jdk-24/test/micro/org/openjdk/bench/java/math/Shared.java

158 lines
6.4 KiB
Java
Raw Permalink Normal View History

/*
* Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.java.math;
import java.math.BigInteger;
import java.util.Random;
///////////////////////////////////////////////////////////////////////////////
// THIS IS NOT A BENCHMARK
///////////////////////////////////////////////////////////////////////////////
public final class Shared {
// General note
// ============
//
// Isn't there a simple way to get a BigInteger of the specified number
// of bits of magnitude? It does not seem like it.
//
// We cannot create a BigInteger of the specified number of bytes,
// directly and *cheaply*. This constructor does not do what you
// might think it does:
//
// BigInteger(int numBits, Random rnd)
//
// The only real direct option we have is this constructor:
//
// BigInteger(int bitLength, int certainty, Random rnd)
//
// But even with certainty == 0, it is not cheap. So, create the
// number with the closest number of bytes and then shift right
// the excess bits.
private Shared() {
throw new AssertionError("This is a utility class");
}
//
// Creates a pair of same sign numbers x and y that minimally differ in
// magnitude.
//
// More formally: x.bitLength() == nBits and x.signum() == y.signum()
// and either
//
// * y.bitLength() == nBits, and
// * x.testBit(0) != y.testBit(0)
//
// or
//
// * y.bitLength() == nBits + 1
//
// By construction, such numbers are unequal to each other, but the
// difference in magnitude is minimal. That way, the comparison
// methods, such as equals and compareTo, are forced to examine
// the _complete_ number representation.
//
// Assumptions on BigInteger mechanics
// ===================================
//
// 1. bigLength() is not consulted with for short-circuiting; if it is,
// then we have a problem with nBits={0,1}
// 2. new BigInteger(0, new byte[]{0}) and new BigInteger(1, new byte[]{1})
// are not canonicalized to BigInteger.ZERO and BigInteger.ONE,
// respectively; if they are, then internal optimizations might be
// possible (BigInteger is not exactly a value-based class).
// 3. Comparison and equality are checked from the most significant bit
// to the least significant bit, not the other way around (for
// comparison it seems natural, but not for equality). If any
// of those are checked in the opposite direction, then the check
// might short-circuit.
//
public static Pair createPair(int nBits) {
if (nBits < 0) {
throw new IllegalArgumentException(String.valueOf(nBits));
} else if (nBits == 0) {
var zero = new BigInteger(nBits, new byte[0]);
var one = new BigInteger(/* positive */ 1, new byte[]{1});
return new Pair(zero, one);
} else if (nBits == 1) {
var one = new BigInteger(/* positive */ 1, new byte[]{1});
var two = new BigInteger(/* positive */ 1, new byte[]{2});
return new Pair(one, two);
}
int nBytes = (nBits + 7) / 8;
var r = new Random();
var bytes = new byte[nBytes];
r.nextBytes(bytes);
// Create a BigInteger of the exact bit length by:
// 1. ensuring that the most significant bit is set so that
// no leading zeros are truncated, and
// 2. explicitly specifying signum, so it's not calculated from
// the passed bytes, which must represent magnitude only
bytes[0] |= (byte) 0b1000_0000;
var x = new BigInteger(/* positive */ 1, bytes)
.shiftRight(nBytes * 8 - nBits);
var y = x.flipBit(0);
// do not rely on the assert statement in benchmark
if (x.bitLength() != nBits)
throw new AssertionError(x.bitLength() + ", " + nBits);
return new Pair(x, y);
}
public record Pair(BigInteger x, BigInteger y) {
public Pair {
if (x.signum() == -y.signum()) // if the pair comprises positive and negative
throw new IllegalArgumentException("x.signum()=" + x.signum()
+ ", y=signum()=" + y.signum());
if (y.bitLength() - x.bitLength() > 1)
throw new IllegalArgumentException("x.bitLength()=" + x.bitLength()
+ ", y.bitLength()=" + y.bitLength());
}
}
public static BigInteger createSingle(int nBits) {
if (nBits < 0) {
throw new IllegalArgumentException(String.valueOf(nBits));
}
if (nBits == 0) {
return new BigInteger(nBits, new byte[0]);
}
int nBytes = (nBits + 7) / 8;
var r = new Random();
var bytes = new byte[nBytes];
r.nextBytes(bytes);
// Create a BigInteger of the exact bit length by:
// 1. ensuring that the most significant bit is set so that
// no leading zeros are truncated, and
// 2. explicitly specifying signum, so it's not calculated from
// the passed bytes, which must represent magnitude only
bytes[0] |= (byte) 0b1000_0000;
var x = new BigInteger(/* positive */ 1, bytes)
.shiftRight(nBytes * 8 - nBits);
if (x.bitLength() != nBits)
throw new AssertionError(x.bitLength() + ", " + nBits);
return x;
}
}