293 lines
10 KiB
C++
293 lines
10 KiB
C++
|
/*
|
||
|
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
|
||
|
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
|
||
|
|
||
|
#include "gc_implementation/g1/dirtyCardQueue.hpp"
|
||
|
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
|
||
|
#include "gc_implementation/g1/g1CollectedHeap.hpp"
|
||
|
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
|
||
|
#include "gc_implementation/g1/g1OopClosures.hpp"
|
||
|
#include "gc_implementation/g1/g1RemSet.hpp"
|
||
|
#include "gc_implementation/shared/ageTable.hpp"
|
||
|
#include "memory/allocation.hpp"
|
||
|
#include "oops/oop.hpp"
|
||
|
|
||
|
class HeapRegion;
|
||
|
class outputStream;
|
||
|
|
||
|
class G1ParScanThreadState : public StackObj {
|
||
|
protected:
|
||
|
G1CollectedHeap* _g1h;
|
||
|
RefToScanQueue* _refs;
|
||
|
DirtyCardQueue _dcq;
|
||
|
G1SATBCardTableModRefBS* _ct_bs;
|
||
|
G1RemSet* _g1_rem;
|
||
|
|
||
|
G1ParGCAllocBuffer _surviving_alloc_buffer;
|
||
|
G1ParGCAllocBuffer _tenured_alloc_buffer;
|
||
|
G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
|
||
|
ageTable _age_table;
|
||
|
|
||
|
G1ParScanClosure _scanner;
|
||
|
|
||
|
size_t _alloc_buffer_waste;
|
||
|
size_t _undo_waste;
|
||
|
|
||
|
OopsInHeapRegionClosure* _evac_failure_cl;
|
||
|
|
||
|
int _hash_seed;
|
||
|
uint _queue_num;
|
||
|
|
||
|
size_t _term_attempts;
|
||
|
|
||
|
double _start;
|
||
|
double _start_strong_roots;
|
||
|
double _strong_roots_time;
|
||
|
double _start_term;
|
||
|
double _term_time;
|
||
|
|
||
|
// Map from young-age-index (0 == not young, 1 is youngest) to
|
||
|
// surviving words. base is what we get back from the malloc call
|
||
|
size_t* _surviving_young_words_base;
|
||
|
// this points into the array, as we use the first few entries for padding
|
||
|
size_t* _surviving_young_words;
|
||
|
|
||
|
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
|
||
|
|
||
|
void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
|
||
|
|
||
|
void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
|
||
|
|
||
|
DirtyCardQueue& dirty_card_queue() { return _dcq; }
|
||
|
G1SATBCardTableModRefBS* ctbs() { return _ct_bs; }
|
||
|
|
||
|
template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
|
||
|
|
||
|
template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
|
||
|
// If the new value of the field points to the same region or
|
||
|
// is the to-space, we don't need to include it in the Rset updates.
|
||
|
if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
|
||
|
size_t card_index = ctbs()->index_for(p);
|
||
|
// If the card hasn't been added to the buffer, do it.
|
||
|
if (ctbs()->mark_card_deferred(card_index)) {
|
||
|
dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
|
||
|
~G1ParScanThreadState() {
|
||
|
retire_alloc_buffers();
|
||
|
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
|
||
|
}
|
||
|
|
||
|
RefToScanQueue* refs() { return _refs; }
|
||
|
ageTable* age_table() { return &_age_table; }
|
||
|
|
||
|
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
|
||
|
return _alloc_buffers[purpose];
|
||
|
}
|
||
|
|
||
|
size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
|
||
|
size_t undo_waste() const { return _undo_waste; }
|
||
|
|
||
|
#ifdef ASSERT
|
||
|
bool verify_ref(narrowOop* ref) const;
|
||
|
bool verify_ref(oop* ref) const;
|
||
|
bool verify_task(StarTask ref) const;
|
||
|
#endif // ASSERT
|
||
|
|
||
|
template <class T> void push_on_queue(T* ref) {
|
||
|
assert(verify_ref(ref), "sanity");
|
||
|
refs()->push(ref);
|
||
|
}
|
||
|
|
||
|
template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
|
||
|
|
||
|
HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
|
||
|
HeapWord* obj = NULL;
|
||
|
size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
|
||
|
if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
|
||
|
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
|
||
|
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
|
||
|
alloc_buf->retire(false /* end_of_gc */, false /* retain */);
|
||
|
|
||
|
HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
|
||
|
if (buf == NULL) return NULL; // Let caller handle allocation failure.
|
||
|
// Otherwise.
|
||
|
alloc_buf->set_word_size(gclab_word_size);
|
||
|
alloc_buf->set_buf(buf);
|
||
|
|
||
|
obj = alloc_buf->allocate(word_sz);
|
||
|
assert(obj != NULL, "buffer was definitely big enough...");
|
||
|
} else {
|
||
|
obj = _g1h->par_allocate_during_gc(purpose, word_sz);
|
||
|
}
|
||
|
return obj;
|
||
|
}
|
||
|
|
||
|
HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
|
||
|
HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
|
||
|
if (obj != NULL) return obj;
|
||
|
return allocate_slow(purpose, word_sz);
|
||
|
}
|
||
|
|
||
|
void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
|
||
|
if (alloc_buffer(purpose)->contains(obj)) {
|
||
|
assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
|
||
|
"should contain whole object");
|
||
|
alloc_buffer(purpose)->undo_allocation(obj, word_sz);
|
||
|
} else {
|
||
|
CollectedHeap::fill_with_object(obj, word_sz);
|
||
|
add_to_undo_waste(word_sz);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
|
||
|
_evac_failure_cl = evac_failure_cl;
|
||
|
}
|
||
|
OopsInHeapRegionClosure* evac_failure_closure() {
|
||
|
return _evac_failure_cl;
|
||
|
}
|
||
|
|
||
|
int* hash_seed() { return &_hash_seed; }
|
||
|
uint queue_num() { return _queue_num; }
|
||
|
|
||
|
size_t term_attempts() const { return _term_attempts; }
|
||
|
void note_term_attempt() { _term_attempts++; }
|
||
|
|
||
|
void start_strong_roots() {
|
||
|
_start_strong_roots = os::elapsedTime();
|
||
|
}
|
||
|
void end_strong_roots() {
|
||
|
_strong_roots_time += (os::elapsedTime() - _start_strong_roots);
|
||
|
}
|
||
|
double strong_roots_time() const { return _strong_roots_time; }
|
||
|
|
||
|
void start_term_time() {
|
||
|
note_term_attempt();
|
||
|
_start_term = os::elapsedTime();
|
||
|
}
|
||
|
void end_term_time() {
|
||
|
_term_time += (os::elapsedTime() - _start_term);
|
||
|
}
|
||
|
double term_time() const { return _term_time; }
|
||
|
|
||
|
double elapsed_time() const {
|
||
|
return os::elapsedTime() - _start;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
|
||
|
void
|
||
|
print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
|
||
|
|
||
|
size_t* surviving_young_words() {
|
||
|
// We add on to hide entry 0 which accumulates surviving words for
|
||
|
// age -1 regions (i.e. non-young ones)
|
||
|
return _surviving_young_words;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void retire_alloc_buffers() {
|
||
|
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
|
||
|
size_t waste = _alloc_buffers[ap]->words_remaining();
|
||
|
add_to_alloc_buffer_waste(waste);
|
||
|
_alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
|
||
|
true /* end_of_gc */,
|
||
|
false /* retain */);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define G1_PARTIAL_ARRAY_MASK 0x2
|
||
|
|
||
|
inline bool has_partial_array_mask(oop* ref) const {
|
||
|
return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
|
||
|
}
|
||
|
|
||
|
// We never encode partial array oops as narrowOop*, so return false immediately.
|
||
|
// This allows the compiler to create optimized code when popping references from
|
||
|
// the work queue.
|
||
|
inline bool has_partial_array_mask(narrowOop* ref) const {
|
||
|
assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Only implement set_partial_array_mask() for regular oops, not for narrowOops.
|
||
|
// We always encode partial arrays as regular oop, to allow the
|
||
|
// specialization for has_partial_array_mask() for narrowOops above.
|
||
|
// This means that unintentional use of this method with narrowOops are caught
|
||
|
// by the compiler.
|
||
|
inline oop* set_partial_array_mask(oop obj) const {
|
||
|
assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
|
||
|
return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
|
||
|
}
|
||
|
|
||
|
inline oop clear_partial_array_mask(oop* ref) const {
|
||
|
return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
|
||
|
}
|
||
|
|
||
|
inline void do_oop_partial_array(oop* p);
|
||
|
|
||
|
// This method is applied to the fields of the objects that have just been copied.
|
||
|
template <class T> void do_oop_evac(T* p, HeapRegion* from) {
|
||
|
assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
|
||
|
"Reference should not be NULL here as such are never pushed to the task queue.");
|
||
|
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
|
||
|
|
||
|
// Although we never intentionally push references outside of the collection
|
||
|
// set, due to (benign) races in the claim mechanism during RSet scanning more
|
||
|
// than one thread might claim the same card. So the same card may be
|
||
|
// processed multiple times. So redo this check.
|
||
|
if (_g1h->in_cset_fast_test(obj)) {
|
||
|
oop forwardee;
|
||
|
if (obj->is_forwarded()) {
|
||
|
forwardee = obj->forwardee();
|
||
|
} else {
|
||
|
forwardee = copy_to_survivor_space(obj);
|
||
|
}
|
||
|
assert(forwardee != NULL, "forwardee should not be NULL");
|
||
|
oopDesc::encode_store_heap_oop(p, forwardee);
|
||
|
}
|
||
|
|
||
|
assert(obj != NULL, "Must be");
|
||
|
update_rs(from, p, queue_num());
|
||
|
}
|
||
|
public:
|
||
|
|
||
|
oop copy_to_survivor_space(oop const obj);
|
||
|
|
||
|
template <class T> inline void deal_with_reference(T* ref_to_scan);
|
||
|
|
||
|
inline void deal_with_reference(StarTask ref);
|
||
|
|
||
|
public:
|
||
|
void trim_queue();
|
||
|
};
|
||
|
|
||
|
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
|