2008-06-05 15:57:56 -07:00
|
|
|
/*
|
2009-03-09 13:28:46 -07:00
|
|
|
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
2008-06-05 15:57:56 -07:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
|
|
* have any questions.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
|
|
|
|
// It uses the "Garbage First" heap organization and algorithm, which
|
|
|
|
// may combine concurrent marking with parallel, incremental compaction of
|
|
|
|
// heap subsets that will yield large amounts of garbage.
|
|
|
|
|
|
|
|
class HeapRegion;
|
|
|
|
class HeapRegionSeq;
|
|
|
|
class PermanentGenerationSpec;
|
|
|
|
class GenerationSpec;
|
|
|
|
class OopsInHeapRegionClosure;
|
|
|
|
class G1ScanHeapEvacClosure;
|
|
|
|
class ObjectClosure;
|
|
|
|
class SpaceClosure;
|
|
|
|
class CompactibleSpaceClosure;
|
|
|
|
class Space;
|
|
|
|
class G1CollectorPolicy;
|
|
|
|
class GenRemSet;
|
|
|
|
class G1RemSet;
|
|
|
|
class HeapRegionRemSetIterator;
|
|
|
|
class ConcurrentMark;
|
|
|
|
class ConcurrentMarkThread;
|
|
|
|
class ConcurrentG1Refine;
|
|
|
|
class ConcurrentZFThread;
|
|
|
|
|
|
|
|
// If want to accumulate detailed statistics on work queues
|
|
|
|
// turn this on.
|
|
|
|
#define G1_DETAILED_STATS 0
|
|
|
|
|
|
|
|
#if G1_DETAILED_STATS
|
|
|
|
# define IF_G1_DETAILED_STATS(code) code
|
|
|
|
#else
|
|
|
|
# define IF_G1_DETAILED_STATS(code)
|
|
|
|
#endif
|
|
|
|
|
2009-07-14 15:40:39 -07:00
|
|
|
typedef GenericTaskQueue<StarTask> RefToScanQueue;
|
|
|
|
typedef GenericTaskQueueSet<StarTask> RefToScanQueueSet;
|
2008-06-05 15:57:56 -07:00
|
|
|
|
2009-06-11 17:19:33 -07:00
|
|
|
typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
|
|
|
|
typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
enum G1GCThreadGroups {
|
|
|
|
G1CRGroup = 0,
|
|
|
|
G1ZFGroup = 1,
|
|
|
|
G1CMGroup = 2,
|
|
|
|
G1CLGroup = 3
|
|
|
|
};
|
|
|
|
|
|
|
|
enum GCAllocPurpose {
|
|
|
|
GCAllocForTenured,
|
|
|
|
GCAllocForSurvived,
|
|
|
|
GCAllocPurposeCount
|
|
|
|
};
|
|
|
|
|
|
|
|
class YoungList : public CHeapObj {
|
|
|
|
private:
|
|
|
|
G1CollectedHeap* _g1h;
|
|
|
|
|
|
|
|
HeapRegion* _head;
|
|
|
|
|
|
|
|
HeapRegion* _scan_only_head;
|
|
|
|
HeapRegion* _scan_only_tail;
|
|
|
|
size_t _length;
|
|
|
|
size_t _scan_only_length;
|
|
|
|
|
|
|
|
size_t _last_sampled_rs_lengths;
|
|
|
|
size_t _sampled_rs_lengths;
|
|
|
|
HeapRegion* _curr;
|
|
|
|
HeapRegion* _curr_scan_only;
|
|
|
|
|
|
|
|
HeapRegion* _survivor_head;
|
2009-02-06 01:38:50 +03:00
|
|
|
HeapRegion* _survivor_tail;
|
2008-06-05 15:57:56 -07:00
|
|
|
size_t _survivor_length;
|
|
|
|
|
|
|
|
void empty_list(HeapRegion* list);
|
|
|
|
|
|
|
|
public:
|
|
|
|
YoungList(G1CollectedHeap* g1h);
|
|
|
|
|
|
|
|
void push_region(HeapRegion* hr);
|
|
|
|
void add_survivor_region(HeapRegion* hr);
|
|
|
|
HeapRegion* pop_region();
|
|
|
|
void empty_list();
|
|
|
|
bool is_empty() { return _length == 0; }
|
|
|
|
size_t length() { return _length; }
|
|
|
|
size_t scan_only_length() { return _scan_only_length; }
|
2009-02-06 01:38:50 +03:00
|
|
|
size_t survivor_length() { return _survivor_length; }
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
void rs_length_sampling_init();
|
|
|
|
bool rs_length_sampling_more();
|
|
|
|
void rs_length_sampling_next();
|
|
|
|
|
|
|
|
void reset_sampled_info() {
|
|
|
|
_last_sampled_rs_lengths = 0;
|
|
|
|
}
|
|
|
|
size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
|
|
|
|
|
|
|
|
// for development purposes
|
|
|
|
void reset_auxilary_lists();
|
|
|
|
HeapRegion* first_region() { return _head; }
|
|
|
|
HeapRegion* first_scan_only_region() { return _scan_only_head; }
|
|
|
|
HeapRegion* first_survivor_region() { return _survivor_head; }
|
2009-02-06 01:38:50 +03:00
|
|
|
HeapRegion* last_survivor_region() { return _survivor_tail; }
|
2008-06-05 15:57:56 -07:00
|
|
|
HeapRegion* par_get_next_scan_only_region() {
|
|
|
|
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
|
|
|
|
HeapRegion* ret = _curr_scan_only;
|
|
|
|
if (ret != NULL)
|
|
|
|
_curr_scan_only = ret->get_next_young_region();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
// debugging
|
|
|
|
bool check_list_well_formed();
|
|
|
|
bool check_list_empty(bool ignore_scan_only_list,
|
|
|
|
bool check_sample = true);
|
|
|
|
void print();
|
|
|
|
};
|
|
|
|
|
|
|
|
class RefineCardTableEntryClosure;
|
|
|
|
class G1CollectedHeap : public SharedHeap {
|
|
|
|
friend class VM_G1CollectForAllocation;
|
|
|
|
friend class VM_GenCollectForPermanentAllocation;
|
|
|
|
friend class VM_G1CollectFull;
|
|
|
|
friend class VM_G1IncCollectionPause;
|
|
|
|
friend class VMStructs;
|
|
|
|
|
|
|
|
// Closures used in implementation.
|
|
|
|
friend class G1ParCopyHelper;
|
|
|
|
friend class G1IsAliveClosure;
|
|
|
|
friend class G1EvacuateFollowersClosure;
|
|
|
|
friend class G1ParScanThreadState;
|
|
|
|
friend class G1ParScanClosureSuper;
|
|
|
|
friend class G1ParEvacuateFollowersClosure;
|
|
|
|
friend class G1ParTask;
|
|
|
|
friend class G1FreeGarbageRegionClosure;
|
|
|
|
friend class RefineCardTableEntryClosure;
|
|
|
|
friend class G1PrepareCompactClosure;
|
|
|
|
friend class RegionSorter;
|
|
|
|
friend class CountRCClosure;
|
|
|
|
friend class EvacPopObjClosure;
|
2009-05-19 04:05:31 -07:00
|
|
|
friend class G1ParCleanupCTTask;
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// Other related classes.
|
|
|
|
friend class G1MarkSweep;
|
|
|
|
|
|
|
|
private:
|
|
|
|
// The one and only G1CollectedHeap, so static functions can find it.
|
|
|
|
static G1CollectedHeap* _g1h;
|
|
|
|
|
2009-07-30 16:22:58 -04:00
|
|
|
static size_t _humongous_object_threshold_in_words;
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
// Storage for the G1 heap (excludes the permanent generation).
|
|
|
|
VirtualSpace _g1_storage;
|
|
|
|
MemRegion _g1_reserved;
|
|
|
|
|
|
|
|
// The part of _g1_storage that is currently committed.
|
|
|
|
MemRegion _g1_committed;
|
|
|
|
|
|
|
|
// The maximum part of _g1_storage that has ever been committed.
|
|
|
|
MemRegion _g1_max_committed;
|
|
|
|
|
|
|
|
// The number of regions that are completely free.
|
|
|
|
size_t _free_regions;
|
|
|
|
|
|
|
|
// The number of regions we could create by expansion.
|
|
|
|
size_t _expansion_regions;
|
|
|
|
|
|
|
|
// Return the number of free regions in the heap (by direct counting.)
|
|
|
|
size_t count_free_regions();
|
|
|
|
// Return the number of free regions on the free and unclean lists.
|
|
|
|
size_t count_free_regions_list();
|
|
|
|
|
|
|
|
// The block offset table for the G1 heap.
|
|
|
|
G1BlockOffsetSharedArray* _bot_shared;
|
|
|
|
|
|
|
|
// Move all of the regions off the free lists, then rebuild those free
|
|
|
|
// lists, before and after full GC.
|
|
|
|
void tear_down_region_lists();
|
|
|
|
void rebuild_region_lists();
|
|
|
|
// This sets all non-empty regions to need zero-fill (which they will if
|
|
|
|
// they are empty after full collection.)
|
|
|
|
void set_used_regions_to_need_zero_fill();
|
|
|
|
|
|
|
|
// The sequence of all heap regions in the heap.
|
|
|
|
HeapRegionSeq* _hrs;
|
|
|
|
|
|
|
|
// The region from which normal-sized objects are currently being
|
|
|
|
// allocated. May be NULL.
|
|
|
|
HeapRegion* _cur_alloc_region;
|
|
|
|
|
|
|
|
// Postcondition: cur_alloc_region == NULL.
|
|
|
|
void abandon_cur_alloc_region();
|
2009-03-15 22:03:38 -04:00
|
|
|
void abandon_gc_alloc_regions();
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// The to-space memory regions into which objects are being copied during
|
|
|
|
// a GC.
|
|
|
|
HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
|
2009-02-06 01:38:50 +03:00
|
|
|
size_t _gc_alloc_region_counts[GCAllocPurposeCount];
|
2009-03-15 22:03:38 -04:00
|
|
|
// These are the regions, one per GCAllocPurpose, that are half-full
|
|
|
|
// at the end of a collection and that we want to reuse during the
|
|
|
|
// next collection.
|
|
|
|
HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
|
|
|
|
// This specifies whether we will keep the last half-full region at
|
|
|
|
// the end of a collection so that it can be reused during the next
|
|
|
|
// collection (this is specified per GCAllocPurpose)
|
|
|
|
bool _retain_gc_alloc_region[GCAllocPurposeCount];
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// A list of the regions that have been set to be alloc regions in the
|
|
|
|
// current collection.
|
|
|
|
HeapRegion* _gc_alloc_region_list;
|
|
|
|
|
|
|
|
// When called by par thread, require par_alloc_during_gc_lock() to be held.
|
|
|
|
void push_gc_alloc_region(HeapRegion* hr);
|
|
|
|
|
|
|
|
// This should only be called single-threaded. Undeclares all GC alloc
|
|
|
|
// regions.
|
|
|
|
void forget_alloc_region_list();
|
|
|
|
|
|
|
|
// Should be used to set an alloc region, because there's other
|
|
|
|
// associated bookkeeping.
|
|
|
|
void set_gc_alloc_region(int purpose, HeapRegion* r);
|
|
|
|
|
|
|
|
// Check well-formedness of alloc region list.
|
|
|
|
bool check_gc_alloc_regions();
|
|
|
|
|
|
|
|
// Outside of GC pauses, the number of bytes used in all regions other
|
|
|
|
// than the current allocation region.
|
|
|
|
size_t _summary_bytes_used;
|
|
|
|
|
2009-01-16 13:02:20 -05:00
|
|
|
// This is used for a quick test on whether a reference points into
|
|
|
|
// the collection set or not. Basically, we have an array, with one
|
|
|
|
// byte per region, and that byte denotes whether the corresponding
|
|
|
|
// region is in the collection set or not. The entry corresponding
|
|
|
|
// the bottom of the heap, i.e., region 0, is pointed to by
|
|
|
|
// _in_cset_fast_test_base. The _in_cset_fast_test field has been
|
|
|
|
// biased so that it actually points to address 0 of the address
|
|
|
|
// space, to make the test as fast as possible (we can simply shift
|
|
|
|
// the address to address into it, instead of having to subtract the
|
|
|
|
// bottom of the heap from the address before shifting it; basically
|
|
|
|
// it works in the same way the card table works).
|
|
|
|
bool* _in_cset_fast_test;
|
|
|
|
|
|
|
|
// The allocated array used for the fast test on whether a reference
|
|
|
|
// points into the collection set or not. This field is also used to
|
|
|
|
// free the array.
|
|
|
|
bool* _in_cset_fast_test_base;
|
|
|
|
|
|
|
|
// The length of the _in_cset_fast_test_base array.
|
|
|
|
size_t _in_cset_fast_test_length;
|
|
|
|
|
2008-07-10 09:29:54 -07:00
|
|
|
volatile unsigned _gc_time_stamp;
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
size_t* _surviving_young_words;
|
|
|
|
|
|
|
|
void setup_surviving_young_words();
|
|
|
|
void update_surviving_young_words(size_t* surv_young_words);
|
|
|
|
void cleanup_surviving_young_words();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
// Returns "true" iff none of the gc alloc regions have any allocations
|
|
|
|
// since the last call to "save_marks".
|
|
|
|
bool all_alloc_regions_no_allocs_since_save_marks();
|
2009-02-06 01:38:50 +03:00
|
|
|
// Perform finalization stuff on all allocation regions.
|
|
|
|
void retire_all_alloc_regions();
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// The number of regions allocated to hold humongous objects.
|
|
|
|
int _num_humongous_regions;
|
|
|
|
YoungList* _young_list;
|
|
|
|
|
|
|
|
// The current policy object for the collector.
|
|
|
|
G1CollectorPolicy* _g1_policy;
|
|
|
|
|
|
|
|
// Parallel allocation lock to protect the current allocation region.
|
|
|
|
Mutex _par_alloc_during_gc_lock;
|
|
|
|
Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
|
|
|
|
|
|
|
|
// If possible/desirable, allocate a new HeapRegion for normal object
|
|
|
|
// allocation sufficient for an allocation of the given "word_size".
|
|
|
|
// If "do_expand" is true, will attempt to expand the heap if necessary
|
|
|
|
// to to satisfy the request. If "zero_filled" is true, requires a
|
|
|
|
// zero-filled region.
|
|
|
|
// (Returning NULL will trigger a GC.)
|
|
|
|
virtual HeapRegion* newAllocRegion_work(size_t word_size,
|
|
|
|
bool do_expand,
|
|
|
|
bool zero_filled);
|
|
|
|
|
|
|
|
virtual HeapRegion* newAllocRegion(size_t word_size,
|
|
|
|
bool zero_filled = true) {
|
|
|
|
return newAllocRegion_work(word_size, false, zero_filled);
|
|
|
|
}
|
|
|
|
virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
|
|
|
|
size_t word_size,
|
|
|
|
bool zero_filled = true);
|
|
|
|
|
|
|
|
// Attempt to allocate an object of the given (very large) "word_size".
|
|
|
|
// Returns "NULL" on failure.
|
|
|
|
virtual HeapWord* humongousObjAllocate(size_t word_size);
|
|
|
|
|
|
|
|
// If possible, allocate a block of the given word_size, else return "NULL".
|
|
|
|
// Returning NULL will trigger GC or heap expansion.
|
|
|
|
// These two methods have rather awkward pre- and
|
|
|
|
// post-conditions. If they are called outside a safepoint, then
|
|
|
|
// they assume that the caller is holding the heap lock. Upon return
|
|
|
|
// they release the heap lock, if they are returning a non-NULL
|
|
|
|
// value. attempt_allocation_slow() also dirties the cards of a
|
|
|
|
// newly-allocated young region after it releases the heap
|
|
|
|
// lock. This change in interface was the neatest way to achieve
|
|
|
|
// this card dirtying without affecting mem_allocate(), which is a
|
|
|
|
// more frequently called method. We tried two or three different
|
|
|
|
// approaches, but they were even more hacky.
|
|
|
|
HeapWord* attempt_allocation(size_t word_size,
|
|
|
|
bool permit_collection_pause = true);
|
|
|
|
|
|
|
|
HeapWord* attempt_allocation_slow(size_t word_size,
|
|
|
|
bool permit_collection_pause = true);
|
|
|
|
|
|
|
|
// Allocate blocks during garbage collection. Will ensure an
|
|
|
|
// allocation region, either by picking one or expanding the
|
|
|
|
// heap, and then allocate a block of the given size. The block
|
|
|
|
// may not be a humongous - it must fit into a single heap region.
|
|
|
|
HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
|
|
|
|
HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
|
|
|
|
|
|
|
|
HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
|
|
|
|
HeapRegion* alloc_region,
|
|
|
|
bool par,
|
|
|
|
size_t word_size);
|
|
|
|
|
|
|
|
// Ensure that no further allocations can happen in "r", bearing in mind
|
|
|
|
// that parallel threads might be attempting allocations.
|
|
|
|
void par_allocate_remaining_space(HeapRegion* r);
|
|
|
|
|
2009-02-06 01:38:50 +03:00
|
|
|
// Retires an allocation region when it is full or at the end of a
|
|
|
|
// GC pause.
|
|
|
|
void retire_alloc_region(HeapRegion* alloc_region, bool par);
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
// Helper function for two callbacks below.
|
|
|
|
// "full", if true, indicates that the GC is for a System.gc() request,
|
|
|
|
// and should collect the entire heap. If "clear_all_soft_refs" is true,
|
|
|
|
// all soft references are cleared during the GC. If "full" is false,
|
|
|
|
// "word_size" describes the allocation that the GC should
|
|
|
|
// attempt (at least) to satisfy.
|
|
|
|
void do_collection(bool full, bool clear_all_soft_refs,
|
|
|
|
size_t word_size);
|
|
|
|
|
|
|
|
// Callback from VM_G1CollectFull operation.
|
|
|
|
// Perform a full collection.
|
|
|
|
void do_full_collection(bool clear_all_soft_refs);
|
|
|
|
|
|
|
|
// Resize the heap if necessary after a full collection. If this is
|
|
|
|
// after a collect-for allocation, "word_size" is the allocation size,
|
|
|
|
// and will be considered part of the used portion of the heap.
|
|
|
|
void resize_if_necessary_after_full_collection(size_t word_size);
|
|
|
|
|
|
|
|
// Callback from VM_G1CollectForAllocation operation.
|
|
|
|
// This function does everything necessary/possible to satisfy a
|
|
|
|
// failed allocation request (including collection, expansion, etc.)
|
|
|
|
HeapWord* satisfy_failed_allocation(size_t word_size);
|
|
|
|
|
|
|
|
// Attempting to expand the heap sufficiently
|
|
|
|
// to support an allocation of the given "word_size". If
|
|
|
|
// successful, perform the allocation and return the address of the
|
|
|
|
// allocated block, or else "NULL".
|
|
|
|
virtual HeapWord* expand_and_allocate(size_t word_size);
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Expand the garbage-first heap by at least the given size (in bytes!).
|
|
|
|
// (Rounds up to a HeapRegion boundary.)
|
|
|
|
virtual void expand(size_t expand_bytes);
|
|
|
|
|
|
|
|
// Do anything common to GC's.
|
|
|
|
virtual void gc_prologue(bool full);
|
|
|
|
virtual void gc_epilogue(bool full);
|
|
|
|
|
2009-01-16 13:02:20 -05:00
|
|
|
// We register a region with the fast "in collection set" test. We
|
|
|
|
// simply set to true the array slot corresponding to this region.
|
|
|
|
void register_region_with_in_cset_fast_test(HeapRegion* r) {
|
|
|
|
assert(_in_cset_fast_test_base != NULL, "sanity");
|
|
|
|
assert(r->in_collection_set(), "invariant");
|
|
|
|
int index = r->hrs_index();
|
|
|
|
assert(0 <= (size_t) index && (size_t) index < _in_cset_fast_test_length,
|
|
|
|
"invariant");
|
|
|
|
assert(!_in_cset_fast_test_base[index], "invariant");
|
|
|
|
_in_cset_fast_test_base[index] = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is a fast test on whether a reference points into the
|
|
|
|
// collection set or not. It does not assume that the reference
|
|
|
|
// points into the heap; if it doesn't, it will return false.
|
|
|
|
bool in_cset_fast_test(oop obj) {
|
|
|
|
assert(_in_cset_fast_test != NULL, "sanity");
|
|
|
|
if (_g1_committed.contains((HeapWord*) obj)) {
|
|
|
|
// no need to subtract the bottom of the heap from obj,
|
|
|
|
// _in_cset_fast_test is biased
|
|
|
|
size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
|
|
|
|
bool ret = _in_cset_fast_test[index];
|
|
|
|
// let's make sure the result is consistent with what the slower
|
|
|
|
// test returns
|
|
|
|
assert( ret || !obj_in_cs(obj), "sanity");
|
|
|
|
assert(!ret || obj_in_cs(obj), "sanity");
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
protected:
|
|
|
|
|
|
|
|
// Shrink the garbage-first heap by at most the given size (in bytes!).
|
|
|
|
// (Rounds down to a HeapRegion boundary.)
|
|
|
|
virtual void shrink(size_t expand_bytes);
|
|
|
|
void shrink_helper(size_t expand_bytes);
|
|
|
|
|
|
|
|
// Do an incremental collection: identify a collection set, and evacuate
|
|
|
|
// its live objects elsewhere.
|
|
|
|
virtual void do_collection_pause();
|
|
|
|
|
|
|
|
// The guts of the incremental collection pause, executed by the vm
|
2009-03-25 13:10:54 -07:00
|
|
|
// thread.
|
|
|
|
virtual void do_collection_pause_at_safepoint();
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// Actually do the work of evacuating the collection set.
|
|
|
|
virtual void evacuate_collection_set();
|
|
|
|
|
|
|
|
// If this is an appropriate right time, do a collection pause.
|
|
|
|
// The "word_size" argument, if non-zero, indicates the size of an
|
|
|
|
// allocation request that is prompting this query.
|
|
|
|
void do_collection_pause_if_appropriate(size_t word_size);
|
|
|
|
|
|
|
|
// The g1 remembered set of the heap.
|
|
|
|
G1RemSet* _g1_rem_set;
|
|
|
|
// And it's mod ref barrier set, used to track updates for the above.
|
|
|
|
ModRefBarrierSet* _mr_bs;
|
|
|
|
|
2009-03-06 13:50:14 -08:00
|
|
|
// A set of cards that cover the objects for which the Rsets should be updated
|
|
|
|
// concurrently after the collection.
|
|
|
|
DirtyCardQueueSet _dirty_card_queue_set;
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
// The Heap Region Rem Set Iterator.
|
|
|
|
HeapRegionRemSetIterator** _rem_set_iterator;
|
|
|
|
|
|
|
|
// The closure used to refine a single card.
|
|
|
|
RefineCardTableEntryClosure* _refine_cte_cl;
|
|
|
|
|
|
|
|
// A function to check the consistency of dirty card logs.
|
|
|
|
void check_ct_logs_at_safepoint();
|
|
|
|
|
|
|
|
// After a collection pause, make the regions in the CS into free
|
|
|
|
// regions.
|
|
|
|
void free_collection_set(HeapRegion* cs_head);
|
|
|
|
|
|
|
|
// Applies "scan_non_heap_roots" to roots outside the heap,
|
|
|
|
// "scan_rs" to roots inside the heap (having done "set_region" to
|
|
|
|
// indicate the region in which the root resides), and does "scan_perm"
|
|
|
|
// (setting the generation to the perm generation.) If "scan_rs" is
|
|
|
|
// NULL, then this step is skipped. The "worker_i"
|
|
|
|
// param is for use with parallel roots processing, and should be
|
|
|
|
// the "i" of the calling parallel worker thread's work(i) function.
|
|
|
|
// In the sequential case this param will be ignored.
|
|
|
|
void g1_process_strong_roots(bool collecting_perm_gen,
|
|
|
|
SharedHeap::ScanningOption so,
|
|
|
|
OopClosure* scan_non_heap_roots,
|
|
|
|
OopsInHeapRegionClosure* scan_rs,
|
|
|
|
OopsInHeapRegionClosure* scan_so,
|
|
|
|
OopsInGenClosure* scan_perm,
|
|
|
|
int worker_i);
|
|
|
|
|
|
|
|
void scan_scan_only_set(OopsInHeapRegionClosure* oc,
|
|
|
|
int worker_i);
|
|
|
|
void scan_scan_only_region(HeapRegion* hr,
|
|
|
|
OopsInHeapRegionClosure* oc,
|
|
|
|
int worker_i);
|
|
|
|
|
|
|
|
// Apply "blk" to all the weak roots of the system. These include
|
|
|
|
// JNI weak roots, the code cache, system dictionary, symbol table,
|
|
|
|
// string table, and referents of reachable weak refs.
|
|
|
|
void g1_process_weak_roots(OopClosure* root_closure,
|
|
|
|
OopClosure* non_root_closure);
|
|
|
|
|
|
|
|
// Invoke "save_marks" on all heap regions.
|
|
|
|
void save_marks();
|
|
|
|
|
|
|
|
// Free a heap region.
|
|
|
|
void free_region(HeapRegion* hr);
|
|
|
|
// A component of "free_region", exposed for 'batching'.
|
|
|
|
// All the params after "hr" are out params: the used bytes of the freed
|
|
|
|
// region(s), the number of H regions cleared, the number of regions
|
|
|
|
// freed, and pointers to the head and tail of a list of freed contig
|
|
|
|
// regions, linked throught the "next_on_unclean_list" field.
|
|
|
|
void free_region_work(HeapRegion* hr,
|
|
|
|
size_t& pre_used,
|
|
|
|
size_t& cleared_h,
|
|
|
|
size_t& freed_regions,
|
|
|
|
UncleanRegionList* list,
|
|
|
|
bool par = false);
|
|
|
|
|
|
|
|
|
|
|
|
// The concurrent marker (and the thread it runs in.)
|
|
|
|
ConcurrentMark* _cm;
|
|
|
|
ConcurrentMarkThread* _cmThread;
|
|
|
|
bool _mark_in_progress;
|
|
|
|
|
|
|
|
// The concurrent refiner.
|
|
|
|
ConcurrentG1Refine* _cg1r;
|
|
|
|
|
|
|
|
// The concurrent zero-fill thread.
|
|
|
|
ConcurrentZFThread* _czft;
|
|
|
|
|
|
|
|
// The parallel task queues
|
|
|
|
RefToScanQueueSet *_task_queues;
|
|
|
|
|
|
|
|
// True iff a evacuation has failed in the current collection.
|
|
|
|
bool _evacuation_failed;
|
|
|
|
|
|
|
|
// Set the attribute indicating whether evacuation has failed in the
|
|
|
|
// current collection.
|
|
|
|
void set_evacuation_failed(bool b) { _evacuation_failed = b; }
|
|
|
|
|
|
|
|
// Failed evacuations cause some logical from-space objects to have
|
|
|
|
// forwarding pointers to themselves. Reset them.
|
|
|
|
void remove_self_forwarding_pointers();
|
|
|
|
|
|
|
|
// When one is non-null, so is the other. Together, they each pair is
|
|
|
|
// an object with a preserved mark, and its mark value.
|
|
|
|
GrowableArray<oop>* _objs_with_preserved_marks;
|
|
|
|
GrowableArray<markOop>* _preserved_marks_of_objs;
|
|
|
|
|
|
|
|
// Preserve the mark of "obj", if necessary, in preparation for its mark
|
|
|
|
// word being overwritten with a self-forwarding-pointer.
|
|
|
|
void preserve_mark_if_necessary(oop obj, markOop m);
|
|
|
|
|
|
|
|
// The stack of evac-failure objects left to be scanned.
|
|
|
|
GrowableArray<oop>* _evac_failure_scan_stack;
|
|
|
|
// The closure to apply to evac-failure objects.
|
|
|
|
|
|
|
|
OopsInHeapRegionClosure* _evac_failure_closure;
|
|
|
|
// Set the field above.
|
|
|
|
void
|
|
|
|
set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
|
|
|
|
_evac_failure_closure = evac_failure_closure;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Push "obj" on the scan stack.
|
|
|
|
void push_on_evac_failure_scan_stack(oop obj);
|
|
|
|
// Process scan stack entries until the stack is empty.
|
|
|
|
void drain_evac_failure_scan_stack();
|
|
|
|
// True iff an invocation of "drain_scan_stack" is in progress; to
|
|
|
|
// prevent unnecessary recursion.
|
|
|
|
bool _drain_in_progress;
|
|
|
|
|
|
|
|
// Do any necessary initialization for evacuation-failure handling.
|
|
|
|
// "cl" is the closure that will be used to process evac-failure
|
|
|
|
// objects.
|
|
|
|
void init_for_evac_failure(OopsInHeapRegionClosure* cl);
|
|
|
|
// Do any necessary cleanup for evacuation-failure handling data
|
|
|
|
// structures.
|
|
|
|
void finalize_for_evac_failure();
|
|
|
|
|
|
|
|
// An attempt to evacuate "obj" has failed; take necessary steps.
|
|
|
|
void handle_evacuation_failure(oop obj);
|
|
|
|
oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
|
|
|
|
void handle_evacuation_failure_common(oop obj, markOop m);
|
|
|
|
|
|
|
|
|
|
|
|
// Ensure that the relevant gc_alloc regions are set.
|
|
|
|
void get_gc_alloc_regions();
|
2009-03-15 22:03:38 -04:00
|
|
|
// We're done with GC alloc regions. We are going to tear down the
|
|
|
|
// gc alloc list and remove the gc alloc tag from all the regions on
|
|
|
|
// that list. However, we will also retain the last (i.e., the one
|
|
|
|
// that is half-full) GC alloc region, per GCAllocPurpose, for
|
|
|
|
// possible reuse during the next collection, provided
|
|
|
|
// _retain_gc_alloc_region[] indicates that it should be the
|
|
|
|
// case. Said regions are kept in the _retained_gc_alloc_regions[]
|
|
|
|
// array. If the parameter totally is set, we will not retain any
|
|
|
|
// regions, irrespective of what _retain_gc_alloc_region[]
|
|
|
|
// indicates.
|
|
|
|
void release_gc_alloc_regions(bool totally);
|
|
|
|
#ifndef PRODUCT
|
|
|
|
// Useful for debugging.
|
|
|
|
void print_gc_alloc_regions();
|
|
|
|
#endif // !PRODUCT
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// ("Weak") Reference processing support
|
|
|
|
ReferenceProcessor* _ref_processor;
|
|
|
|
|
|
|
|
enum G1H_process_strong_roots_tasks {
|
|
|
|
G1H_PS_mark_stack_oops_do,
|
|
|
|
G1H_PS_refProcessor_oops_do,
|
|
|
|
// Leave this one last.
|
|
|
|
G1H_PS_NumElements
|
|
|
|
};
|
|
|
|
|
|
|
|
SubTasksDone* _process_strong_tasks;
|
|
|
|
|
|
|
|
// List of regions which require zero filling.
|
|
|
|
UncleanRegionList _unclean_region_list;
|
|
|
|
bool _unclean_regions_coming;
|
|
|
|
|
|
|
|
public:
|
|
|
|
void set_refine_cte_cl_concurrency(bool concurrent);
|
|
|
|
|
|
|
|
RefToScanQueue *task_queue(int i);
|
|
|
|
|
2009-03-06 13:50:14 -08:00
|
|
|
// A set of cards where updates happened during the GC
|
|
|
|
DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
// Create a G1CollectedHeap with the specified policy.
|
|
|
|
// Must call the initialize method afterwards.
|
|
|
|
// May not return if something goes wrong.
|
|
|
|
G1CollectedHeap(G1CollectorPolicy* policy);
|
|
|
|
|
|
|
|
// Initialize the G1CollectedHeap to have the initial and
|
|
|
|
// maximum sizes, permanent generation, and remembered and barrier sets
|
|
|
|
// specified by the policy object.
|
|
|
|
jint initialize();
|
|
|
|
|
|
|
|
void ref_processing_init();
|
|
|
|
|
|
|
|
void set_par_threads(int t) {
|
|
|
|
SharedHeap::set_par_threads(t);
|
|
|
|
_process_strong_tasks->set_par_threads(t);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual CollectedHeap::Name kind() const {
|
|
|
|
return CollectedHeap::G1CollectedHeap;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The current policy object for the collector.
|
|
|
|
G1CollectorPolicy* g1_policy() const { return _g1_policy; }
|
|
|
|
|
|
|
|
// Adaptive size policy. No such thing for g1.
|
|
|
|
virtual AdaptiveSizePolicy* size_policy() { return NULL; }
|
|
|
|
|
|
|
|
// The rem set and barrier set.
|
|
|
|
G1RemSet* g1_rem_set() const { return _g1_rem_set; }
|
|
|
|
ModRefBarrierSet* mr_bs() const { return _mr_bs; }
|
|
|
|
|
|
|
|
// The rem set iterator.
|
|
|
|
HeapRegionRemSetIterator* rem_set_iterator(int i) {
|
|
|
|
return _rem_set_iterator[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
HeapRegionRemSetIterator* rem_set_iterator() {
|
|
|
|
return _rem_set_iterator[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned get_gc_time_stamp() {
|
|
|
|
return _gc_time_stamp;
|
|
|
|
}
|
|
|
|
|
|
|
|
void reset_gc_time_stamp() {
|
|
|
|
_gc_time_stamp = 0;
|
2008-07-10 09:29:54 -07:00
|
|
|
OrderAccess::fence();
|
|
|
|
}
|
|
|
|
|
|
|
|
void increment_gc_time_stamp() {
|
|
|
|
++_gc_time_stamp;
|
|
|
|
OrderAccess::fence();
|
2008-06-05 15:57:56 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
void iterate_dirty_card_closure(bool concurrent, int worker_i);
|
|
|
|
|
|
|
|
// The shared block offset table array.
|
|
|
|
G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
|
|
|
|
|
|
|
|
// Reference Processing accessor
|
|
|
|
ReferenceProcessor* ref_processor() { return _ref_processor; }
|
|
|
|
|
|
|
|
// Reserved (g1 only; super method includes perm), capacity and the used
|
|
|
|
// portion in bytes.
|
2009-12-04 07:44:35 -05:00
|
|
|
size_t g1_reserved_obj_bytes() const { return _g1_reserved.byte_size(); }
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual size_t capacity() const;
|
|
|
|
virtual size_t used() const;
|
2009-07-15 12:22:59 -04:00
|
|
|
// This should be called when we're not holding the heap lock. The
|
|
|
|
// result might be a bit inaccurate.
|
|
|
|
size_t used_unlocked() const;
|
2008-06-05 15:57:56 -07:00
|
|
|
size_t recalculate_used() const;
|
|
|
|
#ifndef PRODUCT
|
|
|
|
size_t recalculate_used_regions() const;
|
|
|
|
#endif // PRODUCT
|
|
|
|
|
|
|
|
// These virtual functions do the actual allocation.
|
|
|
|
virtual HeapWord* mem_allocate(size_t word_size,
|
|
|
|
bool is_noref,
|
|
|
|
bool is_tlab,
|
|
|
|
bool* gc_overhead_limit_was_exceeded);
|
|
|
|
|
|
|
|
// Some heaps may offer a contiguous region for shared non-blocking
|
|
|
|
// allocation, via inlined code (by exporting the address of the top and
|
|
|
|
// end fields defining the extent of the contiguous allocation region.)
|
|
|
|
// But G1CollectedHeap doesn't yet support this.
|
|
|
|
|
|
|
|
// Return an estimate of the maximum allocation that could be performed
|
|
|
|
// without triggering any collection or expansion activity. In a
|
|
|
|
// generational collector, for example, this is probably the largest
|
|
|
|
// allocation that could be supported (without expansion) in the youngest
|
|
|
|
// generation. It is "unsafe" because no locks are taken; the result
|
|
|
|
// should be treated as an approximation, not a guarantee, for use in
|
|
|
|
// heuristic resizing decisions.
|
|
|
|
virtual size_t unsafe_max_alloc();
|
|
|
|
|
|
|
|
virtual bool is_maximal_no_gc() const {
|
|
|
|
return _g1_storage.uncommitted_size() == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The total number of regions in the heap.
|
|
|
|
size_t n_regions();
|
|
|
|
|
|
|
|
// The number of regions that are completely free.
|
|
|
|
size_t max_regions();
|
|
|
|
|
|
|
|
// The number of regions that are completely free.
|
|
|
|
size_t free_regions();
|
|
|
|
|
|
|
|
// The number of regions that are not completely free.
|
|
|
|
size_t used_regions() { return n_regions() - free_regions(); }
|
|
|
|
|
|
|
|
// True iff the ZF thread should run.
|
|
|
|
bool should_zf();
|
|
|
|
|
|
|
|
// The number of regions available for "regular" expansion.
|
|
|
|
size_t expansion_regions() { return _expansion_regions; }
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
bool regions_accounted_for();
|
|
|
|
bool print_region_accounting_info();
|
|
|
|
void print_region_counts();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
|
|
|
|
HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
|
|
|
|
|
|
|
|
void put_region_on_unclean_list(HeapRegion* r);
|
|
|
|
void put_region_on_unclean_list_locked(HeapRegion* r);
|
|
|
|
|
|
|
|
void prepend_region_list_on_unclean_list(UncleanRegionList* list);
|
|
|
|
void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
|
|
|
|
|
|
|
|
void set_unclean_regions_coming(bool b);
|
|
|
|
void set_unclean_regions_coming_locked(bool b);
|
|
|
|
// Wait for cleanup to be complete.
|
|
|
|
void wait_for_cleanup_complete();
|
|
|
|
// Like above, but assumes that the calling thread owns the Heap_lock.
|
|
|
|
void wait_for_cleanup_complete_locked();
|
|
|
|
|
|
|
|
// Return the head of the unclean list.
|
|
|
|
HeapRegion* peek_unclean_region_list_locked();
|
|
|
|
// Remove and return the head of the unclean list.
|
|
|
|
HeapRegion* pop_unclean_region_list_locked();
|
|
|
|
|
|
|
|
// List of regions which are zero filled and ready for allocation.
|
|
|
|
HeapRegion* _free_region_list;
|
|
|
|
// Number of elements on the free list.
|
|
|
|
size_t _free_region_list_size;
|
|
|
|
|
|
|
|
// If the head of the unclean list is ZeroFilled, move it to the free
|
|
|
|
// list.
|
|
|
|
bool move_cleaned_region_to_free_list_locked();
|
|
|
|
bool move_cleaned_region_to_free_list();
|
|
|
|
|
|
|
|
void put_free_region_on_list_locked(HeapRegion* r);
|
|
|
|
void put_free_region_on_list(HeapRegion* r);
|
|
|
|
|
|
|
|
// Remove and return the head element of the free list.
|
|
|
|
HeapRegion* pop_free_region_list_locked();
|
|
|
|
|
|
|
|
// If "zero_filled" is true, we first try the free list, then we try the
|
|
|
|
// unclean list, zero-filling the result. If "zero_filled" is false, we
|
|
|
|
// first try the unclean list, then the zero-filled list.
|
|
|
|
HeapRegion* alloc_free_region_from_lists(bool zero_filled);
|
|
|
|
|
|
|
|
// Verify the integrity of the region lists.
|
|
|
|
void remove_allocated_regions_from_lists();
|
|
|
|
bool verify_region_lists();
|
|
|
|
bool verify_region_lists_locked();
|
|
|
|
size_t unclean_region_list_length();
|
|
|
|
size_t free_region_list_length();
|
|
|
|
|
|
|
|
// Perform a collection of the heap; intended for use in implementing
|
|
|
|
// "System.gc". This probably implies as full a collection as the
|
|
|
|
// "CollectedHeap" supports.
|
|
|
|
virtual void collect(GCCause::Cause cause);
|
|
|
|
|
|
|
|
// The same as above but assume that the caller holds the Heap_lock.
|
|
|
|
void collect_locked(GCCause::Cause cause);
|
|
|
|
|
|
|
|
// This interface assumes that it's being called by the
|
|
|
|
// vm thread. It collects the heap assuming that the
|
|
|
|
// heap lock is already held and that we are executing in
|
|
|
|
// the context of the vm thread.
|
|
|
|
virtual void collect_as_vm_thread(GCCause::Cause cause);
|
|
|
|
|
|
|
|
// True iff a evacuation has failed in the most-recent collection.
|
|
|
|
bool evacuation_failed() { return _evacuation_failed; }
|
|
|
|
|
|
|
|
// Free a region if it is totally full of garbage. Returns the number of
|
|
|
|
// bytes freed (0 ==> didn't free it).
|
|
|
|
size_t free_region_if_totally_empty(HeapRegion *hr);
|
|
|
|
void free_region_if_totally_empty_work(HeapRegion *hr,
|
|
|
|
size_t& pre_used,
|
|
|
|
size_t& cleared_h_regions,
|
|
|
|
size_t& freed_regions,
|
|
|
|
UncleanRegionList* list,
|
|
|
|
bool par = false);
|
|
|
|
|
|
|
|
// If we've done free region work that yields the given changes, update
|
|
|
|
// the relevant global variables.
|
|
|
|
void finish_free_region_work(size_t pre_used,
|
|
|
|
size_t cleared_h_regions,
|
|
|
|
size_t freed_regions,
|
|
|
|
UncleanRegionList* list);
|
|
|
|
|
|
|
|
|
|
|
|
// Returns "TRUE" iff "p" points into the allocated area of the heap.
|
|
|
|
virtual bool is_in(const void* p) const;
|
|
|
|
|
|
|
|
// Return "TRUE" iff the given object address is within the collection
|
|
|
|
// set.
|
|
|
|
inline bool obj_in_cs(oop obj);
|
|
|
|
|
|
|
|
// Return "TRUE" iff the given object address is in the reserved
|
|
|
|
// region of g1 (excluding the permanent generation).
|
|
|
|
bool is_in_g1_reserved(const void* p) const {
|
|
|
|
return _g1_reserved.contains(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a MemRegion that corresponds to the space that has been
|
|
|
|
// committed in the heap
|
|
|
|
MemRegion g1_committed() {
|
|
|
|
return _g1_committed;
|
|
|
|
}
|
|
|
|
|
2009-09-02 00:04:29 -07:00
|
|
|
NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// Dirty card table entries covering a list of young regions.
|
|
|
|
void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
|
|
|
|
|
|
|
|
// This resets the card table to all zeros. It is used after
|
|
|
|
// a collection pause which used the card table to claim cards.
|
|
|
|
void cleanUpCardTable();
|
|
|
|
|
|
|
|
// Iteration functions.
|
|
|
|
|
|
|
|
// Iterate over all the ref-containing fields of all objects, calling
|
|
|
|
// "cl.do_oop" on each.
|
2009-03-26 08:51:32 -07:00
|
|
|
virtual void oop_iterate(OopClosure* cl) {
|
|
|
|
oop_iterate(cl, true);
|
|
|
|
}
|
|
|
|
void oop_iterate(OopClosure* cl, bool do_perm);
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// Same as above, restricted to a memory region.
|
2009-03-26 08:51:32 -07:00
|
|
|
virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
|
|
|
|
oop_iterate(mr, cl, true);
|
|
|
|
}
|
|
|
|
void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// Iterate over all objects, calling "cl.do_object" on each.
|
2009-03-26 08:51:32 -07:00
|
|
|
virtual void object_iterate(ObjectClosure* cl) {
|
|
|
|
object_iterate(cl, true);
|
|
|
|
}
|
|
|
|
virtual void safe_object_iterate(ObjectClosure* cl) {
|
|
|
|
object_iterate(cl, true);
|
|
|
|
}
|
|
|
|
void object_iterate(ObjectClosure* cl, bool do_perm);
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
// Iterate over all objects allocated since the last collection, calling
|
|
|
|
// "cl.do_object" on each. The heap must have been initialized properly
|
|
|
|
// to support this function, or else this call will fail.
|
|
|
|
virtual void object_iterate_since_last_GC(ObjectClosure* cl);
|
|
|
|
|
|
|
|
// Iterate over all spaces in use in the heap, in ascending address order.
|
|
|
|
virtual void space_iterate(SpaceClosure* cl);
|
|
|
|
|
|
|
|
// Iterate over heap regions, in address order, terminating the
|
|
|
|
// iteration early if the "doHeapRegion" method returns "true".
|
|
|
|
void heap_region_iterate(HeapRegionClosure* blk);
|
|
|
|
|
|
|
|
// Iterate over heap regions starting with r (or the first region if "r"
|
|
|
|
// is NULL), in address order, terminating early if the "doHeapRegion"
|
|
|
|
// method returns "true".
|
|
|
|
void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
|
|
|
|
|
|
|
|
// As above but starting from the region at index idx.
|
|
|
|
void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
|
|
|
|
|
|
|
|
HeapRegion* region_at(size_t idx);
|
|
|
|
|
|
|
|
// Divide the heap region sequence into "chunks" of some size (the number
|
|
|
|
// of regions divided by the number of parallel threads times some
|
|
|
|
// overpartition factor, currently 4). Assumes that this will be called
|
|
|
|
// in parallel by ParallelGCThreads worker threads with discinct worker
|
|
|
|
// ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
|
|
|
|
// calls will use the same "claim_value", and that that claim value is
|
|
|
|
// different from the claim_value of any heap region before the start of
|
|
|
|
// the iteration. Applies "blk->doHeapRegion" to each of the regions, by
|
|
|
|
// attempting to claim the first region in each chunk, and, if
|
|
|
|
// successful, applying the closure to each region in the chunk (and
|
|
|
|
// setting the claim value of the second and subsequent regions of the
|
|
|
|
// chunk.) For now requires that "doHeapRegion" always returns "false",
|
|
|
|
// i.e., that a closure never attempt to abort a traversal.
|
|
|
|
void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
|
|
|
|
int worker,
|
|
|
|
jint claim_value);
|
|
|
|
|
2008-10-06 13:16:35 -04:00
|
|
|
// It resets all the region claim values to the default.
|
|
|
|
void reset_heap_region_claim_values();
|
|
|
|
|
2008-08-06 11:57:31 -04:00
|
|
|
#ifdef ASSERT
|
|
|
|
bool check_heap_region_claim_values(jint claim_value);
|
|
|
|
#endif // ASSERT
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
// Iterate over the regions (if any) in the current collection set.
|
|
|
|
void collection_set_iterate(HeapRegionClosure* blk);
|
|
|
|
|
|
|
|
// As above but starting from region r
|
|
|
|
void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
|
|
|
|
|
|
|
|
// Returns the first (lowest address) compactible space in the heap.
|
|
|
|
virtual CompactibleSpace* first_compactible_space();
|
|
|
|
|
|
|
|
// A CollectedHeap will contain some number of spaces. This finds the
|
|
|
|
// space containing a given address, or else returns NULL.
|
|
|
|
virtual Space* space_containing(const void* addr) const;
|
|
|
|
|
|
|
|
// A G1CollectedHeap will contain some number of heap regions. This
|
|
|
|
// finds the region containing a given address, or else returns NULL.
|
|
|
|
HeapRegion* heap_region_containing(const void* addr) const;
|
|
|
|
|
|
|
|
// Like the above, but requires "addr" to be in the heap (to avoid a
|
|
|
|
// null-check), and unlike the above, may return an continuing humongous
|
|
|
|
// region.
|
|
|
|
HeapRegion* heap_region_containing_raw(const void* addr) const;
|
|
|
|
|
|
|
|
// A CollectedHeap is divided into a dense sequence of "blocks"; that is,
|
|
|
|
// each address in the (reserved) heap is a member of exactly
|
|
|
|
// one block. The defining characteristic of a block is that it is
|
|
|
|
// possible to find its size, and thus to progress forward to the next
|
|
|
|
// block. (Blocks may be of different sizes.) Thus, blocks may
|
|
|
|
// represent Java objects, or they might be free blocks in a
|
|
|
|
// free-list-based heap (or subheap), as long as the two kinds are
|
|
|
|
// distinguishable and the size of each is determinable.
|
|
|
|
|
|
|
|
// Returns the address of the start of the "block" that contains the
|
|
|
|
// address "addr". We say "blocks" instead of "object" since some heaps
|
|
|
|
// may not pack objects densely; a chunk may either be an object or a
|
|
|
|
// non-object.
|
|
|
|
virtual HeapWord* block_start(const void* addr) const;
|
|
|
|
|
|
|
|
// Requires "addr" to be the start of a chunk, and returns its size.
|
|
|
|
// "addr + size" is required to be the start of a new chunk, or the end
|
|
|
|
// of the active area of the heap.
|
|
|
|
virtual size_t block_size(const HeapWord* addr) const;
|
|
|
|
|
|
|
|
// Requires "addr" to be the start of a block, and returns "TRUE" iff
|
|
|
|
// the block is an object.
|
|
|
|
virtual bool block_is_obj(const HeapWord* addr) const;
|
|
|
|
|
|
|
|
// Does this heap support heap inspection? (+PrintClassHistogram)
|
|
|
|
virtual bool supports_heap_inspection() const { return true; }
|
|
|
|
|
|
|
|
// Section on thread-local allocation buffers (TLABs)
|
|
|
|
// See CollectedHeap for semantics.
|
|
|
|
|
|
|
|
virtual bool supports_tlab_allocation() const;
|
|
|
|
virtual size_t tlab_capacity(Thread* thr) const;
|
|
|
|
virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
|
|
|
|
virtual HeapWord* allocate_new_tlab(size_t size);
|
|
|
|
|
|
|
|
// Can a compiler initialize a new object without store barriers?
|
|
|
|
// This permission only extends from the creation of a new object
|
2009-10-16 02:05:46 -07:00
|
|
|
// via a TLAB up to the first subsequent safepoint. If such permission
|
|
|
|
// is granted for this heap type, the compiler promises to call
|
|
|
|
// defer_store_barrier() below on any slow path allocation of
|
|
|
|
// a new object for which such initializing store barriers will
|
|
|
|
// have been elided. G1, like CMS, allows this, but should be
|
|
|
|
// ready to provide a compensating write barrier as necessary
|
|
|
|
// if that storage came out of a non-young region. The efficiency
|
|
|
|
// of this implementation depends crucially on being able to
|
|
|
|
// answer very efficiently in constant time whether a piece of
|
|
|
|
// storage in the heap comes from a young region or not.
|
|
|
|
// See ReduceInitialCardMarks.
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual bool can_elide_tlab_store_barriers() const {
|
2010-01-26 16:52:29 -08:00
|
|
|
// 6920090: Temporarily disabled, because of lingering
|
|
|
|
// instabilities related to RICM with G1. In the
|
|
|
|
// interim, the option ReduceInitialCardMarksForG1
|
|
|
|
// below is left solely as a debugging device at least
|
|
|
|
// until 6920109 fixes the instabilities.
|
|
|
|
return ReduceInitialCardMarksForG1;
|
2009-10-16 02:05:46 -07:00
|
|
|
}
|
|
|
|
|
2010-01-13 15:26:39 -08:00
|
|
|
virtual bool card_mark_must_follow_store() const {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2009-10-16 02:05:46 -07:00
|
|
|
bool is_in_young(oop obj) {
|
|
|
|
HeapRegion* hr = heap_region_containing(obj);
|
|
|
|
return hr != NULL && hr->is_young();
|
|
|
|
}
|
|
|
|
|
|
|
|
// We don't need barriers for initializing stores to objects
|
|
|
|
// in the young gen: for the SATB pre-barrier, there is no
|
|
|
|
// pre-value that needs to be remembered; for the remembered-set
|
|
|
|
// update logging post-barrier, we don't maintain remembered set
|
|
|
|
// information for young gen objects. Note that non-generational
|
|
|
|
// G1 does not have any "young" objects, should not elide
|
|
|
|
// the rs logging barrier and so should always answer false below.
|
|
|
|
// However, non-generational G1 (-XX:-G1Gen) appears to have
|
|
|
|
// bit-rotted so was not tested below.
|
|
|
|
virtual bool can_elide_initializing_store_barrier(oop new_obj) {
|
2010-01-26 16:52:29 -08:00
|
|
|
// Re 6920090, 6920109 above.
|
|
|
|
assert(ReduceInitialCardMarksForG1, "Else cannot be here");
|
2009-10-16 02:05:46 -07:00
|
|
|
assert(G1Gen || !is_in_young(new_obj),
|
|
|
|
"Non-generational G1 should never return true below");
|
|
|
|
return is_in_young(new_obj);
|
2008-06-05 15:57:56 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
// Can a compiler elide a store barrier when it writes
|
|
|
|
// a permanent oop into the heap? Applies when the compiler
|
|
|
|
// is storing x to the heap, where x->is_perm() is true.
|
|
|
|
virtual bool can_elide_permanent_oop_store_barriers() const {
|
|
|
|
// At least until perm gen collection is also G1-ified, at
|
|
|
|
// which point this should return false.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool allocs_are_zero_filled();
|
|
|
|
|
|
|
|
// The boundary between a "large" and "small" array of primitives, in
|
|
|
|
// words.
|
|
|
|
virtual size_t large_typearray_limit();
|
|
|
|
|
|
|
|
// Returns "true" iff the given word_size is "very large".
|
|
|
|
static bool isHumongous(size_t word_size) {
|
2009-07-30 16:22:58 -04:00
|
|
|
return word_size >= _humongous_object_threshold_in_words;
|
2008-06-05 15:57:56 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
// Update mod union table with the set of dirty cards.
|
|
|
|
void updateModUnion();
|
|
|
|
|
|
|
|
// Set the mod union bits corresponding to the given memRegion. Note
|
|
|
|
// that this is always a safe operation, since it doesn't clear any
|
|
|
|
// bits.
|
|
|
|
void markModUnionRange(MemRegion mr);
|
|
|
|
|
|
|
|
// Records the fact that a marking phase is no longer in progress.
|
|
|
|
void set_marking_complete() {
|
|
|
|
_mark_in_progress = false;
|
|
|
|
}
|
|
|
|
void set_marking_started() {
|
|
|
|
_mark_in_progress = true;
|
|
|
|
}
|
|
|
|
bool mark_in_progress() {
|
|
|
|
return _mark_in_progress;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Print the maximum heap capacity.
|
|
|
|
virtual size_t max_capacity() const;
|
|
|
|
|
|
|
|
virtual jlong millis_since_last_gc();
|
|
|
|
|
|
|
|
// Perform any cleanup actions necessary before allowing a verification.
|
|
|
|
virtual void prepare_for_verify();
|
|
|
|
|
|
|
|
// Perform verification.
|
2009-06-12 16:20:16 -04:00
|
|
|
|
|
|
|
// use_prev_marking == true -> use "prev" marking information,
|
|
|
|
// use_prev_marking == false -> use "next" marking information
|
|
|
|
// NOTE: Only the "prev" marking information is guaranteed to be
|
|
|
|
// consistent most of the time, so most calls to this should use
|
|
|
|
// use_prev_marking == true. Currently, there is only one case where
|
|
|
|
// this is called with use_prev_marking == false, which is to verify
|
|
|
|
// the "next" marking information at the end of remark.
|
|
|
|
void verify(bool allow_dirty, bool silent, bool use_prev_marking);
|
|
|
|
|
|
|
|
// Override; it uses the "prev" marking information
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual void verify(bool allow_dirty, bool silent);
|
2009-07-07 14:23:00 -04:00
|
|
|
// Default behavior by calling print(tty);
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual void print() const;
|
2009-07-07 14:23:00 -04:00
|
|
|
// This calls print_on(st, PrintHeapAtGCExtended).
|
2008-06-05 15:57:56 -07:00
|
|
|
virtual void print_on(outputStream* st) const;
|
2009-07-07 14:23:00 -04:00
|
|
|
// If extended is true, it will print out information for all
|
|
|
|
// regions in the heap by calling print_on_extended(st).
|
|
|
|
virtual void print_on(outputStream* st, bool extended) const;
|
|
|
|
virtual void print_on_extended(outputStream* st) const;
|
2008-06-05 15:57:56 -07:00
|
|
|
|
|
|
|
virtual void print_gc_threads_on(outputStream* st) const;
|
|
|
|
virtual void gc_threads_do(ThreadClosure* tc) const;
|
|
|
|
|
|
|
|
// Override
|
|
|
|
void print_tracing_info() const;
|
|
|
|
|
|
|
|
// If "addr" is a pointer into the (reserved?) heap, returns a positive
|
|
|
|
// number indicating the "arena" within the heap in which "addr" falls.
|
|
|
|
// Or else returns 0.
|
|
|
|
virtual int addr_to_arena_id(void* addr) const;
|
|
|
|
|
|
|
|
// Convenience function to be used in situations where the heap type can be
|
|
|
|
// asserted to be this type.
|
|
|
|
static G1CollectedHeap* heap();
|
|
|
|
|
|
|
|
void empty_young_list();
|
|
|
|
bool should_set_young_locked();
|
|
|
|
|
|
|
|
void set_region_short_lived_locked(HeapRegion* hr);
|
|
|
|
// add appropriate methods for any other surv rate groups
|
|
|
|
|
|
|
|
void young_list_rs_length_sampling_init() {
|
|
|
|
_young_list->rs_length_sampling_init();
|
|
|
|
}
|
|
|
|
bool young_list_rs_length_sampling_more() {
|
|
|
|
return _young_list->rs_length_sampling_more();
|
|
|
|
}
|
|
|
|
void young_list_rs_length_sampling_next() {
|
|
|
|
_young_list->rs_length_sampling_next();
|
|
|
|
}
|
|
|
|
size_t young_list_sampled_rs_lengths() {
|
|
|
|
return _young_list->sampled_rs_lengths();
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t young_list_length() { return _young_list->length(); }
|
|
|
|
size_t young_list_scan_only_length() {
|
|
|
|
return _young_list->scan_only_length(); }
|
|
|
|
|
|
|
|
HeapRegion* pop_region_from_young_list() {
|
|
|
|
return _young_list->pop_region();
|
|
|
|
}
|
|
|
|
|
|
|
|
HeapRegion* young_list_first_region() {
|
|
|
|
return _young_list->first_region();
|
|
|
|
}
|
|
|
|
|
|
|
|
// debugging
|
|
|
|
bool check_young_list_well_formed() {
|
|
|
|
return _young_list->check_list_well_formed();
|
|
|
|
}
|
|
|
|
bool check_young_list_empty(bool ignore_scan_only_list,
|
|
|
|
bool check_sample = true);
|
|
|
|
|
|
|
|
// *** Stuff related to concurrent marking. It's not clear to me that so
|
|
|
|
// many of these need to be public.
|
|
|
|
|
|
|
|
// The functions below are helper functions that a subclass of
|
|
|
|
// "CollectedHeap" can use in the implementation of its virtual
|
|
|
|
// functions.
|
|
|
|
// This performs a concurrent marking of the live objects in a
|
|
|
|
// bitmap off to the side.
|
|
|
|
void doConcurrentMark();
|
|
|
|
|
|
|
|
// This is called from the marksweep collector which then does
|
|
|
|
// a concurrent mark and verifies that the results agree with
|
|
|
|
// the stop the world marking.
|
|
|
|
void checkConcurrentMark();
|
|
|
|
void do_sync_mark();
|
|
|
|
|
|
|
|
bool isMarkedPrev(oop obj) const;
|
|
|
|
bool isMarkedNext(oop obj) const;
|
|
|
|
|
2009-06-12 16:20:16 -04:00
|
|
|
// use_prev_marking == true -> use "prev" marking information,
|
|
|
|
// use_prev_marking == false -> use "next" marking information
|
|
|
|
bool is_obj_dead_cond(const oop obj,
|
|
|
|
const HeapRegion* hr,
|
|
|
|
const bool use_prev_marking) const {
|
|
|
|
if (use_prev_marking) {
|
|
|
|
return is_obj_dead(obj, hr);
|
|
|
|
} else {
|
|
|
|
return is_obj_ill(obj, hr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
// Determine if an object is dead, given the object and also
|
|
|
|
// the region to which the object belongs. An object is dead
|
|
|
|
// iff a) it was not allocated since the last mark and b) it
|
|
|
|
// is not marked.
|
|
|
|
|
|
|
|
bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
|
|
|
|
return
|
|
|
|
!hr->obj_allocated_since_prev_marking(obj) &&
|
|
|
|
!isMarkedPrev(obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is used when copying an object to survivor space.
|
|
|
|
// If the object is marked live, then we mark the copy live.
|
|
|
|
// If the object is allocated since the start of this mark
|
|
|
|
// cycle, then we mark the copy live.
|
|
|
|
// If the object has been around since the previous mark
|
|
|
|
// phase, and hasn't been marked yet during this phase,
|
|
|
|
// then we don't mark it, we just wait for the
|
|
|
|
// current marking cycle to get to it.
|
|
|
|
|
|
|
|
// This function returns true when an object has been
|
|
|
|
// around since the previous marking and hasn't yet
|
|
|
|
// been marked during this marking.
|
|
|
|
|
|
|
|
bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
|
|
|
|
return
|
|
|
|
!hr->obj_allocated_since_next_marking(obj) &&
|
|
|
|
!isMarkedNext(obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Determine if an object is dead, given only the object itself.
|
|
|
|
// This will find the region to which the object belongs and
|
|
|
|
// then call the region version of the same function.
|
|
|
|
|
|
|
|
// Added if it is in permanent gen it isn't dead.
|
|
|
|
// Added if it is NULL it isn't dead.
|
|
|
|
|
2009-06-12 16:20:16 -04:00
|
|
|
// use_prev_marking == true -> use "prev" marking information,
|
|
|
|
// use_prev_marking == false -> use "next" marking information
|
|
|
|
bool is_obj_dead_cond(const oop obj,
|
|
|
|
const bool use_prev_marking) {
|
|
|
|
if (use_prev_marking) {
|
|
|
|
return is_obj_dead(obj);
|
|
|
|
} else {
|
|
|
|
return is_obj_ill(obj);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_obj_dead(const oop obj) {
|
|
|
|
const HeapRegion* hr = heap_region_containing(obj);
|
2008-06-05 15:57:56 -07:00
|
|
|
if (hr == NULL) {
|
|
|
|
if (Universe::heap()->is_in_permanent(obj))
|
|
|
|
return false;
|
|
|
|
else if (obj == NULL) return false;
|
|
|
|
else return true;
|
|
|
|
}
|
|
|
|
else return is_obj_dead(obj, hr);
|
|
|
|
}
|
|
|
|
|
2009-06-12 16:20:16 -04:00
|
|
|
bool is_obj_ill(const oop obj) {
|
|
|
|
const HeapRegion* hr = heap_region_containing(obj);
|
2008-06-05 15:57:56 -07:00
|
|
|
if (hr == NULL) {
|
|
|
|
if (Universe::heap()->is_in_permanent(obj))
|
|
|
|
return false;
|
|
|
|
else if (obj == NULL) return false;
|
|
|
|
else return true;
|
|
|
|
}
|
|
|
|
else return is_obj_ill(obj, hr);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The following is just to alert the verification code
|
|
|
|
// that a full collection has occurred and that the
|
|
|
|
// remembered sets are no longer up to date.
|
|
|
|
bool _full_collection;
|
|
|
|
void set_full_collection() { _full_collection = true;}
|
|
|
|
void clear_full_collection() {_full_collection = false;}
|
|
|
|
bool full_collection() {return _full_collection;}
|
|
|
|
|
|
|
|
ConcurrentMark* concurrent_mark() const { return _cm; }
|
|
|
|
ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
|
|
|
|
|
2009-05-19 04:05:31 -07:00
|
|
|
// The dirty cards region list is used to record a subset of regions
|
|
|
|
// whose cards need clearing. The list if populated during the
|
|
|
|
// remembered set scanning and drained during the card table
|
|
|
|
// cleanup. Although the methods are reentrant, population/draining
|
|
|
|
// phases must not overlap. For synchronization purposes the last
|
|
|
|
// element on the list points to itself.
|
|
|
|
HeapRegion* _dirty_cards_region_list;
|
|
|
|
void push_dirty_cards_region(HeapRegion* hr);
|
|
|
|
HeapRegion* pop_dirty_cards_region();
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
public:
|
|
|
|
void stop_conc_gc_threads();
|
|
|
|
|
|
|
|
// <NEW PREDICTION>
|
|
|
|
|
|
|
|
double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
|
|
|
|
void check_if_region_is_too_expensive(double predicted_time_ms);
|
|
|
|
size_t pending_card_num();
|
|
|
|
size_t max_pending_card_num();
|
|
|
|
size_t cards_scanned();
|
|
|
|
|
|
|
|
// </NEW PREDICTION>
|
|
|
|
|
|
|
|
protected:
|
|
|
|
size_t _max_heap_capacity;
|
|
|
|
|
|
|
|
// debug_only(static void check_for_valid_allocation_state();)
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Temporary: call to mark things unimplemented for the G1 heap (e.g.,
|
|
|
|
// MemoryService). In productization, we can make this assert false
|
|
|
|
// to catch such places (as well as searching for calls to this...)
|
|
|
|
static void g1_unimplemented();
|
|
|
|
|
|
|
|
};
|
|
|
|
|
2009-07-14 15:40:39 -07:00
|
|
|
#define use_local_bitmaps 1
|
|
|
|
#define verify_local_bitmaps 0
|
|
|
|
#define oop_buffer_length 256
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
class GCLabBitMap;
|
|
|
|
class GCLabBitMapClosure: public BitMapClosure {
|
|
|
|
private:
|
|
|
|
ConcurrentMark* _cm;
|
|
|
|
GCLabBitMap* _bitmap;
|
|
|
|
|
|
|
|
public:
|
|
|
|
GCLabBitMapClosure(ConcurrentMark* cm,
|
|
|
|
GCLabBitMap* bitmap) {
|
|
|
|
_cm = cm;
|
|
|
|
_bitmap = bitmap;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool do_bit(size_t offset);
|
|
|
|
};
|
|
|
|
#endif // !PRODUCT
|
|
|
|
|
|
|
|
class GCLabBitMap: public BitMap {
|
|
|
|
private:
|
|
|
|
ConcurrentMark* _cm;
|
|
|
|
|
|
|
|
int _shifter;
|
|
|
|
size_t _bitmap_word_covers_words;
|
|
|
|
|
|
|
|
// beginning of the heap
|
|
|
|
HeapWord* _heap_start;
|
|
|
|
|
|
|
|
// this is the actual start of the GCLab
|
|
|
|
HeapWord* _real_start_word;
|
|
|
|
|
|
|
|
// this is the actual end of the GCLab
|
|
|
|
HeapWord* _real_end_word;
|
|
|
|
|
|
|
|
// this is the first word, possibly located before the actual start
|
|
|
|
// of the GCLab, that corresponds to the first bit of the bitmap
|
|
|
|
HeapWord* _start_word;
|
|
|
|
|
|
|
|
// size of a GCLab in words
|
|
|
|
size_t _gclab_word_size;
|
|
|
|
|
|
|
|
static int shifter() {
|
|
|
|
return MinObjAlignment - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// how many heap words does a single bitmap word corresponds to?
|
|
|
|
static size_t bitmap_word_covers_words() {
|
|
|
|
return BitsPerWord << shifter();
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t gclab_word_size() {
|
|
|
|
return G1ParallelGCAllocBufferSize / HeapWordSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t bitmap_size_in_bits() {
|
|
|
|
size_t bits_in_bitmap = gclab_word_size() >> shifter();
|
|
|
|
// We are going to ensure that the beginning of a word in this
|
|
|
|
// bitmap also corresponds to the beginning of a word in the
|
|
|
|
// global marking bitmap. To handle the case where a GCLab
|
|
|
|
// starts from the middle of the bitmap, we need to add enough
|
|
|
|
// space (i.e. up to a bitmap word) to ensure that we have
|
|
|
|
// enough bits in the bitmap.
|
|
|
|
return bits_in_bitmap + BitsPerWord - 1;
|
|
|
|
}
|
|
|
|
public:
|
|
|
|
GCLabBitMap(HeapWord* heap_start)
|
|
|
|
: BitMap(bitmap_size_in_bits()),
|
|
|
|
_cm(G1CollectedHeap::heap()->concurrent_mark()),
|
|
|
|
_shifter(shifter()),
|
|
|
|
_bitmap_word_covers_words(bitmap_word_covers_words()),
|
|
|
|
_heap_start(heap_start),
|
|
|
|
_gclab_word_size(gclab_word_size()),
|
|
|
|
_real_start_word(NULL),
|
|
|
|
_real_end_word(NULL),
|
|
|
|
_start_word(NULL)
|
|
|
|
{
|
|
|
|
guarantee( size_in_words() >= bitmap_size_in_words(),
|
|
|
|
"just making sure");
|
|
|
|
}
|
|
|
|
|
|
|
|
inline unsigned heapWordToOffset(HeapWord* addr) {
|
|
|
|
unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
|
|
|
|
assert(offset < size(), "offset should be within bounds");
|
|
|
|
return offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline HeapWord* offsetToHeapWord(size_t offset) {
|
|
|
|
HeapWord* addr = _start_word + (offset << _shifter);
|
|
|
|
assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool fields_well_formed() {
|
|
|
|
bool ret1 = (_real_start_word == NULL) &&
|
|
|
|
(_real_end_word == NULL) &&
|
|
|
|
(_start_word == NULL);
|
|
|
|
if (ret1)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
bool ret2 = _real_start_word >= _start_word &&
|
|
|
|
_start_word < _real_end_word &&
|
|
|
|
(_real_start_word + _gclab_word_size) == _real_end_word &&
|
|
|
|
(_start_word + _gclab_word_size + _bitmap_word_covers_words)
|
|
|
|
> _real_end_word;
|
|
|
|
return ret2;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool mark(HeapWord* addr) {
|
|
|
|
guarantee(use_local_bitmaps, "invariant");
|
|
|
|
assert(fields_well_formed(), "invariant");
|
|
|
|
|
|
|
|
if (addr >= _real_start_word && addr < _real_end_word) {
|
|
|
|
assert(!isMarked(addr), "should not have already been marked");
|
|
|
|
|
|
|
|
// first mark it on the bitmap
|
|
|
|
at_put(heapWordToOffset(addr), true);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool isMarked(HeapWord* addr) {
|
|
|
|
guarantee(use_local_bitmaps, "invariant");
|
|
|
|
assert(fields_well_formed(), "invariant");
|
|
|
|
|
|
|
|
return at(heapWordToOffset(addr));
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_buffer(HeapWord* start) {
|
|
|
|
guarantee(use_local_bitmaps, "invariant");
|
|
|
|
clear();
|
|
|
|
|
|
|
|
assert(start != NULL, "invariant");
|
|
|
|
_real_start_word = start;
|
|
|
|
_real_end_word = start + _gclab_word_size;
|
|
|
|
|
|
|
|
size_t diff =
|
|
|
|
pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
|
|
|
|
_start_word = start - diff;
|
|
|
|
|
|
|
|
assert(fields_well_formed(), "invariant");
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void verify() {
|
|
|
|
// verify that the marks have been propagated
|
|
|
|
GCLabBitMapClosure cl(_cm, this);
|
|
|
|
iterate(&cl);
|
|
|
|
}
|
|
|
|
#endif // PRODUCT
|
|
|
|
|
|
|
|
void retire() {
|
|
|
|
guarantee(use_local_bitmaps, "invariant");
|
|
|
|
assert(fields_well_formed(), "invariant");
|
|
|
|
|
|
|
|
if (_start_word != NULL) {
|
|
|
|
CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
|
|
|
|
|
|
|
|
// this means that the bitmap was set up for the GCLab
|
|
|
|
assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
|
|
|
|
|
|
|
|
mark_bitmap->mostly_disjoint_range_union(this,
|
|
|
|
0, // always start from the start of the bitmap
|
|
|
|
_start_word,
|
|
|
|
size_in_words());
|
|
|
|
_cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if (use_local_bitmaps && verify_local_bitmaps)
|
|
|
|
verify();
|
|
|
|
#endif // PRODUCT
|
|
|
|
} else {
|
|
|
|
assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t bitmap_size_in_words() {
|
|
|
|
return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class G1ParGCAllocBuffer: public ParGCAllocBuffer {
|
|
|
|
private:
|
|
|
|
bool _retired;
|
|
|
|
bool _during_marking;
|
|
|
|
GCLabBitMap _bitmap;
|
|
|
|
|
|
|
|
public:
|
|
|
|
G1ParGCAllocBuffer() :
|
|
|
|
ParGCAllocBuffer(G1ParallelGCAllocBufferSize / HeapWordSize),
|
|
|
|
_during_marking(G1CollectedHeap::heap()->mark_in_progress()),
|
|
|
|
_bitmap(G1CollectedHeap::heap()->reserved_region().start()),
|
|
|
|
_retired(false)
|
|
|
|
{ }
|
|
|
|
|
|
|
|
inline bool mark(HeapWord* addr) {
|
|
|
|
guarantee(use_local_bitmaps, "invariant");
|
|
|
|
assert(_during_marking, "invariant");
|
|
|
|
return _bitmap.mark(addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void set_buf(HeapWord* buf) {
|
|
|
|
if (use_local_bitmaps && _during_marking)
|
|
|
|
_bitmap.set_buffer(buf);
|
|
|
|
ParGCAllocBuffer::set_buf(buf);
|
|
|
|
_retired = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void retire(bool end_of_gc, bool retain) {
|
|
|
|
if (_retired)
|
|
|
|
return;
|
|
|
|
if (use_local_bitmaps && _during_marking) {
|
|
|
|
_bitmap.retire();
|
|
|
|
}
|
|
|
|
ParGCAllocBuffer::retire(end_of_gc, retain);
|
|
|
|
_retired = true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class G1ParScanThreadState : public StackObj {
|
|
|
|
protected:
|
|
|
|
G1CollectedHeap* _g1h;
|
|
|
|
RefToScanQueue* _refs;
|
|
|
|
DirtyCardQueue _dcq;
|
|
|
|
CardTableModRefBS* _ct_bs;
|
|
|
|
G1RemSet* _g1_rem;
|
|
|
|
|
|
|
|
typedef GrowableArray<StarTask> OverflowQueue;
|
|
|
|
OverflowQueue* _overflowed_refs;
|
|
|
|
|
|
|
|
G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
|
|
|
|
ageTable _age_table;
|
|
|
|
|
|
|
|
size_t _alloc_buffer_waste;
|
|
|
|
size_t _undo_waste;
|
|
|
|
|
|
|
|
OopsInHeapRegionClosure* _evac_failure_cl;
|
|
|
|
G1ParScanHeapEvacClosure* _evac_cl;
|
|
|
|
G1ParScanPartialArrayClosure* _partial_scan_cl;
|
|
|
|
|
|
|
|
int _hash_seed;
|
|
|
|
int _queue_num;
|
|
|
|
|
|
|
|
int _term_attempts;
|
|
|
|
#if G1_DETAILED_STATS
|
|
|
|
int _pushes, _pops, _steals, _steal_attempts;
|
|
|
|
int _overflow_pushes;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
double _start;
|
|
|
|
double _start_strong_roots;
|
|
|
|
double _strong_roots_time;
|
|
|
|
double _start_term;
|
|
|
|
double _term_time;
|
|
|
|
|
|
|
|
// Map from young-age-index (0 == not young, 1 is youngest) to
|
|
|
|
// surviving words. base is what we get back from the malloc call
|
|
|
|
size_t* _surviving_young_words_base;
|
|
|
|
// this points into the array, as we use the first few entries for padding
|
|
|
|
size_t* _surviving_young_words;
|
|
|
|
|
|
|
|
#define PADDING_ELEM_NUM (64 / sizeof(size_t))
|
|
|
|
|
|
|
|
void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
|
|
|
|
|
|
|
|
void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
|
|
|
|
|
|
|
|
DirtyCardQueue& dirty_card_queue() { return _dcq; }
|
|
|
|
CardTableModRefBS* ctbs() { return _ct_bs; }
|
|
|
|
|
|
|
|
template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
|
|
|
|
if (!from->is_survivor()) {
|
|
|
|
_g1_rem->par_write_ref(from, p, tid);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
|
|
|
|
// If the new value of the field points to the same region or
|
|
|
|
// is the to-space, we don't need to include it in the Rset updates.
|
|
|
|
if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
|
|
|
|
size_t card_index = ctbs()->index_for(p);
|
|
|
|
// If the card hasn't been added to the buffer, do it.
|
|
|
|
if (ctbs()->mark_card_deferred(card_index)) {
|
|
|
|
dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
|
|
|
|
|
|
|
|
~G1ParScanThreadState() {
|
|
|
|
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
|
|
|
|
}
|
|
|
|
|
|
|
|
RefToScanQueue* refs() { return _refs; }
|
|
|
|
OverflowQueue* overflowed_refs() { return _overflowed_refs; }
|
|
|
|
ageTable* age_table() { return &_age_table; }
|
|
|
|
|
|
|
|
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
|
|
|
|
return &_alloc_buffers[purpose];
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t alloc_buffer_waste() { return _alloc_buffer_waste; }
|
|
|
|
size_t undo_waste() { return _undo_waste; }
|
|
|
|
|
|
|
|
template <class T> void push_on_queue(T* ref) {
|
|
|
|
assert(ref != NULL, "invariant");
|
|
|
|
assert(has_partial_array_mask(ref) ||
|
|
|
|
_g1h->obj_in_cs(oopDesc::load_decode_heap_oop(ref)), "invariant");
|
|
|
|
#ifdef ASSERT
|
|
|
|
if (has_partial_array_mask(ref)) {
|
|
|
|
oop p = clear_partial_array_mask(ref);
|
|
|
|
// Verify that we point into the CS
|
|
|
|
assert(_g1h->obj_in_cs(p), "Should be in CS");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (!refs()->push(ref)) {
|
|
|
|
overflowed_refs()->push(ref);
|
|
|
|
IF_G1_DETAILED_STATS(note_overflow_push());
|
|
|
|
} else {
|
|
|
|
IF_G1_DETAILED_STATS(note_push());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void pop_from_queue(StarTask& ref) {
|
|
|
|
if (refs()->pop_local(ref)) {
|
|
|
|
assert((oop*)ref != NULL, "pop_local() returned true");
|
|
|
|
assert(UseCompressedOops || !ref.is_narrow(), "Error");
|
|
|
|
assert(has_partial_array_mask((oop*)ref) ||
|
|
|
|
_g1h->obj_in_cs(ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)ref)
|
|
|
|
: oopDesc::load_decode_heap_oop((oop*)ref)),
|
|
|
|
"invariant");
|
|
|
|
IF_G1_DETAILED_STATS(note_pop());
|
|
|
|
} else {
|
|
|
|
StarTask null_task;
|
|
|
|
ref = null_task;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void pop_from_overflow_queue(StarTask& ref) {
|
|
|
|
StarTask new_ref = overflowed_refs()->pop();
|
|
|
|
assert((oop*)new_ref != NULL, "pop() from a local non-empty stack");
|
|
|
|
assert(UseCompressedOops || !new_ref.is_narrow(), "Error");
|
|
|
|
assert(has_partial_array_mask((oop*)new_ref) ||
|
|
|
|
_g1h->obj_in_cs(new_ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)new_ref)
|
|
|
|
: oopDesc::load_decode_heap_oop((oop*)new_ref)),
|
|
|
|
"invariant");
|
|
|
|
ref = new_ref;
|
|
|
|
}
|
|
|
|
|
|
|
|
int refs_to_scan() { return refs()->size(); }
|
|
|
|
int overflowed_refs_to_scan() { return overflowed_refs()->length(); }
|
|
|
|
|
|
|
|
template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
|
|
|
|
if (G1DeferredRSUpdate) {
|
|
|
|
deferred_rs_update(from, p, tid);
|
|
|
|
} else {
|
|
|
|
immediate_rs_update(from, p, tid);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
|
|
|
|
|
|
|
|
HeapWord* obj = NULL;
|
|
|
|
if (word_sz * 100 <
|
|
|
|
(size_t)(G1ParallelGCAllocBufferSize / HeapWordSize) *
|
|
|
|
ParallelGCBufferWastePct) {
|
|
|
|
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
|
|
|
|
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
|
|
|
|
alloc_buf->retire(false, false);
|
|
|
|
|
|
|
|
HeapWord* buf =
|
|
|
|
_g1h->par_allocate_during_gc(purpose, G1ParallelGCAllocBufferSize / HeapWordSize);
|
|
|
|
if (buf == NULL) return NULL; // Let caller handle allocation failure.
|
|
|
|
// Otherwise.
|
|
|
|
alloc_buf->set_buf(buf);
|
|
|
|
|
|
|
|
obj = alloc_buf->allocate(word_sz);
|
|
|
|
assert(obj != NULL, "buffer was definitely big enough...");
|
|
|
|
} else {
|
|
|
|
obj = _g1h->par_allocate_during_gc(purpose, word_sz);
|
|
|
|
}
|
|
|
|
return obj;
|
|
|
|
}
|
|
|
|
|
|
|
|
HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
|
|
|
|
HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
|
|
|
|
if (obj != NULL) return obj;
|
|
|
|
return allocate_slow(purpose, word_sz);
|
|
|
|
}
|
|
|
|
|
|
|
|
void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
|
|
|
|
if (alloc_buffer(purpose)->contains(obj)) {
|
|
|
|
assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
|
|
|
|
"should contain whole object");
|
|
|
|
alloc_buffer(purpose)->undo_allocation(obj, word_sz);
|
|
|
|
} else {
|
|
|
|
CollectedHeap::fill_with_object(obj, word_sz);
|
|
|
|
add_to_undo_waste(word_sz);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
|
|
|
|
_evac_failure_cl = evac_failure_cl;
|
|
|
|
}
|
|
|
|
OopsInHeapRegionClosure* evac_failure_closure() {
|
|
|
|
return _evac_failure_cl;
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
|
|
|
|
_evac_cl = evac_cl;
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
|
|
|
|
_partial_scan_cl = partial_scan_cl;
|
|
|
|
}
|
|
|
|
|
|
|
|
int* hash_seed() { return &_hash_seed; }
|
|
|
|
int queue_num() { return _queue_num; }
|
|
|
|
|
|
|
|
int term_attempts() { return _term_attempts; }
|
|
|
|
void note_term_attempt() { _term_attempts++; }
|
|
|
|
|
|
|
|
#if G1_DETAILED_STATS
|
|
|
|
int pushes() { return _pushes; }
|
|
|
|
int pops() { return _pops; }
|
|
|
|
int steals() { return _steals; }
|
|
|
|
int steal_attempts() { return _steal_attempts; }
|
|
|
|
int overflow_pushes() { return _overflow_pushes; }
|
|
|
|
|
|
|
|
void note_push() { _pushes++; }
|
|
|
|
void note_pop() { _pops++; }
|
|
|
|
void note_steal() { _steals++; }
|
|
|
|
void note_steal_attempt() { _steal_attempts++; }
|
|
|
|
void note_overflow_push() { _overflow_pushes++; }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void start_strong_roots() {
|
|
|
|
_start_strong_roots = os::elapsedTime();
|
|
|
|
}
|
|
|
|
void end_strong_roots() {
|
|
|
|
_strong_roots_time += (os::elapsedTime() - _start_strong_roots);
|
|
|
|
}
|
|
|
|
double strong_roots_time() { return _strong_roots_time; }
|
|
|
|
|
|
|
|
void start_term_time() {
|
|
|
|
note_term_attempt();
|
|
|
|
_start_term = os::elapsedTime();
|
|
|
|
}
|
|
|
|
void end_term_time() {
|
|
|
|
_term_time += (os::elapsedTime() - _start_term);
|
|
|
|
}
|
|
|
|
double term_time() { return _term_time; }
|
|
|
|
|
|
|
|
double elapsed() {
|
|
|
|
return os::elapsedTime() - _start;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t* surviving_young_words() {
|
|
|
|
// We add on to hide entry 0 which accumulates surviving words for
|
|
|
|
// age -1 regions (i.e. non-young ones)
|
|
|
|
return _surviving_young_words;
|
|
|
|
}
|
|
|
|
|
|
|
|
void retire_alloc_buffers() {
|
|
|
|
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
|
|
|
|
size_t waste = _alloc_buffers[ap].words_remaining();
|
|
|
|
add_to_alloc_buffer_waste(waste);
|
|
|
|
_alloc_buffers[ap].retire(true, false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
template <class T> void deal_with_reference(T* ref_to_scan) {
|
|
|
|
if (has_partial_array_mask(ref_to_scan)) {
|
|
|
|
_partial_scan_cl->do_oop_nv(ref_to_scan);
|
|
|
|
} else {
|
|
|
|
// Note: we can use "raw" versions of "region_containing" because
|
|
|
|
// "obj_to_scan" is definitely in the heap, and is not in a
|
|
|
|
// humongous region.
|
|
|
|
HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
|
|
|
|
_evac_cl->set_region(r);
|
|
|
|
_evac_cl->do_oop_nv(ref_to_scan);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
void trim_queue() {
|
|
|
|
// I've replicated the loop twice, first to drain the overflow
|
|
|
|
// queue, second to drain the task queue. This is better than
|
|
|
|
// having a single loop, which checks both conditions and, inside
|
|
|
|
// it, either pops the overflow queue or the task queue, as each
|
|
|
|
// loop is tighter. Also, the decision to drain the overflow queue
|
|
|
|
// first is not arbitrary, as the overflow queue is not visible
|
|
|
|
// to the other workers, whereas the task queue is. So, we want to
|
|
|
|
// drain the "invisible" entries first, while allowing the other
|
|
|
|
// workers to potentially steal the "visible" entries.
|
|
|
|
|
|
|
|
while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
|
|
|
|
while (overflowed_refs_to_scan() > 0) {
|
|
|
|
StarTask ref_to_scan;
|
|
|
|
assert((oop*)ref_to_scan == NULL, "Constructed above");
|
|
|
|
pop_from_overflow_queue(ref_to_scan);
|
|
|
|
// We shouldn't have pushed it on the queue if it was not
|
|
|
|
// pointing into the CSet.
|
|
|
|
assert((oop*)ref_to_scan != NULL, "Follows from inner loop invariant");
|
|
|
|
if (ref_to_scan.is_narrow()) {
|
|
|
|
assert(UseCompressedOops, "Error");
|
|
|
|
narrowOop* p = (narrowOop*)ref_to_scan;
|
|
|
|
assert(!has_partial_array_mask(p) &&
|
|
|
|
_g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
|
|
|
|
deal_with_reference(p);
|
|
|
|
} else {
|
|
|
|
oop* p = (oop*)ref_to_scan;
|
|
|
|
assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
|
|
|
|
_g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
|
|
|
|
deal_with_reference(p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while (refs_to_scan() > 0) {
|
|
|
|
StarTask ref_to_scan;
|
|
|
|
assert((oop*)ref_to_scan == NULL, "Constructed above");
|
|
|
|
pop_from_queue(ref_to_scan);
|
|
|
|
if ((oop*)ref_to_scan != NULL) {
|
|
|
|
if (ref_to_scan.is_narrow()) {
|
|
|
|
assert(UseCompressedOops, "Error");
|
|
|
|
narrowOop* p = (narrowOop*)ref_to_scan;
|
|
|
|
assert(!has_partial_array_mask(p) &&
|
|
|
|
_g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
|
|
|
|
deal_with_reference(p);
|
|
|
|
} else {
|
|
|
|
oop* p = (oop*)ref_to_scan;
|
|
|
|
assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
|
|
|
|
_g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
|
|
|
|
deal_with_reference(p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|