\tv{u}}{\tv{l}}}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\cdashline{1-2} \\
|
|
\rulename{Super}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \wctype{\Delta}{C}{\ol{T}} \lessdot \tv{a}\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{ \wctype{\Delta'}{D}{[\ol{T}/\ol{X}]\ol{N}} \lessdot \tv{a} }
|
|
%\set{\wctype{\ol{\wtype{W}}}{D}{[\ol{X}/\ol{Y}]\ol{Z}} \lessdot \tv{a}}
|
|
\end{array} \quad
|
|
\begin{array}{l}
|
|
\texttt{class} \ \exptype{C}{\ol{X}} \triangleleft \exptype{D}{\ol{N}} \\
|
|
\ol{X} \notin \wildcardEnv \cup \Delta,\, \Delta' = \Delta \cap \text{fv}([\ol{T}/\ol{X}]\ol{N})
|
|
\end{array}
|
|
$
|
|
% \\\\
|
|
% \hline \\
|
|
% \rulename{SameW}
|
|
% & $
|
|
% \begin{array}[c]{l}
|
|
% \wildcardEnv \vdash
|
|
% C \cup \type{G} \lessdot \wtv{a}\\
|
|
% \hline
|
|
% \wildcardEnv \vdash
|
|
% C \cup \set{
|
|
% \wtv{a} \doteq \type{G}
|
|
% }
|
|
% \end{array}
|
|
% $
|
|
\\\\
|
|
\cdashline{1-2} \\
|
|
\rulename{\generalizeRule{}W} %TODO: Change description for step 2!
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \wctype{\Delta}{C}{\ol{T}} \lessdot \wtv{a}\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{\wctype{\Delta}{C}{\ol{T}} \lessdot \wtv{a},
|
|
\wtv{a} \doteq \wctype{\overline{\wildcard{X}{\wtv{u}}{\wtv{l}}}}{C}{\overline{\rwildcard{X}}},
|
|
%\overline{\tv{l} \lessdot \tv{u}}, % not needed, due to subst and reduce rule which are used afterwards
|
|
\overline{\wtv{u} \lessdot \type{S}}
|
|
}
|
|
\end{array} \quad \begin{array}[c]{l}
|
|
\texttt{class} \ \exptype{C}{\ol{X \triangleleft \type{S}}} \triangleleft \exptype{D}{\ol{N}} \\
|
|
\text{fresh}\ \overline{\wildcard{X}{\wtv{u}}{\wtv{l}}}
|
|
\end{array}
|
|
$
|
|
\end{tabular}
|
|
}
|
|
\end{center}
|
|
\caption{Step 2 branching: Multiple rules can be applied to the same constraint}
|
|
\label{fig:step2-rules}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{Subst-X}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash
|
|
C \cup \rwildcard{X} \lessdot \tv{a}\\
|
|
\hline
|
|
\wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash
|
|
C \cup \set{
|
|
\tv{a} \doteq \rwildcard{X}
|
|
}
|
|
\end{array} \quad \begin{array}[c]{l}
|
|
\rwildcard{X} \in \Delta_{in}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\cdashline{1-2} \\
|
|
\rulename{Gen-X}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash
|
|
C \cup \rwildcard{X} \lessdot \tv{a}\\
|
|
\hline
|
|
\wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash
|
|
C \cup \set{
|
|
\type{U} \lessdot \tv{a}
|
|
}
|
|
\end{array}
|
|
$
|
|
\end{tabular}
|
|
}
|
|
\end{center}
|
|
\caption{Step 2 branching: Multiple rules can be applied to the same constraint}
|
|
\label{fig:step2-rules}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{Settle}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot \type{N},
|
|
\tv{a} \lessdot_1 \tv{b}}
|
|
\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot_1 \tv{b}, \tv{b} \lessdot \type{N} }
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\cdashline{1-2} \\
|
|
\rulename{Raise}
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{ \tv{a} \lessdot_1 \type{N},
|
|
\tv{a} \lessdot \tv{b}}
|
|
\\
|
|
\hline
|
|
\wildcardEnv \vdash C \cup \set{\tv{a} \lessdot_1 \type{N}, \type{N} \lessdot \tv{b} }
|
|
\end{array}
|
|
$
|
|
\end{tabular}
|
|
}
|
|
\end{center}
|
|
\caption{Step 2 branching: Multiple rules can be applied to the same constraint}
|
|
\label{fig:step2-rules2}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\leavevmode
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{SubElim}
|
|
& $\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \set{\tv{a} \lessdot \tv{b}}\\
|
|
\hline
|
|
[\tv{a}/\tv{b}]\wildcardEnv \vdash [\tv{a}/\tv{b}]C \cup \set{ \tv{b} \doteq \tv{a} }
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Ground} % why does this rule need a X \notin C premise? a \notin C is needed because there could be a constraint b <. List<a> (a is only allowed to be used as lower bound)
|
|
& $\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \cup \overline{\set{\wildcard{X}{\type{U}}{\tv{a}}}} \vdash C \cup \, \set{
|
|
\overline{\tv{a} \lessdot \type{T}} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \cup \overline{\set{\wildcard{X}{\type{U}}{\tv{a}}}} \vdash
|
|
C \cup \set{ \overline{\tv{a} \doteq \bot} }
|
|
\end{array}
|
|
&\begin{array}[c]{l}
|
|
%\forall \wctype{\Delta}{C}{\ol{T}} \in C: \tv{a} \notin \ol{T} \\
|
|
\tv{a} \notin C, \, \tv{a} \notin \overline{T}, \, \tv{a} \notin \wildcardEnv % , \, \rwildcard{X} \notin C\\
|
|
%\text{length}( \overline{\tv{a} \lessdot \type{T}} ) > 1
|
|
\end{array}
|
|
\end{array}$
|
|
\\\\
|
|
\rulename{Flatten}
|
|
& $\begin{array}[c]{l}
|
|
\wildcardEnv \cup \set{\wildcard{X}{\type{U}}{\type{L}}} \vdash C \cup \set{\tv{a} \lessdot \type{T}}\\
|
|
\hline
|
|
[\type{U}/\rwildcard{X}]\wildcardEnv \vdash [\type{U}/\rwildcard{X}]C \cup [\type{U}/\rwildcard{X}]\set{\tv{a} \lessdot \type{T}, \type{U} \doteq \type{L}}
|
|
\end{array} \quad \rwildcard{X} \in \text{fv}(\type{T})
|
|
$
|
|
\end{tabular}}
|
|
\end{center}
|
|
\caption{Cleanup rules}\label{fig:cleanup-rules}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\begin{center}
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{GenDelta}
|
|
& $
|
|
\deduction{
|
|
\wildcardEnv \vdash C \cup \set{\ntv{b} \lessdot \type{T} } \implies \Delta, \sigma
|
|
}{
|
|
\wildcardEnv \vdash [\type{B}/\ntv{b}]C \implies \Delta \cup \set{\wildcard{B}{\type{T}}{\bot}}, \sigma \cup \set{\ntv{b} \to \type{B}}
|
|
} \quad
|
|
\begin{array}{l}
|
|
\tph(\type{T}) = \emptyset, \text{fv}(\type{T}) \subseteq \Delta \cup \Delta_{in} \\
|
|
\rwildcard{B} \ \text{fresh}, \ntv{b} \notin \text{dom}(\sigma), \Delta, \Delta_{in} \vdash \type{T} \ \ok
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{GenDelta'}
|
|
& $
|
|
\deduction{
|
|
\wildcardEnv \vdash C \cup \set{\wtv{b} \lessdot \type{T} } \implies \Delta, \sigma
|
|
}{
|
|
\wildcardEnv \vdash [\type{B}/\ntv{b}]C \implies \Delta \cup \set{\wildcard{B}{\type{T}}{\bot}}, \sigma
|
|
} \quad
|
|
\begin{array}{l}
|
|
\tph(\type{T}) = \emptyset, \text{fv}(\type{T}) \subseteq \Delta \cup \Delta_{in} \\
|
|
\rwildcard{B} \ \text{fresh}, \Delta, \Delta_{in} \vdash \type{T} \ \ok
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{GenSigma}
|
|
& $
|
|
\deduction{
|
|
\wildcardEnv \vdash C \cup
|
|
\set{\ntv{a} \doteq \type{T} } \implies \Delta, \sigma
|
|
}{
|
|
\wildcardEnv \vdash C \implies \Delta, \sigma \cup
|
|
\set{\ntv{a} \to \type{T} }
|
|
} \quad
|
|
\begin{array}{l}
|
|
\tph(\type{T}) = \emptyset \\ %,\, \text{fv}(\type{T}) \subseteq \Delta \\ % T ok implies that
|
|
\ntv{a} \notin \text{dom}(\sigma),\, \Delta, \Delta_{in} \vdash \type{T} \ \ok % TODO: Is it possible to imply well-formedness as long as input is well-formed?
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\end{tabular}}
|
|
\end{center}
|
|
\caption{Generate result}
|
|
\label{fig:generation-rules}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
|
|
\begin{center}
|
|
\fbox{
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\rulename{Equals} %TODO
|
|
& $
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{ \wcNtype{\Delta}{N} \doteq \wcNtype{\Delta'}{N'} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash C \cup \,
|
|
\set{
|
|
\wcNtype{\Delta}{N} \lessdot \wcNtype{\Delta'}{N'}, \wcNtype{\Delta'}{N'} \lessdot \wcNtype{\Delta}{N}
|
|
}
|
|
\end{array} %\quad |\Delta| = |\Delta'|
|
|
% \quad \text{fv}(\type{N}) = \text{fv}(\type{N'}) = \emptyset
|
|
$
|
|
\\\\
|
|
\ruleReduceWC{}
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \exptype{C}{\ol{S}} \lessdot
|
|
\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv
|
|
\vdash C \cup \, \set{
|
|
\ol{\type{S}} \doteq [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{\type{T}},
|
|
\ol{\wtv{a}} \lessdot [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{U}, [\ol{\wtv{a}}/\overline{\rwildcard{A}}]\ol{L} \lessdot \ol{\wtv{a}} }
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\ol{\wtv{a}} \ \text{fresh}\\
|
|
%\text{fv}(\exptype{C}{\ol{S}}) \subseteq \text{dom}(\overline{\wildcard{B}{\type{U'}}{\type{L'}}})
|
|
%\text{dom}(\overline{\wildcard{A}{\type{U}}{\type{L}}}) \subseteq \text{fv}(\exptype{C}{\ol{T}}) \\
|
|
%\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Capture}
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}} \lessdotCC \type{T} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \cup \overline{\wildcard{C}{[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}]\type{U}}{[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}]\type{L}}}
|
|
\vdash C \cup \, \set{
|
|
[\ol{\rwildcard{C}}/\ol{\rwildcard{B}}] \exptype{C}{\ol{S}} \lessdot \type{T} }
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\ol{\rwildcard{C}} \ \text{fresh}\\
|
|
%\text{fv}(\type{T}) \neq \emptyset
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\\\\
|
|
\rulename{Prepare} %The lessdotCC constraint only ensures that the left side looses its wildcardEnvironment.
|
|
%It does not ensure that the left side doesn't contain free variables. If you want to ensure that you have to give the left side a normal placeholder
|
|
&
|
|
$
|
|
\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \type{N} \lessdot \type{N'} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash
|
|
C \cup \, \set{ \type{N} \lessdotCC \type{N'} } \\
|
|
\end{array}
|
|
%\quad \ol{Y} = \textit{fresh}(\ol{X})
|
|
\quad \begin{array}[c]{l}
|
|
\text{fv}(\type{N'}) \subseteq \Delta_{in} \\
|
|
\text{wtv}(\type{N'}) = \emptyset
|
|
\end{array}
|
|
\end{array}
|
|
$
|
|
\end{tabular}}
|
|
\end{center}
|
|
\caption{Type Reduction rules}\label{fig:reductionRules}
|
|
\end{figure}
|
|
|
|
\subsection{Explanation}
|
|
Our \unify{} process uses a similar concept to the standard unification by Martelli and Montanari \cite{MM82},
|
|
consisting of terms, relations and variables.
|
|
Instead of terms we have types of the form $\exptype{C}{\ol{T}}$ and
|
|
the variables are called type placeholders.
|
|
The input consist out of subtype relations.
|
|
The goal is to find a solution (an unifier) which is a substitution for type placeholders
|
|
which satisfies all input subtype constraints.
|
|
|
|
Types are reduced until they %either reach a discrepancy like $\type{String} \doteq \type{Integer}$
|
|
reach a form like $\tv{a} \doteq \type{T}$.
|
|
Afterwards \unify{} substitutes type placehodler $\tv{a}$ with $\type{T}$.
|
|
This is done until a substitution for all type placehodlers and therefore a valid solution is reached.
|
|
The reduction and substitutions are done in the first step of the algorithm.
|
|
|
|
%The type reduction is done by the rules in figure \ref{fig:reductionRules}
|
|
|
|
\unify{} cannot reduce constraints without checking a few prerequisites.
|
|
Take the constraint $\wctype{\rwildcard{X}}{C}{\rwildcard{X}} \lessdot \exptype{C}{\wtv{a}}$ for example.
|
|
If we apply a reduction here we get $\rwildcard{X} \doteq \wtv{a}$.
|
|
The resulting $\sigma(\wtv{a}) = \rwildcard{X}$ seems like a correct substitution,
|
|
but by S-Exists $\wctype{\rwildcard{X}}{C}{\rwildcard{X}} \nless: \exptype{C}{\rwildcard{X}}$.
|
|
Reason: Free variables on the right side of a subtype relations are not allowed to show up as bound variables on the left side.
|
|
$\rwildcard{X}$ in this case.
|
|
Therefore the \rulename{Reduce} rule only reduces constraints where the left side does not declare any wildcards.
|
|
But if the right side neither contains wildcard type placeholders nor free variables the constraint can be reduced anyways.
|
|
The \rulename{Prepare} rule then converts this constraint to a capture constraint.
|
|
Afterwards the \rulename{Capture} rule removes the wildcard declarations on the left side an the constraint can be reduced.
|
|
|
|
\textit{Example} of the type reduction rules in figure \ref{fig:reductionRules} with the input
|
|
$\wctype{\rwildcard{X}}{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \rwildcard{X}} \lessdot \exptype{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \wtv{a}}$
|
|
The first step is the \rulename{Capture} rule.
|
|
%The right side of the constraint does not contain any free variables.
|
|
$\begin{array}{c}
|
|
\wctype{\rwildcard{X}}{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \rwildcard{X}} \lessdot \exptype{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \wtv{a}}\\
|
|
\hline %Capture
|
|
\wctype{\rwildcard{X}}{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \rwildcard{X}} \lessdotCC \exptype{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \wtv{a}}
|
|
\end{array}$
|
|
|
|
\begin{NiceTabular}{l}
|
|
$\ \wctype{\rwildcard{X}}{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \rwildcard{X}} \lessdot \exptype{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \wtv{a}}$ \\
|
|
$\nextdeduction{
|
|
\wctype{\rwildcard{X}}{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \rwildcard{X}} \lessdotCC \exptype{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \wtv{a}}
|
|
} $\\
|
|
$\nextdeduction{
|
|
\rwildcard{X} \vdash \exptype{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \rwildcard{X}} \lessdot \exptype{Pair}{\wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \wtv{a}}
|
|
} $\\
|
|
$\nextdeduction{
|
|
\rwildcard{X} \vdash \wctype{\rwildcard{Y}}{List}{\rwildcard{Y}} \doteq \wctype{\rwildcard{Y}}{List}{\rwildcard{Y}}, \rwildcard{X} \doteq \wtv{a}
|
|
} $\\
|
|
$\nextdeduction{
|
|
\wildcard{X}{Object}{\type{String}} \vdash
|
|
\type{String} \lessdot \mathcolorbox{addition}{\type{String}}, \tv{a} \doteq \rwildcard{X}
|
|
} $\\
|
|
$\nextdeduction{
|
|
\wildcard{X}{Object}{\type{String}} \vdash
|
|
\cancel{\type{String} \lessdot \rwildcard{X}}, \tv{a} \doteq \rwildcard{X}
|
|
} $\\
|
|
\CodeAfter
|
|
\begin{tikzpicture}
|
|
\node [right] at (2-|last) { \colorbox{white}{\rulename{Prepare}} } ;
|
|
\node [right] at (3-|last) { \colorbox{white}{\rulename{Capture}} } ;
|
|
\node [right] at (4-|last) { \colorbox{white}{\rulename{Reduce}} } ;
|
|
\node [right] at (5-|last) { \colorbox{white}{\rulename{Equals}} } ;
|
|
\node [right] at (6-|last) { \colorbox{white}{\rulename{Erase}} } ;
|
|
\end{tikzpicture}
|
|
\end{NiceTabular}
|
|
|
|
\subsection{Capture Conversion during Unification}
|
|
The \unify{} algorithm applies a capture conversion when needed.
|
|
A constraint of the form $\wcNtype{\Delta'}{N} \lessdot \type{T}$,
|
|
where $\text{fv}(\type{T}) \neq \emptyset$ is not solvable without capture conversion.
|
|
\unify{} converts those constraints to $\type{N} \lessdot \type{T}$.
|
|
This is only possible for subtype constraints which originated from a method call.
|
|
|
|
Capture conversion only works with constraints containing free variables.
|
|
It also introduces fresh free variables into the constraint set.
|
|
Both have to be regulated.
|
|
It is not allowed to substitute free type variables freely.
|
|
The algorithm introduces a new type of variables: $\wtv{a}$.
|
|
\unify{} treats those as free type variables.
|
|
This makes it possible to replace a $\wtv{a}$ with a captured wildcard variable
|
|
without having to worry about introducing free type variables at unwanted places.
|
|
|
|
The challenge for a type inference algorithm is to apply capture conversion during type inference.
|
|
Given a program
|
|
\begin{verbatim}
|
|
class TypeInferenceExample{
|
|
m(l){
|
|
return swap(make(l));
|
|
}
|
|
}
|
|
\end{verbatim}
|
|
|
|
During the time of the type inference algorithm the type of the parameter \texttt{l} is not known.
|
|
Due to the call to the method \texttt{make} it is clear that it has to be a subtype of
|
|
\texttt{List}.
|
|
These subtype relations are expressed with constraints.
|
|
$\tv{l} \lessdot \exptype{List}{\tv{a}}$ in this case.
|
|
$\tv{l}$ and $\tv{a}$ are type placeholders.
|
|
$\tv{l}$ is a type placeholder for the method parameter \texttt{l}.
|
|
|
|
One correct solution for this constraint is the substitution $\tv{l} \doteq \exptype{List}{\type{Object}}$,
|
|
which leads to the program:
|
|
\begin{verbatim}
|
|
class TypeInferenceExample{
|
|
Pair<Object, Object> m(List<Object> l){
|
|
return swap(make(l));
|
|
}
|
|
}
|
|
\end{verbatim}
|
|
|
|
But $\tv{l} \doteq \wctype{\rwildcard{X}}{List}{\rwildcard{X}}$ is also a possible solution.
|
|
Eventhough the constraint $\wctype{\rwildcard{X}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\tv{a}}$
|
|
is not solvable.
|
|
But when we apply capture conversion to create $\exptype{List}{\rwildcard{Y}} \lessdot \exptype{List}{\tv{a}}$
|
|
we can substitute $\tv{a} \doteq \rwildcard{Y}$.
|
|
|
|
The \unify{} algorithm has to apply capture conversions during the unification of type constraints.
|
|
|
|
But this renders additional problems:
|
|
\begin{itemize}
|
|
\item Capture conversion is not allowed for every constraint.
|
|
\item Capture Converted variables are not allowed to leave their scope
|
|
\item \unify{} generates type substitution which cannot be translated to Java types.
|
|
\end{itemize}
|
|
|
|
|
|
\subsection{Completeness}
|
|
It is not possible to create all super types of a type.
|
|
The General rule only creates the ones expressable by Java syntax, which still are infinitly many in some cases \cite{TamingWildcards}.
|
|
%thats not true. it can spawn X^T_T2.List<X> where T and T2 are types and we need to choose one inbetween them
|
|
Otherwise the algorithm could generate more solutions, but they have to be filterd out afterwards, because they cannot be translated into Java.
|
|
|
|
\letfj{} is not able to represent all Java programs. %TODO: this makes ist impossible for our algorithm to be complete on Java
|
|
|
|
\subsection{Implementation}
|
|
%List this under implementation details
|
|
Every constraint that is not in solved form and is not able to be processed by any of the rules accounts as a error constraint and renders the constraint set unsolvable
|
|
|
|
The new constraint generated by the adopt rule may be eliminated by the match rule.
|
|
The adopt rule still needs to be applied only once per constraint.
|
|
|
|
|
|
\textbf{Eliminating Wildcards}
|
|
Wildcards that have the same upper and lower bounds can be removed.
|
|
This is done by the \rulename{Crunch} rule.
|
|
|
|
\textit{Example:} The type $\wctype{\wildcard{X}{\type{String}}{\type{String}}}{List}{\rwildcard{X}}$
|
|
becomes $\exptype{List}{\type{String}}$.
|
|
|
|
\begin{tabular}[t]{l@{~}l}
|
|
\\\\
|
|
\rulename{Crunch}
|
|
& $\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{ \tv{a} \doteq \wctype{\Delta', \set{\overline{\wildcard{X}{\type{U}}{\type{L}}}}}{C}{\ol{S}} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash
|
|
C \cup \set{ \tv{a} \doteq \wctype{\Delta'}{C}{[\ol{U}/\ol{X}]\ol{S}}}
|
|
\end{array}
|
|
&\begin{array}[c]{l}
|
|
\ol{U} = \ol{L}
|
|
\end{array}
|
|
\end{array}$
|
|
\\\\
|
|
\rulename{Crunch}
|
|
& $\begin{array}[c]{@{}ll}
|
|
\begin{array}[c]{l}
|
|
\wildcardEnv \vdash C \cup \, \set{ \tv{a} \lessdot \wctype{\Delta', \set{\overline{\wildcard{X}{\type{U}}{\type{L}}}}}{C}{\ol{S}} } \\
|
|
\hline
|
|
\vspace*{-0.4cm}\\
|
|
\wildcardEnv \vdash
|
|
C \cup \set{ \tv{a} \lessdot \wctype{\Delta'}{C}{[\ol{U}/\ol{X}]\ol{S}}}
|
|
\end{array}
|
|
&\begin{array}[c]{l}
|
|
\ol{U} = \ol{L}
|
|
\end{array}
|
|
\end{array}$
|
|
\end{tabular}
|
|
|
|
|
|
% After applying the GenDelta and GenSigma rules unifiers $\sigma$ do not contain
|
|
% a unifier of the form $\tv{a} \to \tv{b}$.
|
|
% Otherwise the found solution is incorrect.
|
|
% This only happens if the input constraints contain type variables with no upper bound constraint like $\tv{a} \lessdot \type{N}$.
|