Rework Implementation rules. Add comments to Completeness
This commit is contained in:
parent
4efda6cae2
commit
5f549ae540
130
aspUnify.tex
130
aspUnify.tex
@ -76,23 +76,86 @@ Currently Java only has local type inference.
|
|||||||
We want to bring type inference for Java to the next level.
|
We want to bring type inference for Java to the next level.
|
||||||
|
|
||||||
\section{Unify}
|
\section{Unify}
|
||||||
|
Input: Every type placeholder must have an upper bound.
|
||||||
|
Output: Every $\tv{a} \lessdot \type{T}$ constraint gets a
|
||||||
|
|
||||||
We have to formulate the unification algorithm with implication rules.
|
We have to formulate the unification algorithm with implication rules.
|
||||||
Those can be directly translated to ASP.
|
Those can be directly translated to ASP.
|
||||||
\begin{mathpar}
|
\begin{mathpar}
|
||||||
\inferrule[Subst-L]{
|
\inferrule[Subst-L]{
|
||||||
\tv{a} \doteq \type{N} \\
|
\tv{a} \doteq \type{T}_1 \\
|
||||||
\tv{a} \lessdot \type{T}
|
\tv{a} \lessdot \type{T}_2
|
||||||
}{
|
}{
|
||||||
\type{N} \lessdot \type{T}
|
\type{T}_1 \lessdot \type{T}_2
|
||||||
}
|
}
|
||||||
\and
|
\and
|
||||||
\inferrule[Subst-R]{
|
\inferrule[Subst-R]{
|
||||||
\tv{a} \doteq \type{N} \\
|
\tv{a} \doteq \type{T}_1 \\
|
||||||
\type{T} \lessdot \tv{a}
|
\type{T}_2 \lessdot \tv{a}
|
||||||
}{
|
}{
|
||||||
\type{T} \lessdot \type{N}
|
\type{T}_2 \lessdot \type{T}_1
|
||||||
}
|
}
|
||||||
\and
|
\and
|
||||||
|
\inferrule[Subst-Equal]{
|
||||||
|
\tv{a} \doteq \type{T}_1 \\
|
||||||
|
\tv{a} \doteq \type{T}_2
|
||||||
|
}{
|
||||||
|
\type{T}_1 \doteq \type{T}_2
|
||||||
|
}
|
||||||
|
\and
|
||||||
|
\inferrule[Swap]{
|
||||||
|
\type{T}_1 \doteq \type{T}_2
|
||||||
|
}{
|
||||||
|
\type{T}_2 \doteq \type{T}_1
|
||||||
|
}
|
||||||
|
\and
|
||||||
|
\inferrule[Match]{
|
||||||
|
\tv{a} \lessdot \type{N}_1 \\
|
||||||
|
\tv{a} \lessdot \type{N}_2 \\
|
||||||
|
\type{N}_1 << \type{N}_2
|
||||||
|
}{
|
||||||
|
\type{T}_1 \lessdot \type{T}_2
|
||||||
|
}
|
||||||
|
\and
|
||||||
|
\inferrule[Adopt]{
|
||||||
|
\tv{a} \lessdot \tv{b} \\
|
||||||
|
\tv{b} \lessdot \type{T}
|
||||||
|
}{
|
||||||
|
\tv{a} \lessdot \type{T}
|
||||||
|
}
|
||||||
|
\and
|
||||||
|
\inferrule[Subst-Param]{
|
||||||
|
\tv{a} \doteq \type{N} \\
|
||||||
|
\tv{a} = \type{T}_i \\
|
||||||
|
\exptype{C}{\type{T}_1 \ldots \type{T}_n} <: \type{T} \\
|
||||||
|
}{
|
||||||
|
\type{T}_i \doteq \type{N} \\
|
||||||
|
}
|
||||||
|
\and
|
||||||
|
\inferrule[Adapt]{
|
||||||
|
\type{N}_1 \lessdot \exptype{C}{\type{T}_1 \ldots \type{T}_n} \\
|
||||||
|
\type{N}_1 <: \exptype{C}{\type{S}_1 \ldots \type{S}_n} \\
|
||||||
|
}{
|
||||||
|
\exptype{C}{\type{S}_1 \ldots \type{S}_n} \doteq \exptype{C}{\type{T}_1 \ldots \type{T}_n} \\
|
||||||
|
}
|
||||||
|
\and
|
||||||
|
\inferrule[Reduce]{
|
||||||
|
\exptype{C}{\type{S}_1 \ldots \type{S}_n} \doteq \exptype{C}{\type{T}_1 \ldots \type{T}_n} \\
|
||||||
|
}{
|
||||||
|
\type{S}_i \doteq \type{T}_i \\
|
||||||
|
}
|
||||||
|
\end{mathpar}
|
||||||
|
|
||||||
|
\begin{mathpar}
|
||||||
|
\inferrule[Super]{
|
||||||
|
\type{T} \lessdot \tv{a}\\
|
||||||
|
\type{T} <: \type{N}
|
||||||
|
}{
|
||||||
|
\tv{a} \doteq \type{N}
|
||||||
|
}
|
||||||
|
\end{mathpar}
|
||||||
|
|
||||||
|
\begin{mathpar}
|
||||||
\inferrule[Fail]{
|
\inferrule[Fail]{
|
||||||
\type{T} \lessdot \type{N}\\
|
\type{T} \lessdot \type{N}\\
|
||||||
\type{T} \nless : \type{N}
|
\type{T} \nless : \type{N}
|
||||||
@ -108,35 +171,13 @@ Those can be directly translated to ASP.
|
|||||||
}
|
}
|
||||||
\and
|
\and
|
||||||
\inferrule[Fail]{
|
\inferrule[Fail]{
|
||||||
\tv{a} \lessdot \type{T}_1 \\
|
\tv{a} \lessdot \type{N}_1 \\
|
||||||
\tv{a} \lessdot \type{T}_2 \\
|
\tv{a} \lessdot \type{N}_2 \\
|
||||||
\type{T}_1 \nless : \type{T}_2 \\
|
\text{not}\ \type{N}_1 << \type{N}_2 \\
|
||||||
\type{T}_2 \nless : \type{T}_1
|
\text{not}\ \type{N}_2 << \type{N}_1
|
||||||
}{
|
}{
|
||||||
\emptyset
|
\emptyset
|
||||||
}
|
}
|
||||||
\and
|
|
||||||
\inferrule[Swap]{
|
|
||||||
\type{T}_1 \doteq \type{T}_2
|
|
||||||
}{
|
|
||||||
\type{T}_2 \doteq \type{T}_1
|
|
||||||
}
|
|
||||||
\and
|
|
||||||
\inferrule[Adopt]{
|
|
||||||
\tv{a} \lessdot \type{T}_1 \\
|
|
||||||
\tv{a} \lessdot \type{T}_2 \\
|
|
||||||
\type{T}_1 <: \type{T}_2
|
|
||||||
}{
|
|
||||||
\type{T}_1 \lessdot \type{T}_2
|
|
||||||
}
|
|
||||||
\and
|
|
||||||
\inferrule[Subst-Param]{
|
|
||||||
\tv{a} \doteq \type{N} \\
|
|
||||||
\tv{a} = \type{T}_i \\
|
|
||||||
\exptype{C}{\type{T}_1 \ldots \type{T}_n} <: \type{T} \\
|
|
||||||
}{
|
|
||||||
\type{T}_i \doteq \type{N} \\
|
|
||||||
}
|
|
||||||
\end{mathpar}
|
\end{mathpar}
|
||||||
% Subst
|
% Subst
|
||||||
% a =. N, a <. T, N <: T
|
% a =. N, a <. T, N <: T
|
||||||
@ -149,4 +190,29 @@ Those can be directly translated to ASP.
|
|||||||
\section{Completeness}
|
\section{Completeness}
|
||||||
To proof completeness we have to show that every type can be replaced by a placeholder in a correct constraint set.
|
To proof completeness we have to show that every type can be replaced by a placeholder in a correct constraint set.
|
||||||
|
|
||||||
|
Completeness -> we never exclude a solution
|
||||||
|
Following constraints stay: $\tv{a} \lessdot \type{T}$ if $\tv{a}$ is never on a right side of another constraint.
|
||||||
|
Every other type placeholder will be reduced to $\tv{a} \doteq \type{T}$, if there is a solution.
|
||||||
|
Proof:
|
||||||
|
%Induction over every possible constraint variation:
|
||||||
|
a =. T -> induction start
|
||||||
|
a <. T -> if no other constraint then it can stay otherwise there is either a =. T or a <. T
|
||||||
|
in latter case: a <. T, a <. T'
|
||||||
|
|
||||||
|
Proof that every type can be replaced by a Type Placeholder.
|
||||||
|
% Whats with a =. T, can T be replaced by a Type Placeholder?
|
||||||
|
% What is our finish condition? a <. T constraints stay, a =. b constraints stay.
|
||||||
|
% Algorithm does not fail -> \emptyset if a solution exists
|
||||||
|
% Otherwise there exists a substitution. If the algorithm succeeds we have to pick one of the possible solutions
|
||||||
|
% by: a <. T -> a =.T
|
||||||
|
% a =. b, b =. T -> use the solution generation from other paper
|
||||||
|
% TODO: try to include solution generation in the algorithm and proof that this solution is valid and will always occur as long as there is a solution
|
||||||
|
|
||||||
|
Soundness -> we never make a wrong implication
|
||||||
|
%$\tv{a} \doteq \type{T}$ means that $\[type{T}/\tv{a}]C$ is correct
|
||||||
|
If it succeeds then we can substitute all $\tv{a} \doteq \type{T}$
|
||||||
|
constraints in the original constraint set and
|
||||||
|
there exists a typing for the remaining type placeholders
|
||||||
|
so that the constraint set is satisfied.
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
Loading…
Reference in New Issue
Block a user