jdk-24/src/hotspot/share/gc/shared/jvmFlagConstraintsGC.cpp

480 lines
18 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/collectorPolicy.hpp"
#include "gc/shared/gcConfig.hpp"
#include "gc/shared/jvmFlagConstraintsGC.hpp"
#include "gc/shared/plab.hpp"
#include "gc/shared/threadLocalAllocBuffer.hpp"
#include "runtime/arguments.hpp"
#include "runtime/globals.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_CMSGC
#include "gc/cms/jvmFlagConstraintsCMS.hpp"
#endif
#if INCLUDE_G1GC
#include "gc/g1/jvmFlagConstraintsG1.hpp"
#endif
#if INCLUDE_PARALLELGC
#include "gc/parallel/jvmFlagConstraintsParallel.hpp"
#endif
#ifdef COMPILER1
#include "c1/c1_globals.hpp"
#endif // COMPILER1
#ifdef COMPILER2
#include "opto/c2_globals.hpp"
#endif // COMPILER2
// Some flags that have default values that indicate that the
// JVM should automatically determine an appropriate value
// for that flag. In those cases it is only appropriate for the
// constraint checking to be done if the user has specified the
// value(s) of the flag(s) on the command line. In the constraint
// checking functions, FLAG_IS_CMDLINE() is used to check if
// the flag has been set by the user and so should be checked.
// As ParallelGCThreads differs among GC modes, we need constraint function.
JVMFlag::Error ParallelGCThreadsConstraintFunc(uint value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
#if INCLUDE_PARALLELGC
status = ParallelGCThreadsConstraintFuncParallel(value, verbose);
if (status != JVMFlag::SUCCESS) {
return status;
}
#endif
#if INCLUDE_CMSGC
status = ParallelGCThreadsConstraintFuncCMS(value, verbose);
if (status != JVMFlag::SUCCESS) {
return status;
}
#endif
return status;
}
// As ConcGCThreads should be smaller than ParallelGCThreads,
// we need constraint function.
JVMFlag::Error ConcGCThreadsConstraintFunc(uint value, bool verbose) {
// CMS and G1 GCs use ConcGCThreads.
if ((GCConfig::is_gc_selected(CollectedHeap::CMS) ||
GCConfig::is_gc_selected(CollectedHeap::G1)) && (value > ParallelGCThreads)) {
JVMFlag::printError(verbose,
"ConcGCThreads (" UINT32_FORMAT ") must be "
"less than or equal to ParallelGCThreads (" UINT32_FORMAT ")\n",
value, ParallelGCThreads);
return JVMFlag::VIOLATES_CONSTRAINT;
}
return JVMFlag::SUCCESS;
}
static JVMFlag::Error MinPLABSizeBounds(const char* name, size_t value, bool verbose) {
if ((GCConfig::is_gc_selected(CollectedHeap::CMS) ||
GCConfig::is_gc_selected(CollectedHeap::G1) ||
GCConfig::is_gc_selected(CollectedHeap::Parallel)) && (value < PLAB::min_size())) {
JVMFlag::printError(verbose,
"%s (" SIZE_FORMAT ") must be "
"greater than or equal to ergonomic PLAB minimum size (" SIZE_FORMAT ")\n",
name, value, PLAB::min_size());
return JVMFlag::VIOLATES_CONSTRAINT;
}
return JVMFlag::SUCCESS;
}
JVMFlag::Error MaxPLABSizeBounds(const char* name, size_t value, bool verbose) {
if ((GCConfig::is_gc_selected(CollectedHeap::CMS) ||
GCConfig::is_gc_selected(CollectedHeap::G1) ||
GCConfig::is_gc_selected(CollectedHeap::Parallel)) && (value > PLAB::max_size())) {
JVMFlag::printError(verbose,
"%s (" SIZE_FORMAT ") must be "
"less than or equal to ergonomic PLAB maximum size (" SIZE_FORMAT ")\n",
name, value, PLAB::max_size());
return JVMFlag::VIOLATES_CONSTRAINT;
}
return JVMFlag::SUCCESS;
}
static JVMFlag::Error MinMaxPLABSizeBounds(const char* name, size_t value, bool verbose) {
JVMFlag::Error status = MinPLABSizeBounds(name, value, verbose);
if (status == JVMFlag::SUCCESS) {
return MaxPLABSizeBounds(name, value, verbose);
}
return status;
}
JVMFlag::Error YoungPLABSizeConstraintFunc(size_t value, bool verbose) {
return MinMaxPLABSizeBounds("YoungPLABSize", value, verbose);
}
JVMFlag::Error OldPLABSizeConstraintFunc(size_t value, bool verbose) {
JVMFlag::Error status = JVMFlag::SUCCESS;
#if INCLUDE_CMSGC
if (UseConcMarkSweepGC) {
return OldPLABSizeConstraintFuncCMS(value, verbose);
} else
#endif
{
status = MinMaxPLABSizeBounds("OldPLABSize", value, verbose);
}
return status;
}
JVMFlag::Error MinHeapFreeRatioConstraintFunc(uintx value, bool verbose) {
if (value > MaxHeapFreeRatio) {
JVMFlag::printError(verbose,
"MinHeapFreeRatio (" UINTX_FORMAT ") must be "
"less than or equal to MaxHeapFreeRatio (" UINTX_FORMAT ")\n",
value, MaxHeapFreeRatio);
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
JVMFlag::Error MaxHeapFreeRatioConstraintFunc(uintx value, bool verbose) {
if (value < MinHeapFreeRatio) {
JVMFlag::printError(verbose,
"MaxHeapFreeRatio (" UINTX_FORMAT ") must be "
"greater than or equal to MinHeapFreeRatio (" UINTX_FORMAT ")\n",
value, MinHeapFreeRatio);
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
static JVMFlag::Error CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(size_t maxHeap, intx softRef, bool verbose) {
if ((softRef > 0) && ((maxHeap / M) > (max_uintx / softRef))) {
JVMFlag::printError(verbose,
"Desired lifetime of SoftReferences cannot be expressed correctly. "
"MaxHeapSize (" SIZE_FORMAT ") or SoftRefLRUPolicyMSPerMB "
"(" INTX_FORMAT ") is too large\n",
maxHeap, softRef);
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
JVMFlag::Error SoftRefLRUPolicyMSPerMBConstraintFunc(intx value, bool verbose) {
return CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(MaxHeapSize, value, verbose);
}
JVMFlag::Error MarkStackSizeConstraintFunc(size_t value, bool verbose) {
if (value > MarkStackSizeMax) {
JVMFlag::printError(verbose,
"MarkStackSize (" SIZE_FORMAT ") must be "
"less than or equal to MarkStackSizeMax (" SIZE_FORMAT ")\n",
value, MarkStackSizeMax);
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
JVMFlag::Error MinMetaspaceFreeRatioConstraintFunc(uintx value, bool verbose) {
if (value > MaxMetaspaceFreeRatio) {
JVMFlag::printError(verbose,
"MinMetaspaceFreeRatio (" UINTX_FORMAT ") must be "
"less than or equal to MaxMetaspaceFreeRatio (" UINTX_FORMAT ")\n",
value, MaxMetaspaceFreeRatio);
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
JVMFlag::Error MaxMetaspaceFreeRatioConstraintFunc(uintx value, bool verbose) {
if (value < MinMetaspaceFreeRatio) {
JVMFlag::printError(verbose,
"MaxMetaspaceFreeRatio (" UINTX_FORMAT ") must be "
"greater than or equal to MinMetaspaceFreeRatio (" UINTX_FORMAT ")\n",
value, MinMetaspaceFreeRatio);
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
JVMFlag::Error InitialTenuringThresholdConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_PARALLELGC
JVMFlag::Error status = InitialTenuringThresholdConstraintFuncParallel(value, verbose);
if (status != JVMFlag::SUCCESS) {
return status;
}
#endif
return JVMFlag::SUCCESS;
}
JVMFlag::Error MaxTenuringThresholdConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_PARALLELGC
JVMFlag::Error status = MaxTenuringThresholdConstraintFuncParallel(value, verbose);
if (status != JVMFlag::SUCCESS) {
return status;
}
#endif
// MaxTenuringThreshold=0 means NeverTenure=false && AlwaysTenure=true
if ((value == 0) && (NeverTenure || !AlwaysTenure)) {
JVMFlag::printError(verbose,
"MaxTenuringThreshold (0) should match to NeverTenure=false "
"&& AlwaysTenure=true. But we have NeverTenure=%s "
"AlwaysTenure=%s\n",
NeverTenure ? "true" : "false",
AlwaysTenure ? "true" : "false");
return JVMFlag::VIOLATES_CONSTRAINT;
}
return JVMFlag::SUCCESS;
}
JVMFlag::Error MaxGCPauseMillisConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_G1GC
JVMFlag::Error status = MaxGCPauseMillisConstraintFuncG1(value, verbose);
if (status != JVMFlag::SUCCESS) {
return status;
}
#endif
return JVMFlag::SUCCESS;
}
JVMFlag::Error GCPauseIntervalMillisConstraintFunc(uintx value, bool verbose) {
#if INCLUDE_G1GC
JVMFlag::Error status = GCPauseIntervalMillisConstraintFuncG1(value, verbose);
if (status != JVMFlag::SUCCESS) {
return status;
}
#endif
return JVMFlag::SUCCESS;
}
JVMFlag::Error InitialBootClassLoaderMetaspaceSizeConstraintFunc(size_t value, bool verbose) {
size_t aligned_max = align_down(max_uintx/2, Metaspace::reserve_alignment_words());
if (value > aligned_max) {
JVMFlag::printError(verbose,
"InitialBootClassLoaderMetaspaceSize (" SIZE_FORMAT ") must be "
"less than or equal to aligned maximum value (" SIZE_FORMAT ")\n",
value, aligned_max);
return JVMFlag::VIOLATES_CONSTRAINT;
}
return JVMFlag::SUCCESS;
}
// To avoid an overflow by 'align_up(value, alignment)'.
static JVMFlag::Error MaxSizeForAlignment(const char* name, size_t value, size_t alignment, bool verbose) {
size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
if (value > aligned_max) {
JVMFlag::printError(verbose,
"%s (" SIZE_FORMAT ") must be "
"less than or equal to aligned maximum value (" SIZE_FORMAT ")\n",
name, value, aligned_max);
return JVMFlag::VIOLATES_CONSTRAINT;
}
return JVMFlag::SUCCESS;
}
static JVMFlag::Error MaxSizeForHeapAlignment(const char* name, size_t value, bool verbose) {
size_t heap_alignment;
#if INCLUDE_G1GC
if (UseG1GC) {
// For G1 GC, we don't know until G1CollectorPolicy is created.
heap_alignment = MaxSizeForHeapAlignmentG1();
} else
#endif
{
heap_alignment = CollectorPolicy::compute_heap_alignment();
}
return MaxSizeForAlignment(name, value, heap_alignment, verbose);
}
JVMFlag::Error InitialHeapSizeConstraintFunc(size_t value, bool verbose) {
return MaxSizeForHeapAlignment("InitialHeapSize", value, verbose);
}
JVMFlag::Error MaxHeapSizeConstraintFunc(size_t value, bool verbose) {
JVMFlag::Error status = MaxSizeForHeapAlignment("MaxHeapSize", value, verbose);
if (status == JVMFlag::SUCCESS) {
status = CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(value, SoftRefLRUPolicyMSPerMB, verbose);
}
return status;
}
JVMFlag::Error HeapBaseMinAddressConstraintFunc(size_t value, bool verbose) {
// If an overflow happened in Arguments::set_heap_size(), MaxHeapSize will have too large a value.
// Check for this by ensuring that MaxHeapSize plus the requested min base address still fit within max_uintx.
if (UseCompressedOops && FLAG_IS_ERGO(MaxHeapSize) && (value > (max_uintx - MaxHeapSize))) {
JVMFlag::printError(verbose,
"HeapBaseMinAddress (" SIZE_FORMAT ") or MaxHeapSize (" SIZE_FORMAT ") is too large. "
"Sum of them must be less than or equal to maximum of size_t (" SIZE_FORMAT ")\n",
value, MaxHeapSize, max_uintx);
return JVMFlag::VIOLATES_CONSTRAINT;
}
return MaxSizeForHeapAlignment("HeapBaseMinAddress", value, verbose);
}
JVMFlag::Error NewSizeConstraintFunc(size_t value, bool verbose) {
#if INCLUDE_G1GC
JVMFlag::Error status = NewSizeConstraintFuncG1(value, verbose);
if (status != JVMFlag::SUCCESS) {
return status;
}
#endif
return JVMFlag::SUCCESS;
}
JVMFlag::Error MinTLABSizeConstraintFunc(size_t value, bool verbose) {
// At least, alignment reserve area is needed.
if (value < ThreadLocalAllocBuffer::alignment_reserve_in_bytes()) {
JVMFlag::printError(verbose,
"MinTLABSize (" SIZE_FORMAT ") must be "
"greater than or equal to reserved area in TLAB (" SIZE_FORMAT ")\n",
value, ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
return JVMFlag::VIOLATES_CONSTRAINT;
}
if (value > (ThreadLocalAllocBuffer::max_size() * HeapWordSize)) {
JVMFlag::printError(verbose,
"MinTLABSize (" SIZE_FORMAT ") must be "
"less than or equal to ergonomic TLAB maximum (" SIZE_FORMAT ")\n",
value, ThreadLocalAllocBuffer::max_size() * HeapWordSize);
return JVMFlag::VIOLATES_CONSTRAINT;
}
return JVMFlag::SUCCESS;
}
JVMFlag::Error TLABSizeConstraintFunc(size_t value, bool verbose) {
// Skip for default value of zero which means set ergonomically.
if (FLAG_IS_CMDLINE(TLABSize)) {
if (value < MinTLABSize) {
JVMFlag::printError(verbose,
"TLABSize (" SIZE_FORMAT ") must be "
"greater than or equal to MinTLABSize (" SIZE_FORMAT ")\n",
value, MinTLABSize);
return JVMFlag::VIOLATES_CONSTRAINT;
}
if (value > (ThreadLocalAllocBuffer::max_size() * HeapWordSize)) {
JVMFlag::printError(verbose,
"TLABSize (" SIZE_FORMAT ") must be "
"less than or equal to ergonomic TLAB maximum size (" SIZE_FORMAT ")\n",
value, (ThreadLocalAllocBuffer::max_size() * HeapWordSize));
return JVMFlag::VIOLATES_CONSTRAINT;
}
}
return JVMFlag::SUCCESS;
}
// We will protect overflow from ThreadLocalAllocBuffer::record_slow_allocation(),
// so AfterMemoryInit type is enough to check.
JVMFlag::Error TLABWasteIncrementConstraintFunc(uintx value, bool verbose) {
if (UseTLAB) {
size_t refill_waste_limit = Thread::current()->tlab().refill_waste_limit();
// Compare with 'max_uintx' as ThreadLocalAllocBuffer::_refill_waste_limit is 'size_t'.
if (refill_waste_limit > (max_uintx - value)) {
JVMFlag::printError(verbose,
"TLABWasteIncrement (" UINTX_FORMAT ") must be "
"less than or equal to ergonomic TLAB waste increment maximum size(" SIZE_FORMAT ")\n",
value, (max_uintx - refill_waste_limit));
return JVMFlag::VIOLATES_CONSTRAINT;
}
}
return JVMFlag::SUCCESS;
}
JVMFlag::Error SurvivorRatioConstraintFunc(uintx value, bool verbose) {
if (FLAG_IS_CMDLINE(SurvivorRatio) &&
(value > (MaxHeapSize / Universe::heap()->collector_policy()->space_alignment()))) {
JVMFlag::printError(verbose,
"SurvivorRatio (" UINTX_FORMAT ") must be "
"less than or equal to ergonomic SurvivorRatio maximum (" SIZE_FORMAT ")\n",
value,
(MaxHeapSize / Universe::heap()->collector_policy()->space_alignment()));
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
JVMFlag::Error MetaspaceSizeConstraintFunc(size_t value, bool verbose) {
if (value > MaxMetaspaceSize) {
JVMFlag::printError(verbose,
"MetaspaceSize (" SIZE_FORMAT ") must be "
"less than or equal to MaxMetaspaceSize (" SIZE_FORMAT ")\n",
value, MaxMetaspaceSize);
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
JVMFlag::Error MaxMetaspaceSizeConstraintFunc(size_t value, bool verbose) {
if (value < MetaspaceSize) {
JVMFlag::printError(verbose,
"MaxMetaspaceSize (" SIZE_FORMAT ") must be "
"greater than or equal to MetaspaceSize (" SIZE_FORMAT ")\n",
value, MaxMetaspaceSize);
return JVMFlag::VIOLATES_CONSTRAINT;
} else {
return JVMFlag::SUCCESS;
}
}
JVMFlag::Error SurvivorAlignmentInBytesConstraintFunc(intx value, bool verbose) {
if (value != 0) {
if (!is_power_of_2(value)) {
JVMFlag::printError(verbose,
"SurvivorAlignmentInBytes (" INTX_FORMAT ") must be "
"power of 2\n",
value);
return JVMFlag::VIOLATES_CONSTRAINT;
}
if (value < ObjectAlignmentInBytes) {
JVMFlag::printError(verbose,
"SurvivorAlignmentInBytes (" INTX_FORMAT ") must be "
"greater than or equal to ObjectAlignmentInBytes (" INTX_FORMAT ")\n",
value, ObjectAlignmentInBytes);
return JVMFlag::VIOLATES_CONSTRAINT;
}
}
return JVMFlag::SUCCESS;
}