Start Implication Rules
This commit is contained in:
parent
4a2f3078e6
commit
2702bf6cab
79
aspUnify.tex
79
aspUnify.tex
@ -19,6 +19,11 @@
|
||||
%\renewcommand\UrlFont{\color{blue}\rmfamily}
|
||||
%\urlstyle{rm}
|
||||
%
|
||||
\include{prolog}
|
||||
\usepackage{mathpartir}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
|
||||
\begin{document}
|
||||
%
|
||||
\title{Global Type Inference for Java using SAT Solvers}
|
||||
@ -70,4 +75,78 @@ Java has adopted more and more type inference features over time.
|
||||
Currently Java only has local type inference.
|
||||
We want to bring type inference for Java to the next level.
|
||||
|
||||
\section{Unify}
|
||||
We have to formulate the unification algorithm with implication rules.
|
||||
Those can be directly translated to ASP.
|
||||
\begin{mathpar}
|
||||
\inferrule[Subst-L]{
|
||||
\tv{a} \doteq \type{N} \\
|
||||
\tv{a} \lessdot \type{T}
|
||||
}{
|
||||
\type{N} \lessdot \type{T}
|
||||
}
|
||||
\and
|
||||
\inferrule[Subst-R]{
|
||||
\tv{a} \doteq \type{N} \\
|
||||
\type{T} \lessdot \tv{a}
|
||||
}{
|
||||
\type{T} \lessdot \type{N}
|
||||
}
|
||||
\and
|
||||
\inferrule[Fail]{
|
||||
\type{T} \lessdot \type{N}\\
|
||||
\type{T} \nless : \type{N}
|
||||
}{
|
||||
\emptyset
|
||||
}
|
||||
\and
|
||||
\inferrule[Fail]{
|
||||
\exptype{C}{\ldots} \doteq \exptype{D}{\ldots}\\
|
||||
\type{C} \neq \type{D}
|
||||
}{
|
||||
\emptyset
|
||||
}
|
||||
\and
|
||||
\inferrule[Fail]{
|
||||
\tv{a} \lessdot \type{T}_1 \\
|
||||
\tv{a} \lessdot \type{T}_2 \\
|
||||
\type{T}_1 \nless : \type{T}_2 \\
|
||||
\type{T}_2 \nless : \type{T}_1
|
||||
}{
|
||||
\emptyset
|
||||
}
|
||||
\and
|
||||
\inferrule[Swap]{
|
||||
\type{T}_1 \doteq \type{T}_2
|
||||
}{
|
||||
\type{T}_2 \doteq \type{T}_1
|
||||
}
|
||||
\and
|
||||
\inferrule[Adopt]{
|
||||
\tv{a} \lessdot \type{T}_1 \\
|
||||
\tv{a} \lessdot \type{T}_2 \\
|
||||
\type{T}_1 <: \type{T}_2
|
||||
}{
|
||||
\type{T}_1 \lessdot \type{T}_2
|
||||
}
|
||||
\and
|
||||
\inferrule[Subst-Param]{
|
||||
\tv{a} \doteq \type{N} \\
|
||||
\tv{a} = \type{T}_i \\
|
||||
\exptype{C}{\type{T}_1 \ldots \type{T}_n} <: \type{T} \\
|
||||
}{
|
||||
\type{T}_i \doteq \type{N} \\
|
||||
}
|
||||
\end{mathpar}
|
||||
% Subst
|
||||
% a =. N, a <. T, N <: T
|
||||
% --------------
|
||||
% N <. T
|
||||
|
||||
% how to proof completeness and termination?
|
||||
% TODO: how to proof termination?
|
||||
|
||||
\section{Completeness}
|
||||
To proof completeness we have to show that every type can be replaced by a placeholder in a correct constraint set.
|
||||
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user