Var Rule Subtyping. Add Termination Theorem
This commit is contained in:
parent
05260c286d
commit
71ffb2c766
88
aspUnify.tex
88
aspUnify.tex
@ -87,6 +87,8 @@ We want to bring type inference for Java to the next level.
|
||||
\type{T}_1 <: \type{T}_3
|
||||
}
|
||||
\and
|
||||
\inferrule[Var]{}{\type{A} <: \Delta(\type{A})}
|
||||
\and
|
||||
\inferrule[Class]{\texttt{class}\ \exptype{C}{\ol{X}} \triangleleft \type{N}}{
|
||||
\exptype{C}{\ol{T}} <: [\ol{T}/\ol{X}]\type{N}
|
||||
}
|
||||
@ -126,6 +128,19 @@ Those can be directly translated to ASP.
|
||||
\type{T}_2 \doteq \type{T}_1
|
||||
}
|
||||
\and
|
||||
\inferrule[Unfold]{
|
||||
\tv{b} \doteq \exptype{C}{\type{T}_1 \ldots \type{T}_n}
|
||||
}{
|
||||
\type{T}_i \doteq \type{T}_i
|
||||
}
|
||||
\and
|
||||
\inferrule[Subst-Param]{
|
||||
\tv{a} \doteq \type{G} \\
|
||||
\type{T} \doteq \exptype{C}{\type{T}_1 \ldots, \tv{a}, \ldots \type{T}_n} \\
|
||||
}{
|
||||
\type{T} \doteq \exptype{C}{\type{T}_1, \ldots \type{G}, \ldots \type{T}_n}
|
||||
}
|
||||
\and
|
||||
\inferrule[S-Object]{}{\tv{a} \lessdot \type{Object}}
|
||||
\and
|
||||
\inferrule[Match]{
|
||||
@ -166,6 +181,7 @@ Those can be directly translated to ASP.
|
||||
\end{mathpar}
|
||||
|
||||
\begin{mathpar}
|
||||
\text{Apply only once per constraint:}\quad
|
||||
\inferrule[Super]{
|
||||
\type{T} \lessdot \tv{a}\\
|
||||
\type{T} <: \type{N}
|
||||
@ -174,6 +190,9 @@ Those can be directly translated to ASP.
|
||||
}
|
||||
\end{mathpar}
|
||||
|
||||
\begin{center}
|
||||
Apply one or the other:
|
||||
\end{center}
|
||||
\begin{mathpar}
|
||||
\inferrule[Split-L]{
|
||||
\tv{a} \lessdot \tv{b}\\
|
||||
@ -181,9 +200,9 @@ Those can be directly translated to ASP.
|
||||
}{
|
||||
\tv{b} \lessdot \type{N}
|
||||
}
|
||||
\and
|
||||
\quad \quad
|
||||
\vline
|
||||
\and
|
||||
\quad \quad
|
||||
\inferrule[Split-R]{
|
||||
\tv{a} \lessdot \tv{b}\\
|
||||
\tv{a} \lessdot \type{N}\\
|
||||
@ -194,9 +213,14 @@ Those can be directly translated to ASP.
|
||||
|
||||
Result:
|
||||
\begin{mathpar}
|
||||
% \inferrule[Solution]{
|
||||
% \tv{a} \doteq \type{N} \\
|
||||
% \tv{a} \notin \type{N}
|
||||
% }{
|
||||
% \sigma(\tv{a}) = \type{N}
|
||||
% }
|
||||
\inferrule[Solution]{
|
||||
\tv{a} \doteq \type{N} \\
|
||||
\tv{a} \notin \type{N}
|
||||
\tv{a} \doteq \type{G}
|
||||
}{
|
||||
\sigma(\tv{a}) = \type{N}
|
||||
}
|
||||
@ -206,39 +230,20 @@ Result:
|
||||
\forall i: \type{C_m} << \type{C_i} \\
|
||||
\text{not}\ \tv{a} \doteq \type{N}
|
||||
}{
|
||||
\sigma(\tv{a}) = \exptype{C_m}{\ol{T_m}}
|
||||
}
|
||||
\and
|
||||
\inferrule[Solution]{
|
||||
\tv{a} \doteq \type{G}
|
||||
}{
|
||||
\sigma(\tv{a}) = \type{N}
|
||||
}
|
||||
\and
|
||||
\inferrule[Unfold]{
|
||||
\tv{b} \doteq \exptype{C}{\type{T}_1 \ldots \type{T}_n}
|
||||
}{
|
||||
\type{T}_i \doteq \type{T}_i
|
||||
}
|
||||
\and
|
||||
\inferrule[Subst-Param]{
|
||||
\tv{a} \doteq \type{G} \\
|
||||
\type{T} \doteq \exptype{C}{\type{T}_1 \ldots, \tv{a}, \ldots \type{T}_n} \\
|
||||
}{
|
||||
\type{T} \doteq \exptype{C}{\type{T}_1, \ldots \type{G}, \ldots \type{T}_n}
|
||||
\Delta(\type{A}) = \exptype{C_m}{\ol{T_m}} \\ \sigma(\tv{a}) = \type{A}
|
||||
}
|
||||
\end{mathpar}
|
||||
|
||||
Fail:
|
||||
|
||||
\begin{mathpar}
|
||||
\inferrule[Fail]{
|
||||
\type{T} \lessdot \type{N}\\
|
||||
\type{T} \nless : \type{N}
|
||||
}{
|
||||
\emptyset
|
||||
}
|
||||
\and
|
||||
% \inferrule[Fail]{
|
||||
% \type{T} \lessdot \type{N}\\
|
||||
% \type{T} \nless : \type{N}
|
||||
% }{
|
||||
% \emptyset
|
||||
% }
|
||||
% \and
|
||||
\inferrule[Fail]{
|
||||
\exptype{C}{\ldots} \doteq \exptype{D}{\ldots}\\
|
||||
\type{C} \neq \type{D}
|
||||
@ -338,6 +343,15 @@ Due to Match there must be $\type{N}_1 \lessdot \type{N}_2 \ldots \lessdot \type
|
||||
And more text.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}{Substitution}
|
||||
\begin{description}
|
||||
\item[If] $\tv{a} \doteq \type{N}$ with $\tv{a} \neq \type{N}$
|
||||
\item[Then] for every $\type{T} \doteq \type{T}$ there exists a $[\type{N}/\tv{a}]\type{T} \doteq [\type{N}/\tv{a}]\type{T}$
|
||||
\item[Then] for every $\type{T} \lessdot \type{T}$ there exists a $[\type{N}/\tv{a}]\type{T} \lessdot [\type{N}/\tv{a}]\type{T}$
|
||||
\end{description}
|
||||
\end{lemma}
|
||||
\textit{Proof:}
|
||||
TODO
|
||||
|
||||
\begin{lemma} \label{lemma:subtypeOnly}
|
||||
If $\sigma(\tv{a}) = \emptyset$ then $\tv{a}$ appears only on the left side of $\tv{a} \lessdot \type{T}$ constraints.
|
||||
@ -350,6 +364,18 @@ The Solution-Sub rule is always correct.
|
||||
|
||||
Proof:
|
||||
|
||||
\begin{theorem}{Termination}
|
||||
%jede nichtendliche Menge von Constraints bleibt endlich. Die Regeln können nicht unendlich oft angewendet werden
|
||||
%Trivial. The only possibility would be if we allow a =. C<a> constraints!
|
||||
\end{theorem}
|
||||
|
||||
TODO: For completeness we have to proof that not $\tv{a} \doteq \type{N}$ only is the case if $\tv{a}$ only appears on the left side of $\tv{a} \lessdot \type{T}$ constraints.
|
||||
Problem: a <. List<a>
|
||||
a <. List<b>
|
||||
then a =. b
|
||||
Solution: Keep the a <. N constraints and apply the Step 6 from the GTFGJ paper.
|
||||
Then we have to proof that only a <. N constraints remain with sigma(a) = empty. Or Fail
|
||||
|
||||
\begin{theorem}{Completeness}
|
||||
$\forall \tv{a} \in C_{input}: \sigma(\tv{a}) = \type{N}$, if there is a solution for $C_{input}$
|
||||
and every type placeholder has an upper bound $\tv{a} \lessdot \type{N}$.
|
||||
|
Loading…
Reference in New Issue
Block a user