jdk-24/src/hotspot/share/opto/arraycopynode.cpp

746 lines
28 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/c2/barrierSetC2.hpp"
#include "gc/shared/c2/cardTableBarrierSetC2.hpp"
#include "opto/arraycopynode.hpp"
#include "opto/graphKit.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/macros.hpp"
ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
: CallNode(arraycopy_type(), NULL, TypePtr::BOTTOM),
_kind(None),
_alloc_tightly_coupled(alloc_tightly_coupled),
_has_negative_length_guard(has_negative_length_guard),
_arguments_validated(false),
_src_type(TypeOopPtr::BOTTOM),
_dest_type(TypeOopPtr::BOTTOM) {
init_class_id(Class_ArrayCopy);
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
uint ArrayCopyNode::size_of() const { return sizeof(*this); }
ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* length,
bool alloc_tightly_coupled,
bool has_negative_length_guard,
Node* src_klass, Node* dest_klass,
Node* src_length, Node* dest_length) {
ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled, has_negative_length_guard);
Node* prev_mem = kit->set_predefined_input_for_runtime_call(ac);
ac->init_req(ArrayCopyNode::Src, src);
ac->init_req(ArrayCopyNode::SrcPos, src_offset);
ac->init_req(ArrayCopyNode::Dest, dest);
ac->init_req(ArrayCopyNode::DestPos, dest_offset);
ac->init_req(ArrayCopyNode::Length, length);
ac->init_req(ArrayCopyNode::SrcLen, src_length);
ac->init_req(ArrayCopyNode::DestLen, dest_length);
ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
if (may_throw) {
ac->set_req(TypeFunc::I_O , kit->i_o());
kit->add_safepoint_edges(ac, false);
}
return ac;
}
void ArrayCopyNode::connect_outputs(GraphKit* kit) {
kit->set_all_memory_call(this, true);
kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true);
kit->set_all_memory_call(this);
}
#ifndef PRODUCT
const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
void ArrayCopyNode::dump_spec(outputStream *st) const {
CallNode::dump_spec(st);
st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
}
void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
}
#endif
intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
// check that length is constant
Node* length = in(ArrayCopyNode::Length);
const Type* length_type = phase->type(length);
if (length_type == Type::TOP) {
return -1;
}
assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
}
int ArrayCopyNode::get_count(PhaseGVN *phase) const {
Node* src = in(ArrayCopyNode::Src);
const Type* src_type = phase->type(src);
if (is_clonebasic()) {
if (src_type->isa_instptr()) {
const TypeInstPtr* inst_src = src_type->is_instptr();
ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
// ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
// fields into account. They are rare anyway so easier to simply
// skip instances with injected fields.
if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
return -1;
}
int nb_fields = ik->nof_nonstatic_fields();
return nb_fields;
} else {
const TypeAryPtr* ary_src = src_type->isa_aryptr();
assert (ary_src != NULL, "not an array or instance?");
// clone passes a length as a rounded number of longs. If we're
// cloning an array we'll do it element by element. If the
// length input to ArrayCopyNode is constant, length of input
// array must be too.
assert((get_length_if_constant(phase) == -1) == !ary_src->size()->is_con() ||
phase->is_IterGVN(), "inconsistent");
if (ary_src->size()->is_con()) {
return ary_src->size()->get_con();
}
return -1;
}
}
return get_length_if_constant(phase);
}
Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY;
C2AccessValuePtr addr(adr, adr_type);
C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
Node* res = bs->load_at(access, type);
ctl = access.ctl();
return res;
}
void ArrayCopyNode::store(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, Node* val, const Type *type, BasicType bt) {
DecoratorSet decorators = C2_WRITE_ACCESS | IN_HEAP | C2_ARRAY_COPY;
if (is_alloc_tightly_coupled()) {
decorators |= C2_TIGHLY_COUPLED_ALLOC;
}
C2AccessValuePtr addr(adr, adr_type);
C2AccessValue value(val, type);
C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
bs->store_at(access, value);
ctl = access.ctl();
}
Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
if (!is_clonebasic()) {
return NULL;
}
Node* src = in(ArrayCopyNode::Src);
Node* dest = in(ArrayCopyNode::Dest);
Node* ctl = in(TypeFunc::Control);
Node* in_mem = in(TypeFunc::Memory);
const Type* src_type = phase->type(src);
assert(src->is_AddP(), "should be base + off");
assert(dest->is_AddP(), "should be base + off");
Node* base_src = src->in(AddPNode::Base);
Node* base_dest = dest->in(AddPNode::Base);
MergeMemNode* mem = MergeMemNode::make(in_mem);
const TypeInstPtr* inst_src = src_type->isa_instptr();
if (inst_src == NULL) {
return NULL;
}
if (!inst_src->klass_is_exact()) {
ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
assert(!ik->is_interface() && !ik->has_subklass(), "inconsistent klass hierarchy");
phase->C->dependencies()->assert_leaf_type(ik);
}
ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
for (int i = 0; i < count; i++) {
ciField* field = ik->nonstatic_field_at(i);
int fieldidx = phase->C->alias_type(field)->index();
const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
Node* off = phase->MakeConX(field->offset());
Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
BasicType bt = field->layout_type();
const Type *type;
if (bt == T_OBJECT) {
if (!field->type()->is_loaded()) {
type = TypeInstPtr::BOTTOM;
} else {
ciType* field_klass = field->type();
type = TypeOopPtr::make_from_klass(field_klass->as_klass());
}
} else {
type = Type::get_const_basic_type(bt);
}
Node* v = load(bs, phase, ctl, mem, next_src, adr_type, type, bt);
store(bs, phase, ctl, mem, next_dest, adr_type, v, type, bt);
}
if (!finish_transform(phase, can_reshape, ctl, mem)) {
// Return NodeSentinel to indicate that the transform failed
return NodeSentinel;
}
return mem;
}
bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
Node*& adr_src,
Node*& base_src,
Node*& adr_dest,
Node*& base_dest,
BasicType& copy_type,
const Type*& value_type,
bool& disjoint_bases) {
Node* src = in(ArrayCopyNode::Src);
Node* dest = in(ArrayCopyNode::Dest);
const Type* src_type = phase->type(src);
const TypeAryPtr* ary_src = src_type->isa_aryptr();
if (is_arraycopy() || is_copyofrange() || is_copyof()) {
const Type* dest_type = phase->type(dest);
const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
Node* src_offset = in(ArrayCopyNode::SrcPos);
Node* dest_offset = in(ArrayCopyNode::DestPos);
// newly allocated object is guaranteed to not overlap with source object
disjoint_bases = is_alloc_tightly_coupled();
if (ary_src == NULL || ary_src->klass() == NULL ||
ary_dest == NULL || ary_dest->klass() == NULL) {
// We don't know if arguments are arrays
return false;
}
BasicType src_elem = ary_src->klass()->as_array_klass()->element_type()->basic_type();
BasicType dest_elem = ary_dest->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem == T_ARRAY) src_elem = T_OBJECT;
if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
if (src_elem != dest_elem || dest_elem == T_VOID) {
// We don't know if arguments are arrays of the same type
return false;
}
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
if (bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, BarrierSetC2::Optimization)) {
// It's an object array copy but we can't emit the card marking
// that is needed
return false;
}
value_type = ary_src->elem();
base_src = src;
base_dest = dest;
uint shift = exact_log2(type2aelembytes(dest_elem));
uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
adr_src = src;
adr_dest = dest;
src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
Node* src_scale = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
adr_src = phase->transform(new AddPNode(base_src, adr_src, src_scale));
adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, dest_scale));
adr_src = new AddPNode(base_src, adr_src, phase->MakeConX(header));
adr_dest = new AddPNode(base_dest, adr_dest, phase->MakeConX(header));
adr_src = phase->transform(adr_src);
adr_dest = phase->transform(adr_dest);
copy_type = dest_elem;
} else {
assert(ary_src != NULL, "should be a clone");
assert(is_clonebasic(), "should be");
disjoint_bases = true;
assert(src->is_AddP(), "should be base + off");
assert(dest->is_AddP(), "should be base + off");
adr_src = src;
base_src = src->in(AddPNode::Base);
adr_dest = dest;
base_dest = dest->in(AddPNode::Base);
assert(phase->type(src->in(AddPNode::Offset))->is_intptr_t()->get_con() == phase->type(dest->in(AddPNode::Offset))->is_intptr_t()->get_con(), "same start offset?");
BasicType elem = ary_src->klass()->as_array_klass()->element_type()->basic_type();
if (elem == T_ARRAY) elem = T_OBJECT;
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
if (bs->array_copy_requires_gc_barriers(true, elem, true, BarrierSetC2::Optimization)) {
return false;
}
int diff = arrayOopDesc::base_offset_in_bytes(elem) - phase->type(src->in(AddPNode::Offset))->is_intptr_t()->get_con();
assert(diff >= 0, "clone should not start after 1st array element");
if (diff > 0) {
adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
}
copy_type = elem;
value_type = ary_src->elem();
}
return true;
}
const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN *phase, Node* n) {
const Type* at = phase->type(n);
assert(at != Type::TOP, "unexpected type");
const TypePtr* atp = at->isa_ptr();
// adjust atp to be the correct array element address type
atp = atp->add_offset(Type::OffsetBot);
return atp;
}
void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, int count, Node*& forward_ctl, Node*& backward_ctl) {
Node* ctl = in(TypeFunc::Control);
if (!disjoint_bases && count > 1) {
Node* src_offset = in(ArrayCopyNode::SrcPos);
Node* dest_offset = in(ArrayCopyNode::DestPos);
assert(src_offset != NULL && dest_offset != NULL, "should be");
Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
phase->transform(iff);
forward_ctl = phase->transform(new IfFalseNode(iff));
backward_ctl = phase->transform(new IfTrueNode(iff));
} else {
forward_ctl = ctl;
}
}
Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
bool can_reshape,
Node*& forward_ctl,
MergeMemNode* mm,
const TypePtr* atp_src,
const TypePtr* atp_dest,
Node* adr_src,
Node* base_src,
Node* adr_dest,
Node* base_dest,
BasicType copy_type,
const Type* value_type,
int count) {
if (!forward_ctl->is_top()) {
// copy forward
mm = mm->clone()->as_MergeMem();
if (count > 0) {
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
Node* v = load(bs, phase, forward_ctl, mm, adr_src, atp_src, value_type, copy_type);
store(bs, phase, forward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
for (int i = 1; i < count; i++) {
Node* off = phase->MakeConX(type2aelembytes(copy_type) * i);
Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
v = load(bs, phase, forward_ctl, mm, next_src, atp_src, value_type, copy_type);
store(bs, phase, forward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
}
} else if(can_reshape) {
PhaseIterGVN* igvn = phase->is_IterGVN();
igvn->_worklist.push(adr_src);
igvn->_worklist.push(adr_dest);
}
return mm;
}
return phase->C->top();
}
Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
bool can_reshape,
Node*& backward_ctl,
MergeMemNode* mm,
const TypePtr* atp_src,
const TypePtr* atp_dest,
Node* adr_src,
Node* base_src,
Node* adr_dest,
Node* base_dest,
BasicType copy_type,
const Type* value_type,
int count) {
if (!backward_ctl->is_top()) {
// copy backward
mm = mm->clone()->as_MergeMem();
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
assert(copy_type != T_OBJECT || !bs->array_copy_requires_gc_barriers(false, T_OBJECT, false, BarrierSetC2::Optimization), "only tightly coupled allocations for object arrays");
if (count > 0) {
for (int i = count-1; i >= 1; i--) {
Node* off = phase->MakeConX(type2aelembytes(copy_type) * i);
Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
Node* v = load(bs, phase, backward_ctl, mm, next_src, atp_src, value_type, copy_type);
store(bs, phase, backward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
}
Node* v = load(bs, phase, backward_ctl, mm, adr_src, atp_src, value_type, copy_type);
store(bs, phase, backward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
} else if(can_reshape) {
PhaseIterGVN* igvn = phase->is_IterGVN();
igvn->_worklist.push(adr_src);
igvn->_worklist.push(adr_dest);
}
return phase->transform(mm);
}
return phase->C->top();
}
bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
Node* ctl, Node *mem) {
if (can_reshape) {
PhaseIterGVN* igvn = phase->is_IterGVN();
igvn->set_delay_transform(false);
if (is_clonebasic()) {
Node* out_mem = proj_out(TypeFunc::Memory);
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Optimization), "can only happen with card marking");
return false;
}
igvn->replace_node(out_mem->raw_out(0), mem);
Node* out_ctl = proj_out(TypeFunc::Control);
igvn->replace_node(out_ctl, ctl);
} else {
// replace fallthrough projections of the ArrayCopyNode by the
// new memory, control and the input IO.
CallProjections callprojs;
extract_projections(&callprojs, true, false);
if (callprojs.fallthrough_ioproj != NULL) {
igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
}
if (callprojs.fallthrough_memproj != NULL) {
igvn->replace_node(callprojs.fallthrough_memproj, mem);
}
if (callprojs.fallthrough_catchproj != NULL) {
igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
}
// The ArrayCopyNode is not disconnected. It still has the
// projections for the exception case. Replace current
// ArrayCopyNode with a dummy new one with a top() control so
// that this part of the graph stays consistent but is
// eventually removed.
set_req(0, phase->C->top());
remove_dead_region(phase, can_reshape);
}
} else {
if (in(TypeFunc::Control) != ctl) {
// we can't return new memory and control from Ideal at parse time
assert(!is_clonebasic(), "added control for clone?");
phase->record_for_igvn(this);
return false;
}
}
return true;
}
Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if (remove_dead_region(phase, can_reshape)) return this;
if (StressArrayCopyMacroNode && !can_reshape) {
phase->record_for_igvn(this);
return NULL;
}
// See if it's a small array copy and we can inline it as
// loads/stores
// Here we can only do:
// - arraycopy if all arguments were validated before and we don't
// need card marking
// - clone for which we don't need to do card marking
if (!is_clonebasic() && !is_arraycopy_validated() &&
!is_copyofrange_validated() && !is_copyof_validated()) {
return NULL;
}
assert(in(TypeFunc::Control) != NULL &&
in(TypeFunc::Memory) != NULL &&
in(ArrayCopyNode::Src) != NULL &&
in(ArrayCopyNode::Dest) != NULL &&
in(ArrayCopyNode::Length) != NULL &&
((in(ArrayCopyNode::SrcPos) != NULL && in(ArrayCopyNode::DestPos) != NULL) ||
is_clonebasic()), "broken inputs");
if (in(TypeFunc::Control)->is_top() ||
in(TypeFunc::Memory)->is_top() ||
phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
(in(ArrayCopyNode::SrcPos) != NULL && in(ArrayCopyNode::SrcPos)->is_top()) ||
(in(ArrayCopyNode::DestPos) != NULL && in(ArrayCopyNode::DestPos)->is_top())) {
return NULL;
}
int count = get_count(phase);
if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
return NULL;
}
Node* mem = try_clone_instance(phase, can_reshape, count);
if (mem != NULL) {
return (mem == NodeSentinel) ? NULL : mem;
}
Node* adr_src = NULL;
Node* base_src = NULL;
Node* adr_dest = NULL;
Node* base_dest = NULL;
BasicType copy_type = T_ILLEGAL;
const Type* value_type = NULL;
bool disjoint_bases = false;
if (!prepare_array_copy(phase, can_reshape,
adr_src, base_src, adr_dest, base_dest,
copy_type, value_type, disjoint_bases)) {
return NULL;
}
Node* src = in(ArrayCopyNode::Src);
Node* dest = in(ArrayCopyNode::Dest);
const TypePtr* atp_src = get_address_type(phase, src);
const TypePtr* atp_dest = get_address_type(phase, dest);
Node *in_mem = in(TypeFunc::Memory);
if (!in_mem->is_MergeMem()) {
in_mem = MergeMemNode::make(in_mem);
}
if (can_reshape) {
assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
phase->is_IterGVN()->set_delay_transform(true);
}
Node* backward_ctl = phase->C->top();
Node* forward_ctl = phase->C->top();
array_copy_test_overlap(phase, can_reshape, disjoint_bases, count, forward_ctl, backward_ctl);
Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
in_mem->as_MergeMem(),
atp_src, atp_dest,
adr_src, base_src, adr_dest, base_dest,
copy_type, value_type, count);
Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
in_mem->as_MergeMem(),
atp_src, atp_dest,
adr_src, base_src, adr_dest, base_dest,
copy_type, value_type, count);
Node* ctl = NULL;
if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
ctl = new RegionNode(3);
ctl->init_req(1, forward_ctl);
ctl->init_req(2, backward_ctl);
ctl = phase->transform(ctl);
MergeMemNode* forward_mm = forward_mem->as_MergeMem();
MergeMemNode* backward_mm = backward_mem->as_MergeMem();
for (MergeMemStream mms(forward_mm, backward_mm); mms.next_non_empty2(); ) {
if (mms.memory() != mms.memory2()) {
Node* phi = new PhiNode(ctl, Type::MEMORY, phase->C->get_adr_type(mms.alias_idx()));
phi->init_req(1, mms.memory());
phi->init_req(2, mms.memory2());
phi = phase->transform(phi);
mms.set_memory(phi);
}
}
mem = forward_mem;
} else if (!forward_ctl->is_top()) {
ctl = forward_ctl;
mem = forward_mem;
} else {
assert(!backward_ctl->is_top(), "no copy?");
ctl = backward_ctl;
mem = backward_mem;
}
if (can_reshape) {
assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
phase->is_IterGVN()->set_delay_transform(false);
}
if (!finish_transform(phase, can_reshape, ctl, mem)) {
return NULL;
}
return mem;
}
bool ArrayCopyNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
Node* dest = in(ArrayCopyNode::Dest);
if (dest->is_top()) {
return false;
}
const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
_src_type->is_known_instance(), "result of EA not recorded");
if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
assert(_dest_type == TypeOopPtr::BOTTOM || _dest_type->is_known_instance(), "result of EA is known instance");
return t_oop->instance_id() == _dest_type->instance_id();
}
return CallNode::may_modify_arraycopy_helper(dest_t, t_oop, phase);
}
bool ArrayCopyNode::may_modify_helper(const TypeOopPtr *t_oop, Node* n, PhaseTransform *phase, CallNode*& call) {
if (n != NULL &&
n->is_Call() &&
n->as_Call()->may_modify(t_oop, phase) &&
(n->as_Call()->is_ArrayCopy() || n->as_Call()->is_call_to_arraycopystub())) {
call = n->as_Call();
return true;
}
return false;
}
bool ArrayCopyNode::may_modify(const TypeOopPtr *t_oop, MemBarNode* mb, PhaseTransform *phase, ArrayCopyNode*& ac) {
Node* c = mb->in(0);
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
// step over g1 gc barrier if we're at e.g. a clone with ReduceInitialCardMarks off
c = bs->step_over_gc_barrier(c);
CallNode* call = NULL;
guarantee(c != NULL, "step_over_gc_barrier failed, there must be something to step to.");
if (c->is_Region()) {
for (uint i = 1; i < c->req(); i++) {
if (c->in(i) != NULL) {
Node* n = c->in(i)->in(0);
if (may_modify_helper(t_oop, n, phase, call)) {
ac = call->isa_ArrayCopy();
assert(c == mb->in(0), "only for clone");
return true;
}
}
}
} else if (may_modify_helper(t_oop, c->in(0), phase, call)) {
ac = call->isa_ArrayCopy();
#ifdef ASSERT
bool use_ReduceInitialCardMarks = BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
static_cast<CardTableBarrierSetC2*>(bs)->use_ReduceInitialCardMarks();
assert(c == mb->in(0) || (ac != NULL && ac->is_clonebasic() && !use_ReduceInitialCardMarks), "only for clone");
#endif
return true;
}
return false;
}
// Does this array copy modify offsets between offset_lo and offset_hi
// in the destination array
// if must_modify is false, return true if the copy could write
// between offset_lo and offset_hi
// if must_modify is true, return true if the copy is guaranteed to
// write between offset_lo and offset_hi
bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseTransform* phase, bool must_modify) const {
assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
Node* dest = in(Dest);
Node* dest_pos = in(DestPos);
Node* len = in(Length);
const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
const TypeInt *len_t = phase->type(len)->isa_int();
const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
if (dest_pos_t == NULL || len_t == NULL || ary_t == NULL) {
return !must_modify;
}
BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type();
uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
uint elemsize = type2aelembytes(ary_elem);
jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
if (must_modify) {
if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
return true;
}
} else {
if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
return true;
}
}
return false;
}