jdk-24/hotspot/src/share/vm/adlc/formssel.cpp

4007 lines
129 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// FORMS.CPP - Definitions for ADL Parser Forms Classes
#include "adlc.hpp"
//==============================Instructions===================================
//------------------------------InstructForm-----------------------------------
InstructForm::InstructForm(const char *id, bool ideal_only)
: _ident(id), _ideal_only(ideal_only),
_localNames(cmpstr, hashstr, Form::arena),
_effects(cmpstr, hashstr, Form::arena) {
_ftype = Form::INS;
_matrule = NULL;
_insencode = NULL;
_opcode = NULL;
_size = NULL;
_attribs = NULL;
_predicate = NULL;
_exprule = NULL;
_rewrule = NULL;
_format = NULL;
_peephole = NULL;
_ins_pipe = NULL;
_uniq_idx = NULL;
_num_uniq = 0;
_cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
_cisc_spill_alternate = NULL; // possible cisc replacement
_cisc_reg_mask_name = NULL;
_is_cisc_alternate = false;
_is_short_branch = false;
_short_branch_form = NULL;
_alignment = 1;
}
InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
: _ident(id), _ideal_only(false),
_localNames(instr->_localNames),
_effects(instr->_effects) {
_ftype = Form::INS;
_matrule = rule;
_insencode = instr->_insencode;
_opcode = instr->_opcode;
_size = instr->_size;
_attribs = instr->_attribs;
_predicate = instr->_predicate;
_exprule = instr->_exprule;
_rewrule = instr->_rewrule;
_format = instr->_format;
_peephole = instr->_peephole;
_ins_pipe = instr->_ins_pipe;
_uniq_idx = instr->_uniq_idx;
_num_uniq = instr->_num_uniq;
_cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
_cisc_spill_alternate = NULL; // possible cisc replacement
_cisc_reg_mask_name = NULL;
_is_cisc_alternate = false;
_is_short_branch = false;
_short_branch_form = NULL;
_alignment = 1;
// Copy parameters
const char *name;
instr->_parameters.reset();
for (; (name = instr->_parameters.iter()) != NULL;)
_parameters.addName(name);
}
InstructForm::~InstructForm() {
}
InstructForm *InstructForm::is_instruction() const {
return (InstructForm*)this;
}
bool InstructForm::ideal_only() const {
return _ideal_only;
}
bool InstructForm::sets_result() const {
return (_matrule != NULL && _matrule->sets_result());
}
bool InstructForm::needs_projections() {
_components.reset();
for( Component *comp; (comp = _components.iter()) != NULL; ) {
if (comp->isa(Component::KILL)) {
return true;
}
}
return false;
}
bool InstructForm::has_temps() {
if (_matrule) {
// Examine each component to see if it is a TEMP
_components.reset();
// Skip the first component, if already handled as (SET dst (...))
Component *comp = NULL;
if (sets_result()) comp = _components.iter();
while ((comp = _components.iter()) != NULL) {
if (comp->isa(Component::TEMP)) {
return true;
}
}
}
return false;
}
uint InstructForm::num_defs_or_kills() {
uint defs_or_kills = 0;
_components.reset();
for( Component *comp; (comp = _components.iter()) != NULL; ) {
if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
++defs_or_kills;
}
}
return defs_or_kills;
}
// This instruction has an expand rule?
bool InstructForm::expands() const {
return ( _exprule != NULL );
}
// This instruction has a peephole rule?
Peephole *InstructForm::peepholes() const {
return _peephole;
}
// This instruction has a peephole rule?
void InstructForm::append_peephole(Peephole *peephole) {
if( _peephole == NULL ) {
_peephole = peephole;
} else {
_peephole->append_peephole(peephole);
}
}
// ideal opcode enumeration
const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
if( !_matrule ) return "Node"; // Something weird
// Chain rules do not really have ideal Opcodes; use their source
// operand ideal Opcode instead.
if( is_simple_chain_rule(globalNames) ) {
const char *src = _matrule->_rChild->_opType;
OperandForm *src_op = globalNames[src]->is_operand();
assert( src_op, "Not operand class of chain rule" );
if( !src_op->_matrule ) return "Node";
return src_op->_matrule->_opType;
}
// Operand chain rules do not really have ideal Opcodes
if( _matrule->is_chain_rule(globalNames) )
return "Node";
return strcmp(_matrule->_opType,"Set")
? _matrule->_opType
: _matrule->_rChild->_opType;
}
// Recursive check on all operands' match rules in my match rule
bool InstructForm::is_pinned(FormDict &globals) {
if ( ! _matrule) return false;
int index = 0;
if (_matrule->find_type("Goto", index)) return true;
if (_matrule->find_type("If", index)) return true;
if (_matrule->find_type("CountedLoopEnd",index)) return true;
if (_matrule->find_type("Return", index)) return true;
if (_matrule->find_type("Rethrow", index)) return true;
if (_matrule->find_type("TailCall", index)) return true;
if (_matrule->find_type("TailJump", index)) return true;
if (_matrule->find_type("Halt", index)) return true;
if (_matrule->find_type("Jump", index)) return true;
return is_parm(globals);
}
// Recursive check on all operands' match rules in my match rule
bool InstructForm::is_projection(FormDict &globals) {
if ( ! _matrule) return false;
int index = 0;
if (_matrule->find_type("Goto", index)) return true;
if (_matrule->find_type("Return", index)) return true;
if (_matrule->find_type("Rethrow", index)) return true;
if (_matrule->find_type("TailCall",index)) return true;
if (_matrule->find_type("TailJump",index)) return true;
if (_matrule->find_type("Halt", index)) return true;
return false;
}
// Recursive check on all operands' match rules in my match rule
bool InstructForm::is_parm(FormDict &globals) {
if ( ! _matrule) return false;
int index = 0;
if (_matrule->find_type("Parm",index)) return true;
return false;
}
// Return 'true' if this instruction matches an ideal 'Copy*' node
int InstructForm::is_ideal_copy() const {
return _matrule ? _matrule->is_ideal_copy() : 0;
}
// Return 'true' if this instruction is too complex to rematerialize.
int InstructForm::is_expensive() const {
// We can prove it is cheap if it has an empty encoding.
// This helps with platform-specific nops like ThreadLocal and RoundFloat.
if (is_empty_encoding())
return 0;
if (is_tls_instruction())
return 1;
if (_matrule == NULL) return 0;
return _matrule->is_expensive();
}
// Has an empty encoding if _size is a constant zero or there
// are no ins_encode tokens.
int InstructForm::is_empty_encoding() const {
if (_insencode != NULL) {
_insencode->reset();
if (_insencode->encode_class_iter() == NULL) {
return 1;
}
}
if (_size != NULL && strcmp(_size, "0") == 0) {
return 1;
}
return 0;
}
int InstructForm::is_tls_instruction() const {
if (_ident != NULL &&
( ! strcmp( _ident,"tlsLoadP") ||
! strncmp(_ident,"tlsLoadP_",9)) ) {
return 1;
}
if (_matrule != NULL && _insencode != NULL) {
const char* opType = _matrule->_opType;
if (strcmp(opType, "Set")==0)
opType = _matrule->_rChild->_opType;
if (strcmp(opType,"ThreadLocal")==0) {
fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
(_ident == NULL ? "NULL" : _ident));
return 1;
}
}
return 0;
}
// Return 'true' if this instruction matches an ideal 'Copy*' node
bool InstructForm::is_ideal_unlock() const {
return _matrule ? _matrule->is_ideal_unlock() : false;
}
bool InstructForm::is_ideal_call_leaf() const {
return _matrule ? _matrule->is_ideal_call_leaf() : false;
}
// Return 'true' if this instruction matches an ideal 'If' node
bool InstructForm::is_ideal_if() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_if();
}
// Return 'true' if this instruction matches an ideal 'FastLock' node
bool InstructForm::is_ideal_fastlock() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_fastlock();
}
// Return 'true' if this instruction matches an ideal 'MemBarXXX' node
bool InstructForm::is_ideal_membar() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_membar();
}
// Return 'true' if this instruction matches an ideal 'LoadPC' node
bool InstructForm::is_ideal_loadPC() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_loadPC();
}
// Return 'true' if this instruction matches an ideal 'Box' node
bool InstructForm::is_ideal_box() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_box();
}
// Return 'true' if this instruction matches an ideal 'Goto' node
bool InstructForm::is_ideal_goto() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_goto();
}
// Return 'true' if this instruction matches an ideal 'Jump' node
bool InstructForm::is_ideal_jump() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_jump();
}
// Return 'true' if instruction matches ideal 'If' | 'Goto' |
// 'CountedLoopEnd' | 'Jump'
bool InstructForm::is_ideal_branch() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
}
// Return 'true' if this instruction matches an ideal 'Return' node
bool InstructForm::is_ideal_return() const {
if( _matrule == NULL ) return false;
// Check MatchRule to see if the first entry is the ideal "Return" node
int index = 0;
if (_matrule->find_type("Return",index)) return true;
if (_matrule->find_type("Rethrow",index)) return true;
if (_matrule->find_type("TailCall",index)) return true;
if (_matrule->find_type("TailJump",index)) return true;
return false;
}
// Return 'true' if this instruction matches an ideal 'Halt' node
bool InstructForm::is_ideal_halt() const {
int index = 0;
return _matrule && _matrule->find_type("Halt",index);
}
// Return 'true' if this instruction matches an ideal 'SafePoint' node
bool InstructForm::is_ideal_safepoint() const {
int index = 0;
return _matrule && _matrule->find_type("SafePoint",index);
}
// Return 'true' if this instruction matches an ideal 'Nop' node
bool InstructForm::is_ideal_nop() const {
return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
}
bool InstructForm::is_ideal_control() const {
if ( ! _matrule) return false;
return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
}
// Return 'true' if this instruction matches an ideal 'Call' node
Form::CallType InstructForm::is_ideal_call() const {
if( _matrule == NULL ) return Form::invalid_type;
// Check MatchRule to see if the first entry is the ideal "Call" node
int idx = 0;
if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
idx = 0;
if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
idx = 0;
if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
idx = 0;
if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
idx = 0;
if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
idx = 0;
if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
idx = 0;
if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
idx = 0;
return Form::invalid_type;
}
// Return 'true' if this instruction matches an ideal 'Load?' node
Form::DataType InstructForm::is_ideal_load() const {
if( _matrule == NULL ) return Form::none;
return _matrule->is_ideal_load();
}
// Return 'true' if this instruction matches an ideal 'Load?' node
Form::DataType InstructForm::is_ideal_store() const {
if( _matrule == NULL ) return Form::none;
return _matrule->is_ideal_store();
}
// Return the input register that must match the output register
// If this is not required, return 0
uint InstructForm::two_address(FormDict &globals) {
uint matching_input = 0;
if(_components.count() == 0) return 0;
_components.reset();
Component *comp = _components.iter();
// Check if there is a DEF
if( comp->isa(Component::DEF) ) {
// Check that this is a register
const char *def_type = comp->_type;
const Form *form = globals[def_type];
OperandForm *op = form->is_operand();
if( op ) {
if( op->constrained_reg_class() != NULL &&
op->interface_type(globals) == Form::register_interface ) {
// Remember the local name for equality test later
const char *def_name = comp->_name;
// Check if a component has the same name and is a USE
do {
if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
return operand_position_format(def_name);
}
} while( (comp = _components.iter()) != NULL);
}
}
}
return 0;
}
// when chaining a constant to an instruction, returns 'true' and sets opType
Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
const char *dummy = NULL;
const char *dummy2 = NULL;
return is_chain_of_constant(globals, dummy, dummy2);
}
Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
const char * &opTypeParam) {
const char *result = NULL;
return is_chain_of_constant(globals, opTypeParam, result);
}
Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
const char * &opTypeParam, const char * &resultParam) {
Form::DataType data_type = Form::none;
if ( ! _matrule) return data_type;
// !!!!!
// The source of the chain rule is 'position = 1'
uint position = 1;
const char *result = NULL;
const char *name = NULL;
const char *opType = NULL;
// Here base_operand is looking for an ideal type to be returned (opType).
if ( _matrule->is_chain_rule(globals)
&& _matrule->base_operand(position, globals, result, name, opType) ) {
data_type = ideal_to_const_type(opType);
// if it isn't an ideal constant type, just return
if ( data_type == Form::none ) return data_type;
// Ideal constant types also adjust the opType parameter.
resultParam = result;
opTypeParam = opType;
return data_type;
}
return data_type;
}
// Check if a simple chain rule
bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
if( _matrule && _matrule->sets_result()
&& _matrule->_rChild->_lChild == NULL
&& globals[_matrule->_rChild->_opType]
&& globals[_matrule->_rChild->_opType]->is_opclass() ) {
return true;
}
return false;
}
// check for structural rematerialization
bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
bool rematerialize = false;
Form::DataType data_type = is_chain_of_constant(globals);
if( data_type != Form::none )
rematerialize = true;
// Constants
if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
rematerialize = true;
// Pseudo-constants (values easily available to the runtime)
if (is_empty_encoding() && is_tls_instruction())
rematerialize = true;
// 1-input, 1-output, such as copies or increments.
if( _components.count() == 2 &&
_components[0]->is(Component::DEF) &&
_components[1]->isa(Component::USE) )
rematerialize = true;
// Check for an ideal 'Load?' and eliminate rematerialize option
if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
is_expensive() != Form::none) { // Expensive? Do not rematerialize
rematerialize = false;
}
// Always rematerialize the flags. They are more expensive to save &
// restore than to recompute (and possibly spill the compare's inputs).
if( _components.count() >= 1 ) {
Component *c = _components[0];
const Form *form = globals[c->_type];
OperandForm *opform = form->is_operand();
if( opform ) {
// Avoid the special stack_slots register classes
const char *rc_name = opform->constrained_reg_class();
if( rc_name ) {
if( strcmp(rc_name,"stack_slots") ) {
// Check for ideal_type of RegFlags
const char *type = opform->ideal_type( globals, registers );
if( !strcmp(type,"RegFlags") )
rematerialize = true;
} else
rematerialize = false; // Do not rematerialize things target stk
}
}
}
return rematerialize;
}
// loads from memory, so must check for anti-dependence
bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
// Machine independent loads must be checked for anti-dependences
if( is_ideal_load() != Form::none ) return true;
// !!!!! !!!!! !!!!!
// TEMPORARY
// if( is_simple_chain_rule(globals) ) return false;
// String-compare uses many memorys edges, but writes none
if( _matrule && _matrule->_rChild &&
strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
return true;
// Check if instruction has a USE of a memory operand class, but no defs
bool USE_of_memory = false;
bool DEF_of_memory = false;
Component *comp = NULL;
ComponentList &components = (ComponentList &)_components;
components.reset();
while( (comp = components.iter()) != NULL ) {
const Form *form = globals[comp->_type];
if( !form ) continue;
OpClassForm *op = form->is_opclass();
if( !op ) continue;
if( form->interface_type(globals) == Form::memory_interface ) {
if( comp->isa(Component::USE) ) USE_of_memory = true;
if( comp->isa(Component::DEF) ) {
OperandForm *oper = form->is_operand();
if( oper && oper->is_user_name_for_sReg() ) {
// Stack slots are unaliased memory handled by allocator
oper = oper; // debug stopping point !!!!!
} else {
DEF_of_memory = true;
}
}
}
}
return (USE_of_memory && !DEF_of_memory);
}
bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
if( _matrule == NULL ) return false;
if( !_matrule->_opType ) return false;
if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
return false;
}
int InstructForm::memory_operand(FormDict &globals) const {
// Machine independent loads must be checked for anti-dependences
// Check if instruction has a USE of a memory operand class, or a def.
int USE_of_memory = 0;
int DEF_of_memory = 0;
const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
Component *unique = NULL;
Component *comp = NULL;
ComponentList &components = (ComponentList &)_components;
components.reset();
while( (comp = components.iter()) != NULL ) {
const Form *form = globals[comp->_type];
if( !form ) continue;
OpClassForm *op = form->is_opclass();
if( !op ) continue;
if( op->stack_slots_only(globals) ) continue;
if( form->interface_type(globals) == Form::memory_interface ) {
if( comp->isa(Component::DEF) ) {
last_memory_DEF = comp->_name;
DEF_of_memory++;
unique = comp;
} else if( comp->isa(Component::USE) ) {
if( last_memory_DEF != NULL ) {
assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
last_memory_DEF = NULL;
}
USE_of_memory++;
if (DEF_of_memory == 0) // defs take precedence
unique = comp;
} else {
assert(last_memory_DEF == NULL, "unpaired memory DEF");
}
}
}
assert(last_memory_DEF == NULL, "unpaired memory DEF");
assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
if( (USE_of_memory + DEF_of_memory) > 0 ) {
if( is_simple_chain_rule(globals) ) {
//fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
//((InstructForm*)this)->dump();
// Preceding code prints nothing on sparc and these insns on intel:
// leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
// leaPIdxOff leaPIdxScale leaPIdxScaleOff
return NO_MEMORY_OPERAND;
}
if( DEF_of_memory == 1 ) {
assert(unique != NULL, "");
if( USE_of_memory == 0 ) {
// unique def, no uses
} else {
// // unique def, some uses
// // must return bottom unless all uses match def
// unique = NULL;
}
} else if( DEF_of_memory > 0 ) {
// multiple defs, don't care about uses
unique = NULL;
} else if( USE_of_memory == 1) {
// unique use, no defs
assert(unique != NULL, "");
} else if( USE_of_memory > 0 ) {
// multiple uses, no defs
unique = NULL;
} else {
assert(false, "bad case analysis");
}
// process the unique DEF or USE, if there is one
if( unique == NULL ) {
return MANY_MEMORY_OPERANDS;
} else {
int pos = components.operand_position(unique->_name);
if( unique->isa(Component::DEF) ) {
pos += 1; // get corresponding USE from DEF
}
assert(pos >= 1, "I was just looking at it!");
return pos;
}
}
// missed the memory op??
if( true ) { // %%% should not be necessary
if( is_ideal_store() != Form::none ) {
fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
((InstructForm*)this)->dump();
// pretend it has multiple defs and uses
return MANY_MEMORY_OPERANDS;
}
if( is_ideal_load() != Form::none ) {
fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
((InstructForm*)this)->dump();
// pretend it has multiple uses and no defs
return MANY_MEMORY_OPERANDS;
}
}
return NO_MEMORY_OPERAND;
}
// This instruction captures the machine-independent bottom_type
// Expected use is for pointer vs oop determination for LoadP
bool InstructForm::captures_bottom_type() const {
if( _matrule && _matrule->_rChild &&
(!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
!strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
!strcmp(_matrule->_rChild->_opType,"DecodeN") ||
!strcmp(_matrule->_rChild->_opType,"EncodeP") ||
!strcmp(_matrule->_rChild->_opType,"LoadN") ||
!strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
2007-12-01 00:00:00 +00:00
!strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
!strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
else if ( is_ideal_load() == Form::idealP ) return true;
else if ( is_ideal_store() != Form::none ) return true;
return false;
}
// Access instr_cost attribute or return NULL.
const char* InstructForm::cost() {
for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
return cur->_val;
}
}
return NULL;
}
// Return count of top-level operands.
uint InstructForm::num_opnds() {
int num_opnds = _components.num_operands();
// Need special handling for matching some ideal nodes
// i.e. Matching a return node
/*
if( _matrule ) {
if( strcmp(_matrule->_opType,"Return" )==0 ||
strcmp(_matrule->_opType,"Halt" )==0 )
return 3;
}
*/
return num_opnds;
}
// Return count of unmatched operands.
uint InstructForm::num_post_match_opnds() {
uint num_post_match_opnds = _components.count();
uint num_match_opnds = _components.match_count();
num_post_match_opnds = num_post_match_opnds - num_match_opnds;
return num_post_match_opnds;
}
// Return the number of leaves below this complex operand
uint InstructForm::num_consts(FormDict &globals) const {
if ( ! _matrule) return 0;
// This is a recursive invocation on all operands in the matchrule
return _matrule->num_consts(globals);
}
// Constants in match rule with specified type
uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
if ( ! _matrule) return 0;
// This is a recursive invocation on all operands in the matchrule
return _matrule->num_consts(globals, type);
}
// Return the register class associated with 'leaf'.
const char *InstructForm::out_reg_class(FormDict &globals) {
assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
return NULL;
}
// Lookup the starting position of inputs we are interested in wrt. ideal nodes
uint InstructForm::oper_input_base(FormDict &globals) {
if( !_matrule ) return 1; // Skip control for most nodes
// Need special handling for matching some ideal nodes
// i.e. Matching a return node
if( strcmp(_matrule->_opType,"Return" )==0 ||
strcmp(_matrule->_opType,"Rethrow" )==0 ||
strcmp(_matrule->_opType,"TailCall" )==0 ||
strcmp(_matrule->_opType,"TailJump" )==0 ||
strcmp(_matrule->_opType,"SafePoint" )==0 ||
strcmp(_matrule->_opType,"Halt" )==0 )
return AdlcVMDeps::Parms; // Skip the machine-state edges
if( _matrule->_rChild &&
strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
// String compare takes 1 control and 4 memory edges.
return 5;
}
// Check for handling of 'Memory' input/edge in the ideal world.
// The AD file writer is shielded from knowledge of these edges.
int base = 1; // Skip control
base += _matrule->needs_ideal_memory_edge(globals);
// Also skip the base-oop value for uses of derived oops.
// The AD file writer is shielded from knowledge of these edges.
base += needs_base_oop_edge(globals);
return base;
}
// Implementation does not modify state of internal structures
void InstructForm::build_components() {
// Add top-level operands to the components
if (_matrule) _matrule->append_components(_localNames, _components);
// Add parameters that "do not appear in match rule".
bool has_temp = false;
const char *name;
const char *kill_name = NULL;
for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
OperandForm *opForm = (OperandForm*)_localNames[name];
const Form *form = _effects[name];
Effect *e = form ? form->is_effect() : NULL;
if (e != NULL) {
has_temp |= e->is(Component::TEMP);
// KILLs must be declared after any TEMPs because TEMPs are real
// uses so their operand numbering must directly follow the real
// inputs from the match rule. Fixing the numbering seems
// complex so simply enforce the restriction during parse.
if (kill_name != NULL &&
e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
OperandForm* kill = (OperandForm*)_localNames[kill_name];
globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
_ident, kill->_ident, kill_name);
} else if (e->isa(Component::KILL)) {
kill_name = name;
}
// TEMPs are real uses and need to be among the first parameters
// listed, otherwise the numbering of operands and inputs gets
// screwy, so enforce this restriction during parse.
if (kill_name != NULL &&
e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
OperandForm* kill = (OperandForm*)_localNames[kill_name];
globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
_ident, kill->_ident, kill_name, opForm->_ident, name);
} else if (e->isa(Component::KILL)) {
kill_name = name;
}
}
const Component *component = _components.search(name);
if ( component == NULL ) {
if (e) {
_components.insert(name, opForm->_ident, e->_use_def, false);
component = _components.search(name);
if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
const Form *form = globalAD->globalNames()[component->_type];
assert( form, "component type must be a defined form");
OperandForm *op = form->is_operand();
if (op->_interface && op->_interface->is_RegInterface()) {
globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
_ident, opForm->_ident, name);
}
}
} else {
// This would be a nice warning but it triggers in a few places in a benign way
// if (_matrule != NULL && !expands()) {
// globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
// _ident, opForm->_ident, name);
// }
_components.insert(name, opForm->_ident, Component::INVALID, false);
}
}
else if (e) {
// Component was found in the list
// Check if there is a new effect that requires an extra component.
// This happens when adding 'USE' to a component that is not yet one.
if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
if (component->isa(Component::USE) && _matrule) {
const Form *form = globalAD->globalNames()[component->_type];
assert( form, "component type must be a defined form");
OperandForm *op = form->is_operand();
if (op->_interface && op->_interface->is_RegInterface()) {
globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
_ident, opForm->_ident, name);
}
}
_components.insert(name, opForm->_ident, e->_use_def, false);
} else {
Component *comp = (Component*)component;
comp->promote_use_def_info(e->_use_def);
}
// Component positions are zero based.
int pos = _components.operand_position(name);
assert( ! (component->isa(Component::DEF) && (pos >= 1)),
"Component::DEF can only occur in the first position");
}
}
// Resolving the interactions between expand rules and TEMPs would
// be complex so simply disallow it.
if (_matrule == NULL && has_temp) {
globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
}
return;
}
// Return zero-based position in component list; -1 if not in list.
int InstructForm::operand_position(const char *name, int usedef) {
return unique_opnds_idx(_components.operand_position(name, usedef));
}
int InstructForm::operand_position_format(const char *name) {
return unique_opnds_idx(_components.operand_position_format(name));
}
// Return zero-based position in component list; -1 if not in list.
int InstructForm::label_position() {
return unique_opnds_idx(_components.label_position());
}
int InstructForm::method_position() {
return unique_opnds_idx(_components.method_position());
}
// Return number of relocation entries needed for this instruction.
uint InstructForm::reloc(FormDict &globals) {
uint reloc_entries = 0;
// Check for "Call" nodes
if ( is_ideal_call() ) ++reloc_entries;
if ( is_ideal_return() ) ++reloc_entries;
if ( is_ideal_safepoint() ) ++reloc_entries;
// Check if operands MAYBE oop pointers, by checking for ConP elements
// Proceed through the leaves of the match-tree and check for ConPs
if ( _matrule != NULL ) {
uint position = 0;
const char *result = NULL;
const char *name = NULL;
const char *opType = NULL;
while (_matrule->base_operand(position, globals, result, name, opType)) {
if ( strcmp(opType,"ConP") == 0 ) {
#ifdef SPARC
reloc_entries += 2; // 1 for sethi + 1 for setlo
#else
++reloc_entries;
#endif
}
++position;
}
}
// Above is only a conservative estimate
// because it did not check contents of operand classes.
// !!!!! !!!!!
// Add 1 to reloc info for each operand class in the component list.
Component *comp;
_components.reset();
while ( (comp = _components.iter()) != NULL ) {
const Form *form = globals[comp->_type];
assert( form, "Did not find component's type in global names");
const OpClassForm *opc = form->is_opclass();
const OperandForm *oper = form->is_operand();
if ( opc && (oper == NULL) ) {
++reloc_entries;
} else if ( oper ) {
// floats and doubles loaded out of method's constant pool require reloc info
Form::DataType type = oper->is_base_constant(globals);
if ( (type == Form::idealF) || (type == Form::idealD) ) {
++reloc_entries;
}
}
}
// Float and Double constants may come from the CodeBuffer table
// and require relocatable addresses for access
// !!!!!
// Check for any component being an immediate float or double.
Form::DataType data_type = is_chain_of_constant(globals);
if( data_type==idealD || data_type==idealF ) {
#ifdef SPARC
// sparc required more relocation entries for floating constants
// (expires 9/98)
reloc_entries += 6;
#else
reloc_entries++;
#endif
}
return reloc_entries;
}
// Utility function defined in archDesc.cpp
extern bool is_def(int usedef);
// Return the result of reducing an instruction
const char *InstructForm::reduce_result() {
const char* result = "Universe"; // default
_components.reset();
Component *comp = _components.iter();
if (comp != NULL && comp->isa(Component::DEF)) {
result = comp->_type;
// Override this if the rule is a store operation:
if (_matrule && _matrule->_rChild &&
is_store_to_memory(_matrule->_rChild->_opType))
result = "Universe";
}
return result;
}
// Return the name of the operand on the right hand side of the binary match
// Return NULL if there is no right hand side
const char *InstructForm::reduce_right(FormDict &globals) const {
if( _matrule == NULL ) return NULL;
return _matrule->reduce_right(globals);
}
// Similar for left
const char *InstructForm::reduce_left(FormDict &globals) const {
if( _matrule == NULL ) return NULL;
return _matrule->reduce_left(globals);
}
// Base class for this instruction, MachNode except for calls
const char *InstructForm::mach_base_class() const {
if( is_ideal_call() == Form::JAVA_STATIC ) {
return "MachCallStaticJavaNode";
}
else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
return "MachCallDynamicJavaNode";
}
else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
return "MachCallRuntimeNode";
}
else if( is_ideal_call() == Form::JAVA_LEAF ) {
return "MachCallLeafNode";
}
else if (is_ideal_return()) {
return "MachReturnNode";
}
else if (is_ideal_halt()) {
return "MachHaltNode";
}
else if (is_ideal_safepoint()) {
return "MachSafePointNode";
}
else if (is_ideal_if()) {
return "MachIfNode";
}
else if (is_ideal_fastlock()) {
return "MachFastLockNode";
}
else if (is_ideal_nop()) {
return "MachNopNode";
}
else if (captures_bottom_type()) {
return "MachTypeNode";
} else {
return "MachNode";
}
assert( false, "ShouldNotReachHere()");
return NULL;
}
// Compare the instruction predicates for textual equality
bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
const Predicate *pred1 = instr1->_predicate;
const Predicate *pred2 = instr2->_predicate;
if( pred1 == NULL && pred2 == NULL ) {
// no predicates means they are identical
return true;
}
if( pred1 != NULL && pred2 != NULL ) {
// compare the predicates
const char *str1 = pred1->_pred;
const char *str2 = pred2->_pred;
if( (str1 == NULL && str2 == NULL)
|| (str1 != NULL && str2 != NULL && strcmp(str1,str2) == 0) ) {
return true;
}
}
return false;
}
// Check if this instruction can cisc-spill to 'alternate'
bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
// Do not replace if a cisc-version has been found.
if( cisc_spill_operand() != Not_cisc_spillable ) return false;
int cisc_spill_operand = Maybe_cisc_spillable;
char *result = NULL;
char *result2 = NULL;
const char *op_name = NULL;
const char *reg_type = NULL;
FormDict &globals = AD.globalNames();
cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
cisc_spill_operand = operand_position(op_name, Component::USE);
int def_oper = operand_position(op_name, Component::DEF);
if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
// Do not support cisc-spilling for destination operands and
// make sure they have the same number of operands.
_cisc_spill_alternate = instr;
instr->set_cisc_alternate(true);
if( AD._cisc_spill_debug ) {
fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
}
// Record that a stack-version of the reg_mask is needed
// !!!!!
OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
assert( oper != NULL, "cisc-spilling non operand");
const char *reg_class_name = oper->constrained_reg_class();
AD.set_stack_or_reg(reg_class_name);
const char *reg_mask_name = AD.reg_mask(*oper);
set_cisc_reg_mask_name(reg_mask_name);
const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
} else {
cisc_spill_operand = Not_cisc_spillable;
}
} else {
cisc_spill_operand = Not_cisc_spillable;
}
set_cisc_spill_operand(cisc_spill_operand);
return (cisc_spill_operand != Not_cisc_spillable);
}
// Check to see if this instruction can be replaced with the short branch
// instruction `short-branch'
bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
if (_matrule != NULL &&
this != short_branch && // Don't match myself
!is_short_branch() && // Don't match another short branch variant
reduce_result() != NULL &&
strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
_matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
// The instructions are equivalent.
if (AD._short_branch_debug) {
fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
}
_short_branch_form = short_branch;
return true;
}
return false;
}
// --------------------------- FILE *output_routines
//
// Generate the format call for the replacement variable
void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
// Find replacement variable's type
const Form *form = _localNames[rep_var];
if (form == NULL) {
fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
assert(false, "ShouldNotReachHere()");
}
OpClassForm *opc = form->is_opclass();
assert( opc, "replacement variable was not found in local names");
// Lookup the index position of the replacement variable
int idx = operand_position_format(rep_var);
if ( idx == -1 ) {
assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
assert( false, "ShouldNotReachHere()");
}
if (is_noninput_operand(idx)) {
// This component isn't in the input array. Print out the static
// name of the register.
OperandForm* oper = form->is_operand();
if (oper != NULL && oper->is_bound_register()) {
const RegDef* first = oper->get_RegClass()->find_first_elem();
fprintf(fp, " tty->print(\"%s\");\n", first->_regname);
} else {
globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
}
} else {
// Output the format call for this operand
fprintf(fp,"opnd_array(%d)->",idx);
if (idx == 0)
fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
else
fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
}
}
// Seach through operands to determine parameters unique positions.
void InstructForm::set_unique_opnds() {
uint* uniq_idx = NULL;
uint nopnds = num_opnds();
uint num_uniq = nopnds;
uint i;
if ( nopnds > 0 ) {
// Allocate index array with reserve.
uniq_idx = (uint*) malloc(sizeof(uint)*(nopnds + 2));
for( i = 0; i < nopnds+2; i++ ) {
uniq_idx[i] = i;
}
}
// Do it only if there is a match rule and no expand rule. With an
// expand rule it is done by creating new mach node in Expand()
// method.
if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
const char *name;
uint count;
bool has_dupl_use = false;
_parameters.reset();
while( (name = _parameters.iter()) != NULL ) {
count = 0;
uint position = 0;
uint uniq_position = 0;
_components.reset();
Component *comp = NULL;
if( sets_result() ) {
comp = _components.iter();
position++;
}
// The next code is copied from the method operand_position().
for (; (comp = _components.iter()) != NULL; ++position) {
// When the first component is not a DEF,
// leave space for the result operand!
if ( position==0 && (! comp->isa(Component::DEF)) ) {
++position;
}
if( strcmp(name, comp->_name)==0 ) {
if( ++count > 1 ) {
uniq_idx[position] = uniq_position;
has_dupl_use = true;
} else {
uniq_position = position;
}
}
if( comp->isa(Component::DEF)
&& comp->isa(Component::USE) ) {
++position;
if( position != 1 )
--position; // only use two slots for the 1st USE_DEF
}
}
}
if( has_dupl_use ) {
for( i = 1; i < nopnds; i++ )
if( i != uniq_idx[i] )
break;
int j = i;
for( ; i < nopnds; i++ )
if( i == uniq_idx[i] )
uniq_idx[i] = j++;
num_uniq = j;
}
}
_uniq_idx = uniq_idx;
_num_uniq = num_uniq;
}
// Generate index values needed for determing the operand position
void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
uint idx = 0; // position of operand in match rule
int cur_num_opnds = num_opnds();
// Compute the index into vector of operand pointers:
// idx0=0 is used to indicate that info comes from this same node, not from input edge.
// idx1 starts at oper_input_base()
if ( cur_num_opnds >= 1 ) {
fprintf(fp," // Start at oper_input_base() and count operands\n");
fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
fprintf(fp," unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
// Generate starting points for other unique operands if they exist
for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
if( *receiver == 0 ) {
fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
prefix, idx, prefix, idx-1, idx-1 );
} else {
fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
prefix, idx, prefix, idx-1, receiver, idx-1 );
}
}
}
if( *receiver != 0 ) {
// This value is used by generate_peepreplace when copying a node.
// Don't emit it in other cases since it can hide bugs with the
// use invalid idx's.
fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
}
}
// ---------------------------
bool InstructForm::verify() {
// !!!!! !!!!!
// Check that a "label" operand occurs last in the operand list, if present
return true;
}
void InstructForm::dump() {
output(stderr);
}
void InstructForm::output(FILE *fp) {
fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
if (_matrule) _matrule->output(fp);
if (_insencode) _insencode->output(fp);
if (_opcode) _opcode->output(fp);
if (_attribs) _attribs->output(fp);
if (_predicate) _predicate->output(fp);
if (_effects.Size()) {
fprintf(fp,"Effects\n");
_effects.dump();
}
if (_exprule) _exprule->output(fp);
if (_rewrule) _rewrule->output(fp);
if (_format) _format->output(fp);
if (_peephole) _peephole->output(fp);
}
void MachNodeForm::dump() {
output(stderr);
}
void MachNodeForm::output(FILE *fp) {
fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
}
//------------------------------build_predicate--------------------------------
// Build instruction predicates. If the user uses the same operand name
// twice, we need to check that the operands are pointer-eequivalent in
// the DFA during the labeling process.
Predicate *InstructForm::build_predicate() {
char buf[1024], *s=buf;
Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
MatchNode *mnode =
strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
mnode->count_instr_names(names);
uint first = 1;
// Start with the predicate supplied in the .ad file.
if( _predicate ) {
if( first ) first=0;
strcpy(s,"("); s += strlen(s);
strcpy(s,_predicate->_pred);
s += strlen(s);
strcpy(s,")"); s += strlen(s);
}
for( DictI i(&names); i.test(); ++i ) {
uintptr_t cnt = (uintptr_t)i._value;
if( cnt > 1 ) { // Need a predicate at all?
assert( cnt == 2, "Unimplemented" );
// Handle many pairs
if( first ) first=0;
else { // All tests must pass, so use '&&'
strcpy(s," && ");
s += strlen(s);
}
// Add predicate to working buffer
sprintf(s,"/*%s*/(",(char*)i._key);
s += strlen(s);
mnode->build_instr_pred(s,(char*)i._key,0);
s += strlen(s);
strcpy(s," == "); s += strlen(s);
mnode->build_instr_pred(s,(char*)i._key,1);
s += strlen(s);
strcpy(s,")"); s += strlen(s);
}
}
if( s == buf ) s = NULL;
else {
assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
s = strdup(buf);
}
return new Predicate(s);
}
//------------------------------EncodeForm-------------------------------------
// Constructor
EncodeForm::EncodeForm()
: _encClass(cmpstr,hashstr, Form::arena) {
}
EncodeForm::~EncodeForm() {
}
// record a new register class
EncClass *EncodeForm::add_EncClass(const char *className) {
EncClass *encClass = new EncClass(className);
_eclasses.addName(className);
_encClass.Insert(className,encClass);
return encClass;
}
// Lookup the function body for an encoding class
EncClass *EncodeForm::encClass(const char *className) {
assert( className != NULL, "Must provide a defined encoding name");
EncClass *encClass = (EncClass*)_encClass[className];
return encClass;
}
// Lookup the function body for an encoding class
const char *EncodeForm::encClassBody(const char *className) {
if( className == NULL ) return NULL;
EncClass *encClass = (EncClass*)_encClass[className];
assert( encClass != NULL, "Encode Class is missing.");
encClass->_code.reset();
const char *code = (const char*)encClass->_code.iter();
assert( code != NULL, "Found an empty encode class body.");
return code;
}
// Lookup the function body for an encoding class
const char *EncodeForm::encClassPrototype(const char *className) {
assert( className != NULL, "Encode class name must be non NULL.");
return className;
}
void EncodeForm::dump() { // Debug printer
output(stderr);
}
void EncodeForm::output(FILE *fp) { // Write info to output files
const char *name;
fprintf(fp,"\n");
fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
((EncClass*)_encClass[name])->output(fp);
}
fprintf(fp,"-------------------- end EncodeForm --------------------\n");
}
//------------------------------EncClass---------------------------------------
EncClass::EncClass(const char *name)
: _localNames(cmpstr,hashstr, Form::arena), _name(name) {
}
EncClass::~EncClass() {
}
// Add a parameter <type,name> pair
void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
_parameter_type.addName( parameter_type );
_parameter_name.addName( parameter_name );
}
// Verify operand types in parameter list
bool EncClass::check_parameter_types(FormDict &globals) {
// !!!!!
return false;
}
// Add the decomposed "code" sections of an encoding's code-block
void EncClass::add_code(const char *code) {
_code.addName(code);
}
// Add the decomposed "replacement variables" of an encoding's code-block
void EncClass::add_rep_var(char *replacement_var) {
_code.addName(NameList::_signal);
_rep_vars.addName(replacement_var);
}
// Lookup the function body for an encoding class
int EncClass::rep_var_index(const char *rep_var) {
uint position = 0;
const char *name = NULL;
_parameter_name.reset();
while ( (name = _parameter_name.iter()) != NULL ) {
if ( strcmp(rep_var,name) == 0 ) return position;
++position;
}
return -1;
}
// Check after parsing
bool EncClass::verify() {
// 1!!!!
// Check that each replacement variable, '$name' in architecture description
// is actually a local variable for this encode class, or a reserved name
// "primary, secondary, tertiary"
return true;
}
void EncClass::dump() {
output(stderr);
}
// Write info to output files
void EncClass::output(FILE *fp) {
fprintf(fp,"EncClass: %s", (_name ? _name : ""));
// Output the parameter list
_parameter_type.reset();
_parameter_name.reset();
const char *type = _parameter_type.iter();
const char *name = _parameter_name.iter();
fprintf(fp, " ( ");
for ( ; (type != NULL) && (name != NULL);
(type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
fprintf(fp, " %s %s,", type, name);
}
fprintf(fp, " ) ");
// Output the code block
_code.reset();
_rep_vars.reset();
const char *code;
while ( (code = _code.iter()) != NULL ) {
if ( _code.is_signal(code) ) {
// A replacement variable
const char *rep_var = _rep_vars.iter();
fprintf(fp,"($%s)", rep_var);
} else {
// A section of code
fprintf(fp,"%s", code);
}
}
}
//------------------------------Opcode-----------------------------------------
Opcode::Opcode(char *primary, char *secondary, char *tertiary)
: _primary(primary), _secondary(secondary), _tertiary(tertiary) {
}
Opcode::~Opcode() {
}
Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
if( strcmp(param,"primary") == 0 ) {
return Opcode::PRIMARY;
}
else if( strcmp(param,"secondary") == 0 ) {
return Opcode::SECONDARY;
}
else if( strcmp(param,"tertiary") == 0 ) {
return Opcode::TERTIARY;
}
return Opcode::NOT_AN_OPCODE;
}
void Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
// Default values previously provided by MachNode::primary()...
const char *description = "default_opcode()";
const char *value = "-1";
// Check if user provided any opcode definitions
if( this != NULL ) {
// Update 'value' if user provided a definition in the instruction
switch (desired_opcode) {
case PRIMARY:
description = "primary()";
if( _primary != NULL) { value = _primary; }
break;
case SECONDARY:
description = "secondary()";
if( _secondary != NULL ) { value = _secondary; }
break;
case TERTIARY:
description = "tertiary()";
if( _tertiary != NULL ) { value = _tertiary; }
break;
default:
assert( false, "ShouldNotReachHere();");
break;
}
}
fprintf(fp, "(%s /*%s*/)", value, description);
}
void Opcode::dump() {
output(stderr);
}
// Write info to output files
void Opcode::output(FILE *fp) {
if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
}
//------------------------------InsEncode--------------------------------------
InsEncode::InsEncode() {
}
InsEncode::~InsEncode() {
}
// Add "encode class name" and its parameters
NameAndList *InsEncode::add_encode(char *encoding) {
assert( encoding != NULL, "Must provide name for encoding");
// add_parameter(NameList::_signal);
NameAndList *encode = new NameAndList(encoding);
_encoding.addName((char*)encode);
return encode;
}
// Access the list of encodings
void InsEncode::reset() {
_encoding.reset();
// _parameter.reset();
}
const char* InsEncode::encode_class_iter() {
NameAndList *encode_class = (NameAndList*)_encoding.iter();
return ( encode_class != NULL ? encode_class->name() : NULL );
}
// Obtain parameter name from zero based index
const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
NameAndList *params = (NameAndList*)_encoding.current();
assert( params != NULL, "Internal Error");
const char *param = (*params)[param_no];
// Remove '$' if parser placed it there.
return ( param != NULL && *param == '$') ? (param+1) : param;
}
void InsEncode::dump() {
output(stderr);
}
// Write info to output files
void InsEncode::output(FILE *fp) {
NameAndList *encoding = NULL;
const char *parameter = NULL;
fprintf(fp,"InsEncode: ");
_encoding.reset();
while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
// Output the encoding being used
fprintf(fp,"%s(", encoding->name() );
// Output its parameter list, if any
bool first_param = true;
encoding->reset();
while ( (parameter = encoding->iter()) != 0 ) {
// Output the ',' between parameters
if ( ! first_param ) fprintf(fp,", ");
first_param = false;
// Output the parameter
fprintf(fp,"%s", parameter);
} // done with parameters
fprintf(fp,") ");
} // done with encodings
fprintf(fp,"\n");
}
//------------------------------Effect-----------------------------------------
static int effect_lookup(const char *name) {
if(!strcmp(name, "USE")) return Component::USE;
if(!strcmp(name, "DEF")) return Component::DEF;
if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
if(!strcmp(name, "KILL")) return Component::KILL;
if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
if(!strcmp(name, "TEMP")) return Component::TEMP;
if(!strcmp(name, "INVALID")) return Component::INVALID;
assert( false,"Invalid effect name specified\n");
return Component::INVALID;
}
Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
_ftype = Form::EFF;
}
Effect::~Effect() {
}
// Dynamic type check
Effect *Effect::is_effect() const {
return (Effect*)this;
}
// True if this component is equal to the parameter.
bool Effect::is(int use_def_kill_enum) const {
return (_use_def == use_def_kill_enum ? true : false);
}
// True if this component is used/def'd/kill'd as the parameter suggests.
bool Effect::isa(int use_def_kill_enum) const {
return (_use_def & use_def_kill_enum) == use_def_kill_enum;
}
void Effect::dump() {
output(stderr);
}
void Effect::output(FILE *fp) { // Write info to output files
fprintf(fp,"Effect: %s\n", (_name?_name:""));
}
//------------------------------ExpandRule-------------------------------------
ExpandRule::ExpandRule() : _expand_instrs(),
_newopconst(cmpstr, hashstr, Form::arena) {
_ftype = Form::EXP;
}
ExpandRule::~ExpandRule() { // Destructor
}
void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
_expand_instrs.addName((char*)instruction_name_and_operand_list);
}
void ExpandRule::reset_instructions() {
_expand_instrs.reset();
}
NameAndList* ExpandRule::iter_instructions() {
return (NameAndList*)_expand_instrs.iter();
}
void ExpandRule::dump() {
output(stderr);
}
void ExpandRule::output(FILE *fp) { // Write info to output files
NameAndList *expand_instr = NULL;
const char *opid = NULL;
fprintf(fp,"\nExpand Rule:\n");
// Iterate over the instructions 'node' expands into
for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
fprintf(fp,"%s(", expand_instr->name());
// iterate over the operand list
for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
fprintf(fp,"%s ", opid);
}
fprintf(fp,");\n");
}
}
//------------------------------RewriteRule------------------------------------
RewriteRule::RewriteRule(char* params, char* block)
: _tempParams(params), _tempBlock(block) { }; // Constructor
RewriteRule::~RewriteRule() { // Destructor
}
void RewriteRule::dump() {
output(stderr);
}
void RewriteRule::output(FILE *fp) { // Write info to output files
fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
(_tempParams?_tempParams:""),
(_tempBlock?_tempBlock:""));
}
//==============================MachNodes======================================
//------------------------------MachNodeForm-----------------------------------
MachNodeForm::MachNodeForm(char *id)
: _ident(id) {
}
MachNodeForm::~MachNodeForm() {
}
MachNodeForm *MachNodeForm::is_machnode() const {
return (MachNodeForm*)this;
}
//==============================Operand Classes================================
//------------------------------OpClassForm------------------------------------
OpClassForm::OpClassForm(const char* id) : _ident(id) {
_ftype = Form::OPCLASS;
}
OpClassForm::~OpClassForm() {
}
bool OpClassForm::ideal_only() const { return 0; }
OpClassForm *OpClassForm::is_opclass() const {
return (OpClassForm*)this;
}
Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
if( _oplst.count() == 0 ) return Form::no_interface;
// Check that my operands have the same interface type
Form::InterfaceType interface;
bool first = true;
NameList &op_list = (NameList &)_oplst;
op_list.reset();
const char *op_name;
while( (op_name = op_list.iter()) != NULL ) {
const Form *form = globals[op_name];
OperandForm *operand = form->is_operand();
assert( operand, "Entry in operand class that is not an operand");
if( first ) {
first = false;
interface = operand->interface_type(globals);
} else {
interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
}
}
return interface;
}
bool OpClassForm::stack_slots_only(FormDict &globals) const {
if( _oplst.count() == 0 ) return false; // how?
NameList &op_list = (NameList &)_oplst;
op_list.reset();
const char *op_name;
while( (op_name = op_list.iter()) != NULL ) {
const Form *form = globals[op_name];
OperandForm *operand = form->is_operand();
assert( operand, "Entry in operand class that is not an operand");
if( !operand->stack_slots_only(globals) ) return false;
}
return true;
}
void OpClassForm::dump() {
output(stderr);
}
void OpClassForm::output(FILE *fp) {
const char *name;
fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
fprintf(fp,"\nCount = %d\n", _oplst.count());
for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
fprintf(fp,"%s, ",name);
}
fprintf(fp,"\n");
}
//==============================Operands=======================================
//------------------------------OperandForm------------------------------------
OperandForm::OperandForm(const char* id)
: OpClassForm(id), _ideal_only(false),
_localNames(cmpstr, hashstr, Form::arena) {
_ftype = Form::OPER;
_matrule = NULL;
_interface = NULL;
_attribs = NULL;
_predicate = NULL;
_constraint= NULL;
_construct = NULL;
_format = NULL;
}
OperandForm::OperandForm(const char* id, bool ideal_only)
: OpClassForm(id), _ideal_only(ideal_only),
_localNames(cmpstr, hashstr, Form::arena) {
_ftype = Form::OPER;
_matrule = NULL;
_interface = NULL;
_attribs = NULL;
_predicate = NULL;
_constraint= NULL;
_construct = NULL;
_format = NULL;
}
OperandForm::~OperandForm() {
}
OperandForm *OperandForm::is_operand() const {
return (OperandForm*)this;
}
bool OperandForm::ideal_only() const {
return _ideal_only;
}
Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
if( _interface == NULL ) return Form::no_interface;
return _interface->interface_type(globals);
}
bool OperandForm::stack_slots_only(FormDict &globals) const {
if( _constraint == NULL ) return false;
return _constraint->stack_slots_only();
}
// Access op_cost attribute or return NULL.
const char* OperandForm::cost() {
for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
return cur->_val;
}
}
return NULL;
}
// Return the number of leaves below this complex operand
uint OperandForm::num_leaves() const {
if ( ! _matrule) return 0;
int num_leaves = _matrule->_numleaves;
return num_leaves;
}
// Return the number of constants contained within this complex operand
uint OperandForm::num_consts(FormDict &globals) const {
if ( ! _matrule) return 0;
// This is a recursive invocation on all operands in the matchrule
return _matrule->num_consts(globals);
}
// Return the number of constants in match rule with specified type
uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
if ( ! _matrule) return 0;
// This is a recursive invocation on all operands in the matchrule
return _matrule->num_consts(globals, type);
}
// Return the number of pointer constants contained within this complex operand
uint OperandForm::num_const_ptrs(FormDict &globals) const {
if ( ! _matrule) return 0;
// This is a recursive invocation on all operands in the matchrule
return _matrule->num_const_ptrs(globals);
}
uint OperandForm::num_edges(FormDict &globals) const {
uint edges = 0;
uint leaves = num_leaves();
uint consts = num_consts(globals);
// If we are matching a constant directly, there are no leaves.
edges = ( leaves > consts ) ? leaves - consts : 0;
// !!!!!
// Special case operands that do not have a corresponding ideal node.
if( (edges == 0) && (consts == 0) ) {
if( constrained_reg_class() != NULL ) {
edges = 1;
} else {
if( _matrule
&& (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
const Form *form = globals[_matrule->_opType];
OperandForm *oper = form ? form->is_operand() : NULL;
if( oper ) {
return oper->num_edges(globals);
}
}
}
}
return edges;
}
// Check if this operand is usable for cisc-spilling
bool OperandForm::is_cisc_reg(FormDict &globals) const {
const char *ideal = ideal_type(globals);
bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
return is_cisc_reg;
}
bool OpClassForm::is_cisc_mem(FormDict &globals) const {
Form::InterfaceType my_interface = interface_type(globals);
return (my_interface == memory_interface);
}
// node matches ideal 'Bool'
bool OperandForm::is_ideal_bool() const {
if( _matrule == NULL ) return false;
return _matrule->is_ideal_bool();
}
// Require user's name for an sRegX to be stackSlotX
Form::DataType OperandForm::is_user_name_for_sReg() const {
DataType data_type = none;
if( _ident != NULL ) {
if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
}
assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
return data_type;
}
// Return ideal type, if there is a single ideal type for this operand
const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
const char *type = NULL;
if (ideal_only()) type = _ident;
else if( _matrule == NULL ) {
// Check for condition code register
const char *rc_name = constrained_reg_class();
// !!!!!
if (rc_name == NULL) return NULL;
// !!!!! !!!!!
// Check constraints on result's register class
if( registers ) {
RegClass *reg_class = registers->getRegClass(rc_name);
assert( reg_class != NULL, "Register class is not defined");
// Check for ideal type of entries in register class, all are the same type
reg_class->reset();
RegDef *reg_def = reg_class->RegDef_iter();
assert( reg_def != NULL, "No entries in register class");
assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
// Return substring that names the register's ideal type
type = reg_def->_idealtype + 3;
assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
}
}
else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
// This operand matches a single type, at the top level.
// Check for ideal type
type = _matrule->_opType;
if( strcmp(type,"Bool") == 0 )
return "Bool";
// transitive lookup
const Form *frm = globals[type];
OperandForm *op = frm->is_operand();
type = op->ideal_type(globals, registers);
}
return type;
}
// If there is a single ideal type for this interface field, return it.
const char *OperandForm::interface_ideal_type(FormDict &globals,
const char *field) const {
const char *ideal_type = NULL;
const char *value = NULL;
// Check if "field" is valid for this operand's interface
if ( ! is_interface_field(field, value) ) return ideal_type;
// !!!!! !!!!! !!!!!
// If a valid field has a constant value, identify "ConI" or "ConP" or ...
// Else, lookup type of field's replacement variable
return ideal_type;
}
RegClass* OperandForm::get_RegClass() const {
if (_interface && !_interface->is_RegInterface()) return NULL;
return globalAD->get_registers()->getRegClass(constrained_reg_class());
}
bool OperandForm::is_bound_register() const {
RegClass *reg_class = get_RegClass();
if (reg_class == NULL) return false;
const char * name = ideal_type(globalAD->globalNames());
if (name == NULL) return false;
int size = 0;
if (strcmp(name,"RegFlags")==0) size = 1;
if (strcmp(name,"RegI")==0) size = 1;
if (strcmp(name,"RegF")==0) size = 1;
if (strcmp(name,"RegD")==0) size = 2;
if (strcmp(name,"RegL")==0) size = 2;
if (strcmp(name,"RegN")==0) size = 1;
2007-12-01 00:00:00 +00:00
if (strcmp(name,"RegP")==0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
if (size == 0) return false;
return size == reg_class->size();
}
// Check if this is a valid field for this operand,
// Return 'true' if valid, and set the value to the string the user provided.
bool OperandForm::is_interface_field(const char *field,
const char * &value) const {
return false;
}
// Return register class name if a constraint specifies the register class.
const char *OperandForm::constrained_reg_class() const {
const char *reg_class = NULL;
if ( _constraint ) {
// !!!!!
Constraint *constraint = _constraint;
if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
reg_class = _constraint->_arg;
}
}
return reg_class;
}
// Return the register class associated with 'leaf'.
const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
const char *reg_class = NULL; // "RegMask::Empty";
if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
reg_class = constrained_reg_class();
return reg_class;
}
const char *result = NULL;
const char *name = NULL;
const char *type = NULL;
// iterate through all base operands
// until we reach the register that corresponds to "leaf"
// This function is not looking for an ideal type. It needs the first
// level user type associated with the leaf.
for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
OperandForm *oper = form ? form->is_operand() : NULL;
if( oper ) {
reg_class = oper->constrained_reg_class();
if( reg_class ) {
reg_class = reg_class;
} else {
// ShouldNotReachHere();
}
} else {
// ShouldNotReachHere();
}
// Increment our target leaf position if current leaf is not a candidate.
if( reg_class == NULL) ++leaf;
// Exit the loop with the value of reg_class when at the correct index
if( idx == leaf ) break;
// May iterate through all base operands if reg_class for 'leaf' is NULL
}
return reg_class;
}
// Recursive call to construct list of top-level operands.
// Implementation does not modify state of internal structures
void OperandForm::build_components() {
if (_matrule) _matrule->append_components(_localNames, _components);
// Add parameters that "do not appear in match rule".
const char *name;
for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
OperandForm *opForm = (OperandForm*)_localNames[name];
if ( _components.operand_position(name) == -1 ) {
_components.insert(name, opForm->_ident, Component::INVALID, false);
}
}
return;
}
int OperandForm::operand_position(const char *name, int usedef) {
return _components.operand_position(name, usedef);
}
// Return zero-based position in component list, only counting constants;
// Return -1 if not in list.
int OperandForm::constant_position(FormDict &globals, const Component *last) {
// Iterate through components and count constants preceeding 'constant'
uint position = 0;
Component *comp;
_components.reset();
while( (comp = _components.iter()) != NULL && (comp != last) ) {
// Special case for operands that take a single user-defined operand
// Skip the initial definition in the component list.
if( strcmp(comp->_name,this->_ident) == 0 ) continue;
const char *type = comp->_type;
// Lookup operand form for replacement variable's type
const Form *form = globals[type];
assert( form != NULL, "Component's type not found");
OperandForm *oper = form ? form->is_operand() : NULL;
if( oper ) {
if( oper->_matrule->is_base_constant(globals) != Form::none ) {
++position;
}
}
}
// Check for being passed a component that was not in the list
if( comp != last ) position = -1;
return position;
}
// Provide position of constant by "name"
int OperandForm::constant_position(FormDict &globals, const char *name) {
const Component *comp = _components.search(name);
int idx = constant_position( globals, comp );
return idx;
}
// Return zero-based position in component list, only counting constants;
// Return -1 if not in list.
int OperandForm::register_position(FormDict &globals, const char *reg_name) {
// Iterate through components and count registers preceeding 'last'
uint position = 0;
Component *comp;
_components.reset();
while( (comp = _components.iter()) != NULL
&& (strcmp(comp->_name,reg_name) != 0) ) {
// Special case for operands that take a single user-defined operand
// Skip the initial definition in the component list.
if( strcmp(comp->_name,this->_ident) == 0 ) continue;
const char *type = comp->_type;
// Lookup operand form for component's type
const Form *form = globals[type];
assert( form != NULL, "Component's type not found");
OperandForm *oper = form ? form->is_operand() : NULL;
if( oper ) {
if( oper->_matrule->is_base_register(globals) ) {
++position;
}
}
}
return position;
}
const char *OperandForm::reduce_result() const {
return _ident;
}
// Return the name of the operand on the right hand side of the binary match
// Return NULL if there is no right hand side
const char *OperandForm::reduce_right(FormDict &globals) const {
return ( _matrule ? _matrule->reduce_right(globals) : NULL );
}
// Similar for left
const char *OperandForm::reduce_left(FormDict &globals) const {
return ( _matrule ? _matrule->reduce_left(globals) : NULL );
}
// --------------------------- FILE *output_routines
//
// Output code for disp_is_oop, if true.
void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
// Check it is a memory interface with a non-user-constant disp field
if ( this->_interface == NULL ) return;
MemInterface *mem_interface = this->_interface->is_MemInterface();
if ( mem_interface == NULL ) return;
const char *disp = mem_interface->_disp;
if ( *disp != '$' ) return;
// Lookup replacement variable in operand's component list
const char *rep_var = disp + 1;
const Component *comp = this->_components.search(rep_var);
assert( comp != NULL, "Replacement variable not found in components");
// Lookup operand form for replacement variable's type
const char *type = comp->_type;
Form *form = (Form*)globals[type];
assert( form != NULL, "Replacement variable's type not found");
OperandForm *op = form->is_operand();
assert( op, "Memory Interface 'disp' can only emit an operand form");
// Check if this is a ConP, which may require relocation
if ( op->is_base_constant(globals) == Form::idealP ) {
// Find the constant's index: _c0, _c1, _c2, ... , _cN
uint idx = op->constant_position( globals, rep_var);
fprintf(fp," virtual bool disp_is_oop() const {", _ident);
fprintf(fp, " return _c%d->isa_oop_ptr();", idx);
fprintf(fp, " }\n");
}
}
// Generate code for internal and external format methods
//
// internal access to reg# node->_idx
// access to subsumed constant _c0, _c1,
void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
Form::DataType dtype;
if (_matrule && (_matrule->is_base_register(globals) ||
strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
// !!!!! !!!!!
fprintf(fp, "{ char reg_str[128];\n");
fprintf(fp," ra->dump_register(node,reg_str);\n");
fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
fprintf(fp," }\n");
} else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
format_constant( fp, index, dtype );
} else if (ideal_to_sReg_type(_ident) != Form::none) {
// Special format for Stack Slot Register
fprintf(fp, "{ char reg_str[128];\n");
fprintf(fp," ra->dump_register(node,reg_str);\n");
fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
fprintf(fp," }\n");
} else {
fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
fflush(fp);
fprintf(stderr,"No format defined for %s\n", _ident);
dump();
assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
}
}
// Similar to "int_format" but for cases where data is external to operand
// external access to reg# node->in(idx)->_idx,
void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
Form::DataType dtype;
if (_matrule && (_matrule->is_base_register(globals) ||
strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
fprintf(fp, "{ char reg_str[128];\n");
fprintf(fp," ra->dump_register(node->in(idx");
if ( index != 0 ) fprintf(fp, "+%d",index);
fprintf(fp, "),reg_str);\n");
fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
fprintf(fp," }\n");
} else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
format_constant( fp, index, dtype );
} else if (ideal_to_sReg_type(_ident) != Form::none) {
// Special format for Stack Slot Register
fprintf(fp, "{ char reg_str[128];\n");
fprintf(fp," ra->dump_register(node->in(idx");
if ( index != 0 ) fprintf(fp, "+%d",index);
fprintf(fp, "),reg_str);\n");
fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
fprintf(fp," }\n");
} else {
fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
}
}
void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
switch(const_type) {
case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
case Form::idealN: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2007-12-01 00:00:00 +00:00
default:
assert( false, "ShouldNotReachHere()");
}
}
// Return the operand form corresponding to the given index, else NULL.
OperandForm *OperandForm::constant_operand(FormDict &globals,
uint index) {
// !!!!!
// Check behavior on complex operands
uint n_consts = num_consts(globals);
if( n_consts > 0 ) {
uint i = 0;
const char *type;
Component *comp;
_components.reset();
if ((comp = _components.iter()) == NULL) {
assert(n_consts == 1, "Bad component list detected.\n");
// Current operand is THE operand
if ( index == 0 ) {
return this;
}
} // end if NULL
else {
// Skip the first component, it can not be a DEF of a constant
do {
type = comp->base_type(globals);
// Check that "type" is a 'ConI', 'ConP', ...
if ( ideal_to_const_type(type) != Form::none ) {
// When at correct component, get corresponding Operand
if ( index == 0 ) {
return globals[comp->_type]->is_operand();
}
// Decrement number of constants to go
--index;
}
} while((comp = _components.iter()) != NULL);
}
}
// Did not find a constant for this index.
return NULL;
}
// If this operand has a single ideal type, return its type
Form::DataType OperandForm::simple_type(FormDict &globals) const {
const char *type_name = ideal_type(globals);
Form::DataType type = type_name ? ideal_to_const_type( type_name )
: Form::none;
return type;
}
Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
if ( _matrule == NULL ) return Form::none;
return _matrule->is_base_constant(globals);
}
// "true" if this operand is a simple type that is swallowed
bool OperandForm::swallowed(FormDict &globals) const {
Form::DataType type = simple_type(globals);
if( type != Form::none ) {
return true;
}
return false;
}
// Output code to access the value of the index'th constant
void OperandForm::access_constant(FILE *fp, FormDict &globals,
uint const_index) {
OperandForm *oper = constant_operand(globals, const_index);
assert( oper, "Index exceeds number of constants in operand");
Form::DataType dtype = oper->is_base_constant(globals);
switch(dtype) {
case idealI: fprintf(fp,"_c%d", const_index); break;
case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
case idealL: fprintf(fp,"_c%d", const_index); break;
case idealF: fprintf(fp,"_c%d", const_index); break;
case idealD: fprintf(fp,"_c%d", const_index); break;
default:
assert( false, "ShouldNotReachHere()");
}
}
void OperandForm::dump() {
output(stderr);
}
void OperandForm::output(FILE *fp) {
fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
if (_matrule) _matrule->dump();
if (_interface) _interface->dump();
if (_attribs) _attribs->dump();
if (_predicate) _predicate->dump();
if (_constraint) _constraint->dump();
if (_construct) _construct->dump();
if (_format) _format->dump();
}
//------------------------------Constraint-------------------------------------
Constraint::Constraint(const char *func, const char *arg)
: _func(func), _arg(arg) {
}
Constraint::~Constraint() { /* not owner of char* */
}
bool Constraint::stack_slots_only() const {
return strcmp(_func, "ALLOC_IN_RC") == 0
&& strcmp(_arg, "stack_slots") == 0;
}
void Constraint::dump() {
output(stderr);
}
void Constraint::output(FILE *fp) { // Write info to output files
assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
}
//------------------------------Predicate--------------------------------------
Predicate::Predicate(char *pr)
: _pred(pr) {
}
Predicate::~Predicate() {
}
void Predicate::dump() {
output(stderr);
}
void Predicate::output(FILE *fp) {
fprintf(fp,"Predicate"); // Write to output files
}
//------------------------------Interface--------------------------------------
Interface::Interface(const char *name) : _name(name) {
}
Interface::~Interface() {
}
Form::InterfaceType Interface::interface_type(FormDict &globals) const {
Interface *thsi = (Interface*)this;
if ( thsi->is_RegInterface() ) return Form::register_interface;
if ( thsi->is_MemInterface() ) return Form::memory_interface;
if ( thsi->is_ConstInterface() ) return Form::constant_interface;
if ( thsi->is_CondInterface() ) return Form::conditional_interface;
return Form::no_interface;
}
RegInterface *Interface::is_RegInterface() {
if ( strcmp(_name,"REG_INTER") != 0 )
return NULL;
return (RegInterface*)this;
}
MemInterface *Interface::is_MemInterface() {
if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
return (MemInterface*)this;
}
ConstInterface *Interface::is_ConstInterface() {
if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
return (ConstInterface*)this;
}
CondInterface *Interface::is_CondInterface() {
if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
return (CondInterface*)this;
}
void Interface::dump() {
output(stderr);
}
// Write info to output files
void Interface::output(FILE *fp) {
fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
}
//------------------------------RegInterface-----------------------------------
RegInterface::RegInterface() : Interface("REG_INTER") {
}
RegInterface::~RegInterface() {
}
void RegInterface::dump() {
output(stderr);
}
// Write info to output files
void RegInterface::output(FILE *fp) {
Interface::output(fp);
}
//------------------------------ConstInterface---------------------------------
ConstInterface::ConstInterface() : Interface("CONST_INTER") {
}
ConstInterface::~ConstInterface() {
}
void ConstInterface::dump() {
output(stderr);
}
// Write info to output files
void ConstInterface::output(FILE *fp) {
Interface::output(fp);
}
//------------------------------MemInterface-----------------------------------
MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
: Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
}
MemInterface::~MemInterface() {
// not owner of any character arrays
}
void MemInterface::dump() {
output(stderr);
}
// Write info to output files
void MemInterface::output(FILE *fp) {
Interface::output(fp);
if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
// fprintf(fp,"\n");
}
//------------------------------CondInterface----------------------------------
CondInterface::CondInterface(char *equal, char *not_equal,
char *less, char *greater_equal,
char *less_equal, char *greater)
: Interface("COND_INTER"),
_equal(equal), _not_equal(not_equal),
_less(less), _greater_equal(greater_equal),
_less_equal(less_equal), _greater(greater) {
//
}
CondInterface::~CondInterface() {
// not owner of any character arrays
}
void CondInterface::dump() {
output(stderr);
}
// Write info to output files
void CondInterface::output(FILE *fp) {
Interface::output(fp);
if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
// fprintf(fp,"\n");
}
//------------------------------ConstructRule----------------------------------
ConstructRule::ConstructRule(char *cnstr)
: _construct(cnstr) {
}
ConstructRule::~ConstructRule() {
}
void ConstructRule::dump() {
output(stderr);
}
void ConstructRule::output(FILE *fp) {
fprintf(fp,"\nConstruct Rule\n"); // Write to output files
}
//==============================Shared Forms===================================
//------------------------------AttributeForm----------------------------------
int AttributeForm::_insId = 0; // start counter at 0
int AttributeForm::_opId = 0; // start counter at 0
const char* AttributeForm::_ins_cost = "ins_cost"; // required name
const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
const char* AttributeForm::_op_cost = "op_cost"; // required name
AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
: Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
if (type==OP_ATTR) {
id = ++_opId;
}
else if (type==INS_ATTR) {
id = ++_insId;
}
else assert( false,"");
}
AttributeForm::~AttributeForm() {
}
// Dynamic type check
AttributeForm *AttributeForm::is_attribute() const {
return (AttributeForm*)this;
}
// inlined // int AttributeForm::type() { return id;}
void AttributeForm::dump() {
output(stderr);
}
void AttributeForm::output(FILE *fp) {
if( _attrname && _attrdef ) {
fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
_attrname, _attrdef);
}
else {
fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
(_attrname?_attrname:""), (_attrdef?_attrdef:"") );
}
}
//------------------------------Component--------------------------------------
Component::Component(const char *name, const char *type, int usedef)
: _name(name), _type(type), _usedef(usedef) {
_ftype = Form::COMP;
}
Component::~Component() {
}
// True if this component is equal to the parameter.
bool Component::is(int use_def_kill_enum) const {
return (_usedef == use_def_kill_enum ? true : false);
}
// True if this component is used/def'd/kill'd as the parameter suggests.
bool Component::isa(int use_def_kill_enum) const {
return (_usedef & use_def_kill_enum) == use_def_kill_enum;
}
// Extend this component with additional use/def/kill behavior
int Component::promote_use_def_info(int new_use_def) {
_usedef |= new_use_def;
return _usedef;
}
// Check the base type of this component, if it has one
const char *Component::base_type(FormDict &globals) {
const Form *frm = globals[_type];
if (frm == NULL) return NULL;
OperandForm *op = frm->is_operand();
if (op == NULL) return NULL;
if (op->ideal_only()) return op->_ident;
return (char *)op->ideal_type(globals);
}
void Component::dump() {
output(stderr);
}
void Component::output(FILE *fp) {
fprintf(fp,"Component:"); // Write to output files
fprintf(fp, " name = %s", _name);
fprintf(fp, ", type = %s", _type);
const char * usedef = "Undefined Use/Def info";
switch (_usedef) {
case USE: usedef = "USE"; break;
case USE_DEF: usedef = "USE_DEF"; break;
case USE_KILL: usedef = "USE_KILL"; break;
case KILL: usedef = "KILL"; break;
case TEMP: usedef = "TEMP"; break;
case DEF: usedef = "DEF"; break;
default: assert(false, "unknown effect");
}
fprintf(fp, ", use/def = %s\n", usedef);
}
//------------------------------ComponentList---------------------------------
ComponentList::ComponentList() : NameList(), _matchcnt(0) {
}
ComponentList::~ComponentList() {
// // This list may not own its elements if copied via assignment
// Component *component;
// for (reset(); (component = iter()) != NULL;) {
// delete component;
// }
}
void ComponentList::insert(Component *component, bool mflag) {
NameList::addName((char *)component);
if(mflag) _matchcnt++;
}
void ComponentList::insert(const char *name, const char *opType, int usedef,
bool mflag) {
Component * component = new Component(name, opType, usedef);
insert(component, mflag);
}
Component *ComponentList::current() { return (Component*)NameList::current(); }
Component *ComponentList::iter() { return (Component*)NameList::iter(); }
Component *ComponentList::match_iter() {
if(_iter < _matchcnt) return (Component*)NameList::iter();
return NULL;
}
Component *ComponentList::post_match_iter() {
Component *comp = iter();
// At end of list?
if ( comp == NULL ) {
return comp;
}
// In post-match components?
if (_iter > match_count()-1) {
return comp;
}
return post_match_iter();
}
void ComponentList::reset() { NameList::reset(); }
int ComponentList::count() { return NameList::count(); }
Component *ComponentList::operator[](int position) {
// Shortcut complete iteration if there are not enough entries
if (position >= count()) return NULL;
int index = 0;
Component *component = NULL;
for (reset(); (component = iter()) != NULL;) {
if (index == position) {
return component;
}
++index;
}
return NULL;
}
const Component *ComponentList::search(const char *name) {
PreserveIter pi(this);
reset();
for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
if( strcmp(comp->_name,name) == 0 ) return comp;
}
return NULL;
}
// Return number of USEs + number of DEFs
// When there are no components, or the first component is a USE,
// then we add '1' to hold a space for the 'result' operand.
int ComponentList::num_operands() {
PreserveIter pi(this);
uint count = 1; // result operand
uint position = 0;
Component *component = NULL;
for( reset(); (component = iter()) != NULL; ++position ) {
if( component->isa(Component::USE) ||
( position == 0 && (! component->isa(Component::DEF))) ) {
++count;
}
}
return count;
}
// Return zero-based position in list; -1 if not in list.
// if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
int ComponentList::operand_position(const char *name, int usedef) {
PreserveIter pi(this);
int position = 0;
int num_opnds = num_operands();
Component *component;
Component* preceding_non_use = NULL;
Component* first_def = NULL;
for (reset(); (component = iter()) != NULL; ++position) {
// When the first component is not a DEF,
// leave space for the result operand!
if ( position==0 && (! component->isa(Component::DEF)) ) {
++position;
++num_opnds;
}
if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
// When the first entry in the component list is a DEF and a USE
// Treat them as being separate, a DEF first, then a USE
if( position==0
&& usedef==Component::USE && component->isa(Component::DEF) ) {
assert(position+1 < num_opnds, "advertised index in bounds");
return position+1;
} else {
if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
}
if( position >= num_opnds ) {
fprintf(stderr, "the name '%s' is too late in its name list\n", name);
}
assert(position < num_opnds, "advertised index in bounds");
return position;
}
}
if( component->isa(Component::DEF)
&& component->isa(Component::USE) ) {
++position;
if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
}
if( component->isa(Component::DEF) && !first_def ) {
first_def = component;
}
if( !component->isa(Component::USE) && component != first_def ) {
preceding_non_use = component;
} else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
preceding_non_use = NULL;
}
}
return Not_in_list;
}
// Find position for this name, regardless of use/def information
int ComponentList::operand_position(const char *name) {
PreserveIter pi(this);
int position = 0;
Component *component;
for (reset(); (component = iter()) != NULL; ++position) {
// When the first component is not a DEF,
// leave space for the result operand!
if ( position==0 && (! component->isa(Component::DEF)) ) {
++position;
}
if (strcmp(name, component->_name)==0) {
return position;
}
if( component->isa(Component::DEF)
&& component->isa(Component::USE) ) {
++position;
if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
}
}
return Not_in_list;
}
int ComponentList::operand_position_format(const char *name) {
PreserveIter pi(this);
int first_position = operand_position(name);
int use_position = operand_position(name, Component::USE);
return ((first_position < use_position) ? use_position : first_position);
}
int ComponentList::label_position() {
PreserveIter pi(this);
int position = 0;
reset();
for( Component *comp; (comp = iter()) != NULL; ++position) {
// When the first component is not a DEF,
// leave space for the result operand!
if ( position==0 && (! comp->isa(Component::DEF)) ) {
++position;
}
if (strcmp(comp->_type, "label")==0) {
return position;
}
if( comp->isa(Component::DEF)
&& comp->isa(Component::USE) ) {
++position;
if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
}
}
return -1;
}
int ComponentList::method_position() {
PreserveIter pi(this);
int position = 0;
reset();
for( Component *comp; (comp = iter()) != NULL; ++position) {
// When the first component is not a DEF,
// leave space for the result operand!
if ( position==0 && (! comp->isa(Component::DEF)) ) {
++position;
}
if (strcmp(comp->_type, "method")==0) {
return position;
}
if( comp->isa(Component::DEF)
&& comp->isa(Component::USE) ) {
++position;
if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
}
}
return -1;
}
void ComponentList::dump() { output(stderr); }
void ComponentList::output(FILE *fp) {
PreserveIter pi(this);
fprintf(fp, "\n");
Component *component;
for (reset(); (component = iter()) != NULL;) {
component->output(fp);
}
fprintf(fp, "\n");
}
//------------------------------MatchNode--------------------------------------
MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
const char *opType, MatchNode *lChild, MatchNode *rChild)
: _AD(ad), _result(result), _name(mexpr), _opType(opType),
_lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
_commutative_id(0) {
_numleaves = (lChild ? lChild->_numleaves : 0)
+ (rChild ? rChild->_numleaves : 0);
}
MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
: _AD(ad), _result(mnode._result), _name(mnode._name),
_opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
_internalop(0), _numleaves(mnode._numleaves),
_commutative_id(mnode._commutative_id) {
}
MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
: _AD(ad), _result(mnode._result), _name(mnode._name),
_opType(mnode._opType),
_internalop(0), _numleaves(mnode._numleaves),
_commutative_id(mnode._commutative_id) {
if (mnode._lChild) {
_lChild = new MatchNode(ad, *mnode._lChild, clone);
} else {
_lChild = NULL;
}
if (mnode._rChild) {
_rChild = new MatchNode(ad, *mnode._rChild, clone);
} else {
_rChild = NULL;
}
}
MatchNode::~MatchNode() {
// // This node may not own its children if copied via assignment
// if( _lChild ) delete _lChild;
// if( _rChild ) delete _rChild;
}
bool MatchNode::find_type(const char *type, int &position) const {
if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
if (strcmp(type,_opType)==0) {
return true;
} else {
++position;
}
return false;
}
// Recursive call collecting info on top-level operands, not transitive.
// Implementation does not modify state of internal structures.
void MatchNode::append_components(FormDict &locals, ComponentList &components,
bool deflag) const {
int usedef = deflag ? Component::DEF : Component::USE;
FormDict &globals = _AD.globalNames();
assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
// Base case
if (_lChild==NULL && _rChild==NULL) {
// If _opType is not an operation, do not build a component for it #####
const Form *f = globals[_opType];
if( f != NULL ) {
// Add non-ideals that are operands, operand-classes,
if( ! f->ideal_only()
&& (f->is_opclass() || f->is_operand()) ) {
components.insert(_name, _opType, usedef, true);
}
}
return;
}
// Promote results of "Set" to DEF
bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
if (_lChild) _lChild->append_components(locals, components, def_flag);
def_flag = false; // only applies to component immediately following 'Set'
if (_rChild) _rChild->append_components(locals, components, def_flag);
}
// Find the n'th base-operand in the match node,
// recursively investigates match rules of user-defined operands.
//
// Implementation does not modify state of internal structures since they
// can be shared.
bool MatchNode::base_operand(uint &position, FormDict &globals,
const char * &result, const char * &name,
const char * &opType) const {
assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
// Base case
if (_lChild==NULL && _rChild==NULL) {
// Check for special case: "Universe", "label"
if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
if (position == 0) {
result = _result;
name = _name;
opType = _opType;
return 1;
} else {
-- position;
return 0;
}
}
const Form *form = globals[_opType];
MatchNode *matchNode = NULL;
// Check for user-defined type
if (form) {
// User operand or instruction?
OperandForm *opForm = form->is_operand();
InstructForm *inForm = form->is_instruction();
if ( opForm ) {
matchNode = (MatchNode*)opForm->_matrule;
} else if ( inForm ) {
matchNode = (MatchNode*)inForm->_matrule;
}
}
// if this is user-defined, recurse on match rule
// User-defined operand and instruction forms have a match-rule.
if (matchNode) {
return (matchNode->base_operand(position,globals,result,name,opType));
} else {
// Either not a form, or a system-defined form (no match rule).
if (position==0) {
result = _result;
name = _name;
opType = _opType;
return 1;
} else {
--position;
return 0;
}
}
} else {
// Examine the left child and right child as well
if (_lChild) {
if (_lChild->base_operand(position, globals, result, name, opType))
return 1;
}
if (_rChild) {
if (_rChild->base_operand(position, globals, result, name, opType))
return 1;
}
}
return 0;
}
// Recursive call on all operands' match rules in my match rule.
uint MatchNode::num_consts(FormDict &globals) const {
uint index = 0;
uint num_consts = 0;
const char *result;
const char *name;
const char *opType;
for (uint position = index;
base_operand(position,globals,result,name,opType); position = index) {
++index;
if( ideal_to_const_type(opType) ) num_consts++;
}
return num_consts;
}
// Recursive call on all operands' match rules in my match rule.
// Constants in match rule subtree with specified type
uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
uint index = 0;
uint num_consts = 0;
const char *result;
const char *name;
const char *opType;
for (uint position = index;
base_operand(position,globals,result,name,opType); position = index) {
++index;
if( ideal_to_const_type(opType) == type ) num_consts++;
}
return num_consts;
}
// Recursive call on all operands' match rules in my match rule.
uint MatchNode::num_const_ptrs(FormDict &globals) const {
return num_consts( globals, Form::idealP );
}
bool MatchNode::sets_result() const {
return ( (strcmp(_name,"Set") == 0) ? true : false );
}
const char *MatchNode::reduce_right(FormDict &globals) const {
// If there is no right reduction, return NULL.
const char *rightStr = NULL;
// If we are a "Set", start from the right child.
const MatchNode *const mnode = sets_result() ?
(const MatchNode *const)this->_rChild :
(const MatchNode *const)this;
// If our right child exists, it is the right reduction
if ( mnode->_rChild ) {
rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
: mnode->_rChild->_opType;
}
// Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
return rightStr;
}
const char *MatchNode::reduce_left(FormDict &globals) const {
// If there is no left reduction, return NULL.
const char *leftStr = NULL;
// If we are a "Set", start from the right child.
const MatchNode *const mnode = sets_result() ?
(const MatchNode *const)this->_rChild :
(const MatchNode *const)this;
// If our left child exists, it is the left reduction
if ( mnode->_lChild ) {
leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
: mnode->_lChild->_opType;
} else {
// May be simple chain rule: (Set dst operand_form_source)
if ( sets_result() ) {
OperandForm *oper = globals[mnode->_opType]->is_operand();
if( oper ) {
leftStr = mnode->_opType;
}
}
}
return leftStr;
}
//------------------------------count_instr_names------------------------------
// Count occurrences of operands names in the leaves of the instruction
// match rule.
void MatchNode::count_instr_names( Dict &names ) {
if( !this ) return;
if( _lChild ) _lChild->count_instr_names(names);
if( _rChild ) _rChild->count_instr_names(names);
if( !_lChild && !_rChild ) {
uintptr_t cnt = (uintptr_t)names[_name];
cnt++; // One more name found
names.Insert(_name,(void*)cnt);
}
}
//------------------------------build_instr_pred-------------------------------
// Build a path to 'name' in buf. Actually only build if cnt is zero, so we
// can skip some leading instances of 'name'.
int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
if( _lChild ) {
if( !cnt ) strcpy( buf, "_kids[0]->" );
cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
if( cnt < 0 ) return cnt; // Found it, all done
}
if( _rChild ) {
if( !cnt ) strcpy( buf, "_kids[1]->" );
cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
if( cnt < 0 ) return cnt; // Found it, all done
}
if( !_lChild && !_rChild ) { // Found a leaf
// Wrong name? Give up...
if( strcmp(name,_name) ) return cnt;
if( !cnt ) strcpy(buf,"_leaf");
return cnt-1;
}
return cnt;
}
//------------------------------build_internalop-------------------------------
// Build string representation of subtree
void MatchNode::build_internalop( ) {
char *iop, *subtree;
const char *lstr, *rstr;
// Build string representation of subtree
// Operation lchildType rchildType
int len = (int)strlen(_opType) + 4;
lstr = (_lChild) ? ((_lChild->_internalop) ?
_lChild->_internalop : _lChild->_opType) : "";
rstr = (_rChild) ? ((_rChild->_internalop) ?
_rChild->_internalop : _rChild->_opType) : "";
len += (int)strlen(lstr) + (int)strlen(rstr);
subtree = (char *)malloc(len);
sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
// Hash the subtree string in _internalOps; if a name exists, use it
iop = (char *)_AD._internalOps[subtree];
// Else create a unique name, and add it to the hash table
if (iop == NULL) {
iop = subtree;
_AD._internalOps.Insert(subtree, iop);
_AD._internalOpNames.addName(iop);
_AD._internalMatch.Insert(iop, this);
}
// Add the internal operand name to the MatchNode
_internalop = iop;
_result = iop;
}
void MatchNode::dump() {
output(stderr);
}
void MatchNode::output(FILE *fp) {
if (_lChild==0 && _rChild==0) {
fprintf(fp," %s",_name); // operand
}
else {
fprintf(fp," (%s ",_name); // " (opcodeName "
if(_lChild) _lChild->output(fp); // left operand
if(_rChild) _rChild->output(fp); // right operand
fprintf(fp,")"); // ")"
}
}
int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
static const char *needs_ideal_memory_list[] = {
"StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
2007-12-01 00:00:00 +00:00
"StoreB","StoreC","Store" ,"StoreFP",
"LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
2007-12-01 00:00:00 +00:00
"LoadB" ,"LoadC" ,"LoadS" ,"Load" ,
"Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
"Store8B","Store4B","Store8C","Store4C","Store2C",
"Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
"Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
"LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
2007-12-01 00:00:00 +00:00
"LoadPLocked", "LoadLLocked",
"StorePConditional", "StoreLConditional",
"CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
2007-12-01 00:00:00 +00:00
"StoreCM",
"ClearArray"
};
int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
return 1;
if( _lChild ) {
const char *opType = _lChild->_opType;
for( int i=0; i<cnt; i++ )
if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
return 1;
if( _lChild->needs_ideal_memory_edge(globals) )
return 1;
}
if( _rChild ) {
const char *opType = _rChild->_opType;
for( int i=0; i<cnt; i++ )
if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
return 1;
if( _rChild->needs_ideal_memory_edge(globals) )
return 1;
}
return 0;
}
// TRUE if defines a derived oop, and so needs a base oop edge present
// post-matching.
int MatchNode::needs_base_oop_edge() const {
if( !strcmp(_opType,"AddP") ) return 1;
if( strcmp(_opType,"Set") ) return 0;
return !strcmp(_rChild->_opType,"AddP");
}
int InstructForm::needs_base_oop_edge(FormDict &globals) const {
if( is_simple_chain_rule(globals) ) {
const char *src = _matrule->_rChild->_opType;
OperandForm *src_op = globals[src]->is_operand();
assert( src_op, "Not operand class of chain rule" );
return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
} // Else check instruction
return _matrule ? _matrule->needs_base_oop_edge() : 0;
}
//-------------------------cisc spilling methods-------------------------------
// helper routines and methods for detecting cisc-spilling instructions
//-------------------------cisc_spill_merge------------------------------------
int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
int cisc_spillable = Maybe_cisc_spillable;
// Combine results of left and right checks
if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
// neither side is spillable, nor prevents cisc spilling
cisc_spillable = Maybe_cisc_spillable;
}
else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
// right side is spillable
cisc_spillable = right_spillable;
}
else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
// left side is spillable
cisc_spillable = left_spillable;
}
else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
// left or right prevents cisc spilling this instruction
cisc_spillable = Not_cisc_spillable;
}
else {
// Only allow one to spill
cisc_spillable = Not_cisc_spillable;
}
return cisc_spillable;
}
//-------------------------root_ops_match--------------------------------------
bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
// Base Case: check that the current operands/operations match
assert( op1, "Must have op's name");
assert( op2, "Must have op's name");
const Form *form1 = globals[op1];
const Form *form2 = globals[op2];
return (form1 == form2);
}
//-------------------------cisc_spill_match------------------------------------
// Recursively check two MatchRules for legal conversion via cisc-spilling
int MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
int cisc_spillable = Maybe_cisc_spillable;
int left_spillable = Maybe_cisc_spillable;
int right_spillable = Maybe_cisc_spillable;
// Check that each has same number of operands at this level
if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
return Not_cisc_spillable;
// Base Case: check that the current operands/operations match
// or are CISC spillable
assert( _opType, "Must have _opType");
assert( mRule2->_opType, "Must have _opType");
const Form *form = globals[_opType];
const Form *form2 = globals[mRule2->_opType];
if( form == form2 ) {
cisc_spillable = Maybe_cisc_spillable;
} else {
const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
// Detect reg vs (loadX memory)
if( form->is_cisc_reg(globals)
&& form2_inst
&& (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
&& (name_left != NULL) // NOT (load)
&& (name_right == NULL) ) { // NOT (load memory foo)
const Form *form2_left = name_left ? globals[name_left] : NULL;
if( form2_left && form2_left->is_cisc_mem(globals) ) {
cisc_spillable = Is_cisc_spillable;
operand = _name;
reg_type = _result;
return Is_cisc_spillable;
} else {
cisc_spillable = Not_cisc_spillable;
}
}
// Detect reg vs memory
else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
cisc_spillable = Is_cisc_spillable;
operand = _name;
reg_type = _result;
return Is_cisc_spillable;
} else {
cisc_spillable = Not_cisc_spillable;
}
}
// If cisc is still possible, check rest of tree
if( cisc_spillable == Maybe_cisc_spillable ) {
// Check that each has same number of operands at this level
if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
// Check left operands
if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
left_spillable = Maybe_cisc_spillable;
} else {
left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
}
// Check right operands
if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
right_spillable = Maybe_cisc_spillable;
} else {
right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
}
// Combine results of left and right checks
cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
}
return cisc_spillable;
}
//---------------------------cisc_spill_match----------------------------------
// Recursively check two MatchRules for legal conversion via cisc-spilling
// This method handles the root of Match tree,
// general recursive checks done in MatchNode
int MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers,
MatchRule *mRule2, const char * &operand,
const char * &reg_type) {
int cisc_spillable = Maybe_cisc_spillable;
int left_spillable = Maybe_cisc_spillable;
int right_spillable = Maybe_cisc_spillable;
// Check that each sets a result
if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
// Check that each has same number of operands at this level
if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
// Check left operands: at root, must be target of 'Set'
if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
left_spillable = Not_cisc_spillable;
} else {
// Do not support cisc-spilling instruction's target location
if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
left_spillable = Maybe_cisc_spillable;
} else {
left_spillable = Not_cisc_spillable;
}
}
// Check right operands: recursive walk to identify reg->mem operand
if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
right_spillable = Maybe_cisc_spillable;
} else {
right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
}
// Combine results of left and right checks
cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
return cisc_spillable;
}
//----------------------------- equivalent ------------------------------------
// Recursively check to see if two match rules are equivalent.
// This rule handles the root.
bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
// Check that each sets a result
if (sets_result() != mRule2->sets_result()) {
return false;
}
// Check that the current operands/operations match
assert( _opType, "Must have _opType");
assert( mRule2->_opType, "Must have _opType");
const Form *form = globals[_opType];
const Form *form2 = globals[mRule2->_opType];
if( form != form2 ) {
return false;
}
if (_lChild ) {
if( !_lChild->equivalent(globals, mRule2->_lChild) )
return false;
} else if (mRule2->_lChild) {
return false; // I have NULL left child, mRule2 has non-NULL left child.
}
if (_rChild ) {
if( !_rChild->equivalent(globals, mRule2->_rChild) )
return false;
} else if (mRule2->_rChild) {
return false; // I have NULL right child, mRule2 has non-NULL right child.
}
// We've made it through the gauntlet.
return true;
}
//----------------------------- equivalent ------------------------------------
// Recursively check to see if two match rules are equivalent.
// This rule handles the operands.
bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
if( !mNode2 )
return false;
// Check that the current operands/operations match
assert( _opType, "Must have _opType");
assert( mNode2->_opType, "Must have _opType");
const Form *form = globals[_opType];
const Form *form2 = globals[mNode2->_opType];
return (form == form2);
}
//-------------------------- has_commutative_op -------------------------------
// Recursively check for commutative operations with subtree operands
// which could be swapped.
void MatchNode::count_commutative_op(int& count) {
static const char *commut_op_list[] = {
"AddI","AddL","AddF","AddD",
"AndI","AndL",
"MaxI","MinI",
"MulI","MulL","MulF","MulD",
"OrI" ,"OrL" ,
"XorI","XorL"
};
int cnt = sizeof(commut_op_list)/sizeof(char*);
if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
// Don't swap if right operand is an immediate constant.
bool is_const = false;
if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
FormDict &globals = _AD.globalNames();
const Form *form = globals[_rChild->_opType];
if ( form ) {
OperandForm *oper = form->is_operand();
if( oper && oper->interface_type(globals) == Form::constant_interface )
is_const = true;
}
}
if( !is_const ) {
for( int i=0; i<cnt; i++ ) {
if( strcmp(_opType, commut_op_list[i]) == 0 ) {
count++;
_commutative_id = count; // id should be > 0
break;
}
}
}
}
if( _lChild )
_lChild->count_commutative_op(count);
if( _rChild )
_rChild->count_commutative_op(count);
}
//-------------------------- swap_commutative_op ------------------------------
// Recursively swap specified commutative operation with subtree operands.
void MatchNode::swap_commutative_op(bool atroot, int id) {
if( _commutative_id == id ) { // id should be > 0
assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
"not swappable operation");
MatchNode* tmp = _lChild;
_lChild = _rChild;
_rChild = tmp;
// Don't exit here since we need to build internalop.
}
bool is_set = ( strcmp(_opType, "Set") == 0 );
if( _lChild )
_lChild->swap_commutative_op(is_set, id);
if( _rChild )
_rChild->swap_commutative_op(is_set, id);
// If not the root, reduce this subtree to an internal operand
if( !atroot && (_lChild || _rChild) ) {
build_internalop();
}
}
//-------------------------- swap_commutative_op ------------------------------
// Recursively swap specified commutative operation with subtree operands.
void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
assert(match_rules_cnt < 100," too many match rule clones");
// Clone
MatchRule* clone = new MatchRule(_AD, this);
// Swap operands of commutative operation
((MatchNode*)clone)->swap_commutative_op(true, count);
char* buf = (char*) malloc(strlen(instr_ident) + 4);
sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
clone->_result = buf;
clone->_next = this->_next;
this-> _next = clone;
if( (--count) > 0 ) {
this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
}
}
//------------------------------MatchRule--------------------------------------
MatchRule::MatchRule(ArchDesc &ad)
: MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
_next = NULL;
}
MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
: MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
_construct(mRule->_construct), _numchilds(mRule->_numchilds) {
_next = NULL;
}
MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
int numleaves)
: MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
_numchilds(0) {
_next = NULL;
mroot->_lChild = NULL;
mroot->_rChild = NULL;
delete mroot;
_numleaves = numleaves;
_numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
}
MatchRule::~MatchRule() {
}
// Recursive call collecting info on top-level operands, not transitive.
// Implementation does not modify state of internal structures.
void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
MatchNode::append_components(locals, components,
false /* not necessarily a def */);
}
// Recursive call on all operands' match rules in my match rule.
// Implementation does not modify state of internal structures since they
// can be shared.
// The MatchNode that is called first treats its
bool MatchRule::base_operand(uint &position0, FormDict &globals,
const char *&result, const char * &name,
const char * &opType)const{
uint position = position0;
return (MatchNode::base_operand( position, globals, result, name, opType));
}
bool MatchRule::is_base_register(FormDict &globals) const {
uint position = 1;
const char *result = NULL;
const char *name = NULL;
const char *opType = NULL;
if (!base_operand(position, globals, result, name, opType)) {
position = 0;
if( base_operand(position, globals, result, name, opType) &&
(strcmp(opType,"RegI")==0 ||
strcmp(opType,"RegP")==0 ||
strcmp(opType,"RegN")==0 ||
2007-12-01 00:00:00 +00:00
strcmp(opType,"RegL")==0 ||
strcmp(opType,"RegF")==0 ||
strcmp(opType,"RegD")==0 ||
strcmp(opType,"Reg" )==0) ) {
return 1;
}
}
return 0;
}
Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
uint position = 1;
const char *result = NULL;
const char *name = NULL;
const char *opType = NULL;
if (!base_operand(position, globals, result, name, opType)) {
position = 0;
if (base_operand(position, globals, result, name, opType)) {
return ideal_to_const_type(opType);
}
}
return Form::none;
}
bool MatchRule::is_chain_rule(FormDict &globals) const {
// Check for chain rule, and do not generate a match list for it
if ((_lChild == NULL) && (_rChild == NULL) ) {
const Form *form = globals[_opType];
// If this is ideal, then it is a base match, not a chain rule.
if ( form && form->is_operand() && (!form->ideal_only())) {
return true;
}
}
// Check for "Set" form of chain rule, and do not generate a match list
if (_rChild) {
const char *rch = _rChild->_opType;
const Form *form = globals[rch];
if ((!strcmp(_opType,"Set") &&
((form) && form->is_operand()))) {
return true;
}
}
return false;
}
int MatchRule::is_ideal_copy() const {
if( _rChild ) {
const char *opType = _rChild->_opType;
if( strcmp(opType,"CastII")==0 )
return 1;
// Do not treat *CastPP this way, because it
// may transfer a raw pointer to an oop.
// If the register allocator were to coalesce this
// into a single LRG, the GC maps would be incorrect.
//if( strcmp(opType,"CastPP")==0 )
// return 1;
//if( strcmp(opType,"CheckCastPP")==0 )
// return 1;
//
// Do not treat CastX2P or CastP2X this way, because
// raw pointers and int types are treated differently
// when saving local & stack info for safepoints in
// Output().
//if( strcmp(opType,"CastX2P")==0 )
// return 1;
//if( strcmp(opType,"CastP2X")==0 )
// return 1;
}
if( is_chain_rule(_AD.globalNames()) &&
_lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
return 1;
return 0;
}
int MatchRule::is_expensive() const {
if( _rChild ) {
const char *opType = _rChild->_opType;
if( strcmp(opType,"AtanD")==0 ||
strcmp(opType,"CosD")==0 ||
strcmp(opType,"DivD")==0 ||
strcmp(opType,"DivF")==0 ||
strcmp(opType,"DivI")==0 ||
strcmp(opType,"ExpD")==0 ||
strcmp(opType,"LogD")==0 ||
strcmp(opType,"Log10D")==0 ||
strcmp(opType,"ModD")==0 ||
strcmp(opType,"ModF")==0 ||
strcmp(opType,"ModI")==0 ||
strcmp(opType,"PowD")==0 ||
strcmp(opType,"SinD")==0 ||
strcmp(opType,"SqrtD")==0 ||
strcmp(opType,"TanD")==0 ||
strcmp(opType,"ConvD2F")==0 ||
strcmp(opType,"ConvD2I")==0 ||
strcmp(opType,"ConvD2L")==0 ||
strcmp(opType,"ConvF2D")==0 ||
strcmp(opType,"ConvF2I")==0 ||
strcmp(opType,"ConvF2L")==0 ||
strcmp(opType,"ConvI2D")==0 ||
strcmp(opType,"ConvI2F")==0 ||
strcmp(opType,"ConvI2L")==0 ||
strcmp(opType,"ConvL2D")==0 ||
strcmp(opType,"ConvL2F")==0 ||
strcmp(opType,"ConvL2I")==0 ||
strcmp(opType,"RoundDouble")==0 ||
strcmp(opType,"RoundFloat")==0 ||
strcmp(opType,"ReverseBytesI")==0 ||
strcmp(opType,"ReverseBytesL")==0 ||
strcmp(opType,"Replicate16B")==0 ||
strcmp(opType,"Replicate8B")==0 ||
strcmp(opType,"Replicate4B")==0 ||
strcmp(opType,"Replicate8C")==0 ||
strcmp(opType,"Replicate4C")==0 ||
strcmp(opType,"Replicate8S")==0 ||
strcmp(opType,"Replicate4S")==0 ||
strcmp(opType,"Replicate4I")==0 ||
strcmp(opType,"Replicate2I")==0 ||
strcmp(opType,"Replicate2L")==0 ||
strcmp(opType,"Replicate4F")==0 ||
strcmp(opType,"Replicate2F")==0 ||
strcmp(opType,"Replicate2D")==0 ||
0 /* 0 to line up columns nicely */ )
return 1;
}
return 0;
}
bool MatchRule::is_ideal_unlock() const {
if( !_opType ) return false;
return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
}
bool MatchRule::is_ideal_call_leaf() const {
if( !_opType ) return false;
return !strcmp(_opType,"CallLeaf") ||
!strcmp(_opType,"CallLeafNoFP");
}
bool MatchRule::is_ideal_if() const {
if( !_opType ) return false;
return
!strcmp(_opType,"If" ) ||
!strcmp(_opType,"CountedLoopEnd");
}
bool MatchRule::is_ideal_fastlock() const {
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
return (strcmp(_rChild->_opType,"FastLock") == 0);
}
return false;
}
bool MatchRule::is_ideal_membar() const {
if( !_opType ) return false;
return
!strcmp(_opType,"MemBarAcquire" ) ||
!strcmp(_opType,"MemBarRelease" ) ||
!strcmp(_opType,"MemBarVolatile" ) ||
!strcmp(_opType,"MemBarCPUOrder" ) ;
}
bool MatchRule::is_ideal_loadPC() const {
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
return (strcmp(_rChild->_opType,"LoadPC") == 0);
}
return false;
}
bool MatchRule::is_ideal_box() const {
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
return (strcmp(_rChild->_opType,"Box") == 0);
}
return false;
}
bool MatchRule::is_ideal_goto() const {
bool ideal_goto = false;
if( _opType && (strcmp(_opType,"Goto") == 0) ) {
ideal_goto = true;
}
return ideal_goto;
}
bool MatchRule::is_ideal_jump() const {
if( _opType ) {
if( !strcmp(_opType,"Jump") )
return true;
}
return false;
}
bool MatchRule::is_ideal_bool() const {
if( _opType ) {
if( !strcmp(_opType,"Bool") )
return true;
}
return false;
}
Form::DataType MatchRule::is_ideal_load() const {
Form::DataType ideal_load = Form::none;
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
const char *opType = _rChild->_opType;
ideal_load = is_load_from_memory(opType);
}
return ideal_load;
}
Form::DataType MatchRule::is_ideal_store() const {
Form::DataType ideal_store = Form::none;
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
const char *opType = _rChild->_opType;
ideal_store = is_store_to_memory(opType);
}
return ideal_store;
}
void MatchRule::dump() {
output(stderr);
}
void MatchRule::output(FILE *fp) {
fprintf(fp,"MatchRule: ( %s",_name);
if (_lChild) _lChild->output(fp);
if (_rChild) _rChild->output(fp);
fprintf(fp," )\n");
fprintf(fp," nesting depth = %d\n", _depth);
if (_result) fprintf(fp," Result Type = %s", _result);
fprintf(fp,"\n");
}
//------------------------------Attribute--------------------------------------
Attribute::Attribute(char *id, char* val, int type)
: _ident(id), _val(val), _atype(type) {
}
Attribute::~Attribute() {
}
int Attribute::int_val(ArchDesc &ad) {
// Make sure it is an integer constant:
int result = 0;
if (!_val || !ADLParser::is_int_token(_val, result)) {
ad.syntax_err(0, "Attribute %s must have an integer value: %s",
_ident, _val ? _val : "");
}
return result;
}
void Attribute::dump() {
output(stderr);
} // Debug printer
// Write to output files
void Attribute::output(FILE *fp) {
fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
}
//------------------------------FormatRule----------------------------------
FormatRule::FormatRule(char *temp)
: _temp(temp) {
}
FormatRule::~FormatRule() {
}
void FormatRule::dump() {
output(stderr);
}
// Write to output files
void FormatRule::output(FILE *fp) {
fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
fprintf(fp,"\n");
}