2026 lines
63 KiB
C++
2026 lines
63 KiB
C++
|
/*
|
||
|
* Copyright 2007 Sun Microsystems, Inc. All Rights Reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
||
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
||
|
* have any questions.
|
||
|
*/
|
||
|
|
||
|
#include "incls/_precompiled.incl"
|
||
|
#include "incls/_superword.cpp.incl"
|
||
|
|
||
|
//
|
||
|
// S U P E R W O R D T R A N S F O R M
|
||
|
//=============================================================================
|
||
|
|
||
|
//------------------------------SuperWord---------------------------
|
||
|
SuperWord::SuperWord(PhaseIdealLoop* phase) :
|
||
|
_phase(phase),
|
||
|
_igvn(phase->_igvn),
|
||
|
_arena(phase->C->comp_arena()),
|
||
|
_packset(arena(), 8, 0, NULL), // packs for the current block
|
||
|
_bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
|
||
|
_block(arena(), 8, 0, NULL), // nodes in current block
|
||
|
_data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
|
||
|
_mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
|
||
|
_mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
|
||
|
_node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
|
||
|
_align_to_ref(NULL), // memory reference to align vectors to
|
||
|
_disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
|
||
|
_dg(_arena), // dependence graph
|
||
|
_visited(arena()), // visited node set
|
||
|
_post_visited(arena()), // post visited node set
|
||
|
_n_idx_list(arena(), 8), // scratch list of (node,index) pairs
|
||
|
_stk(arena(), 8, 0, NULL), // scratch stack of nodes
|
||
|
_nlist(arena(), 8, 0, NULL), // scratch list of nodes
|
||
|
_lpt(NULL), // loop tree node
|
||
|
_lp(NULL), // LoopNode
|
||
|
_bb(NULL), // basic block
|
||
|
_iv(NULL) // induction var
|
||
|
{}
|
||
|
|
||
|
//------------------------------transform_loop---------------------------
|
||
|
void SuperWord::transform_loop(IdealLoopTree* lpt) {
|
||
|
assert(lpt->_head->is_CountedLoop(), "must be");
|
||
|
CountedLoopNode *cl = lpt->_head->as_CountedLoop();
|
||
|
|
||
|
if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
|
||
|
|
||
|
// Check for no control flow in body (other than exit)
|
||
|
Node *cl_exit = cl->loopexit();
|
||
|
if (cl_exit->in(0) != lpt->_head) return;
|
||
|
|
||
|
// Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
|
||
|
CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
|
||
|
if (pre_end == NULL) return;
|
||
|
Node *pre_opaq1 = pre_end->limit();
|
||
|
if (pre_opaq1->Opcode() != Op_Opaque1) return;
|
||
|
|
||
|
// Do vectors exist on this architecture?
|
||
|
if (vector_width_in_bytes() == 0) return;
|
||
|
|
||
|
init(); // initialize data structures
|
||
|
|
||
|
set_lpt(lpt);
|
||
|
set_lp(cl);
|
||
|
|
||
|
// For now, define one block which is the entire loop body
|
||
|
set_bb(cl);
|
||
|
|
||
|
assert(_packset.length() == 0, "packset must be empty");
|
||
|
SLP_extract();
|
||
|
}
|
||
|
|
||
|
//------------------------------SLP_extract---------------------------
|
||
|
// Extract the superword level parallelism
|
||
|
//
|
||
|
// 1) A reverse post-order of nodes in the block is constructed. By scanning
|
||
|
// this list from first to last, all definitions are visited before their uses.
|
||
|
//
|
||
|
// 2) A point-to-point dependence graph is constructed between memory references.
|
||
|
// This simplies the upcoming "independence" checker.
|
||
|
//
|
||
|
// 3) The maximum depth in the node graph from the beginning of the block
|
||
|
// to each node is computed. This is used to prune the graph search
|
||
|
// in the independence checker.
|
||
|
//
|
||
|
// 4) For integer types, the necessary bit width is propagated backwards
|
||
|
// from stores to allow packed operations on byte, char, and short
|
||
|
// integers. This reverses the promotion to type "int" that javac
|
||
|
// did for operations like: char c1,c2,c3; c1 = c2 + c3.
|
||
|
//
|
||
|
// 5) One of the memory references is picked to be an aligned vector reference.
|
||
|
// The pre-loop trip count is adjusted to align this reference in the
|
||
|
// unrolled body.
|
||
|
//
|
||
|
// 6) The initial set of pack pairs is seeded with memory references.
|
||
|
//
|
||
|
// 7) The set of pack pairs is extended by following use->def and def->use links.
|
||
|
//
|
||
|
// 8) The pairs are combined into vector sized packs.
|
||
|
//
|
||
|
// 9) Reorder the memory slices to co-locate members of the memory packs.
|
||
|
//
|
||
|
// 10) Generate ideal vector nodes for the final set of packs and where necessary,
|
||
|
// inserting scalar promotion, vector creation from multiple scalars, and
|
||
|
// extraction of scalar values from vectors.
|
||
|
//
|
||
|
void SuperWord::SLP_extract() {
|
||
|
|
||
|
// Ready the block
|
||
|
|
||
|
construct_bb();
|
||
|
|
||
|
dependence_graph();
|
||
|
|
||
|
compute_max_depth();
|
||
|
|
||
|
compute_vector_element_type();
|
||
|
|
||
|
// Attempt vectorization
|
||
|
|
||
|
find_adjacent_refs();
|
||
|
|
||
|
extend_packlist();
|
||
|
|
||
|
combine_packs();
|
||
|
|
||
|
construct_my_pack_map();
|
||
|
|
||
|
filter_packs();
|
||
|
|
||
|
schedule();
|
||
|
|
||
|
output();
|
||
|
}
|
||
|
|
||
|
//------------------------------find_adjacent_refs---------------------------
|
||
|
// Find the adjacent memory references and create pack pairs for them.
|
||
|
// This is the initial set of packs that will then be extended by
|
||
|
// following use->def and def->use links. The align positions are
|
||
|
// assigned relative to the reference "align_to_ref"
|
||
|
void SuperWord::find_adjacent_refs() {
|
||
|
// Get list of memory operations
|
||
|
Node_List memops;
|
||
|
for (int i = 0; i < _block.length(); i++) {
|
||
|
Node* n = _block.at(i);
|
||
|
if (n->is_Mem() && in_bb(n)) {
|
||
|
int align = memory_alignment(n->as_Mem(), 0);
|
||
|
if (align != bottom_align) {
|
||
|
memops.push(n);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (memops.size() == 0) return;
|
||
|
|
||
|
// Find a memory reference to align to. The pre-loop trip count
|
||
|
// is modified to align this reference to a vector-aligned address
|
||
|
find_align_to_ref(memops);
|
||
|
if (align_to_ref() == NULL) return;
|
||
|
|
||
|
SWPointer align_to_ref_p(align_to_ref(), this);
|
||
|
int offset = align_to_ref_p.offset_in_bytes();
|
||
|
int scale = align_to_ref_p.scale_in_bytes();
|
||
|
int vw = vector_width_in_bytes();
|
||
|
int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
|
||
|
int iv_adjustment = (stride_sign * vw - (offset % vw)) % vw;
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord)
|
||
|
tty->print_cr("\noffset = %d iv_adjustment = %d elt_align = %d",
|
||
|
offset, iv_adjustment, align_to_ref_p.memory_size());
|
||
|
#endif
|
||
|
|
||
|
// Set alignment relative to "align_to_ref"
|
||
|
for (int i = memops.size() - 1; i >= 0; i--) {
|
||
|
MemNode* s = memops.at(i)->as_Mem();
|
||
|
SWPointer p2(s, this);
|
||
|
if (p2.comparable(align_to_ref_p)) {
|
||
|
int align = memory_alignment(s, iv_adjustment);
|
||
|
set_alignment(s, align);
|
||
|
} else {
|
||
|
memops.remove(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create initial pack pairs of memory operations
|
||
|
for (uint i = 0; i < memops.size(); i++) {
|
||
|
Node* s1 = memops.at(i);
|
||
|
for (uint j = 0; j < memops.size(); j++) {
|
||
|
Node* s2 = memops.at(j);
|
||
|
if (s1 != s2 && are_adjacent_refs(s1, s2)) {
|
||
|
int align = alignment(s1);
|
||
|
if (stmts_can_pack(s1, s2, align)) {
|
||
|
Node_List* pair = new Node_List();
|
||
|
pair->push(s1);
|
||
|
pair->push(s2);
|
||
|
_packset.append(pair);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord) {
|
||
|
tty->print_cr("\nAfter find_adjacent_refs");
|
||
|
print_packset();
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//------------------------------find_align_to_ref---------------------------
|
||
|
// Find a memory reference to align the loop induction variable to.
|
||
|
// Looks first at stores then at loads, looking for a memory reference
|
||
|
// with the largest number of references similar to it.
|
||
|
void SuperWord::find_align_to_ref(Node_List &memops) {
|
||
|
GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
|
||
|
|
||
|
// Count number of comparable memory ops
|
||
|
for (uint i = 0; i < memops.size(); i++) {
|
||
|
MemNode* s1 = memops.at(i)->as_Mem();
|
||
|
SWPointer p1(s1, this);
|
||
|
// Discard if pre loop can't align this reference
|
||
|
if (!ref_is_alignable(p1)) {
|
||
|
*cmp_ct.adr_at(i) = 0;
|
||
|
continue;
|
||
|
}
|
||
|
for (uint j = i+1; j < memops.size(); j++) {
|
||
|
MemNode* s2 = memops.at(j)->as_Mem();
|
||
|
if (isomorphic(s1, s2)) {
|
||
|
SWPointer p2(s2, this);
|
||
|
if (p1.comparable(p2)) {
|
||
|
(*cmp_ct.adr_at(i))++;
|
||
|
(*cmp_ct.adr_at(j))++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Find Store (or Load) with the greatest number of "comparable" references
|
||
|
int max_ct = 0;
|
||
|
int max_idx = -1;
|
||
|
int min_size = max_jint;
|
||
|
int min_iv_offset = max_jint;
|
||
|
for (uint j = 0; j < memops.size(); j++) {
|
||
|
MemNode* s = memops.at(j)->as_Mem();
|
||
|
if (s->is_Store()) {
|
||
|
SWPointer p(s, this);
|
||
|
if (cmp_ct.at(j) > max_ct ||
|
||
|
cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
|
||
|
data_size(s) == min_size &&
|
||
|
p.offset_in_bytes() < min_iv_offset)) {
|
||
|
max_ct = cmp_ct.at(j);
|
||
|
max_idx = j;
|
||
|
min_size = data_size(s);
|
||
|
min_iv_offset = p.offset_in_bytes();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// If no stores, look at loads
|
||
|
if (max_ct == 0) {
|
||
|
for (uint j = 0; j < memops.size(); j++) {
|
||
|
MemNode* s = memops.at(j)->as_Mem();
|
||
|
if (s->is_Load()) {
|
||
|
SWPointer p(s, this);
|
||
|
if (cmp_ct.at(j) > max_ct ||
|
||
|
cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
|
||
|
data_size(s) == min_size &&
|
||
|
p.offset_in_bytes() < min_iv_offset)) {
|
||
|
max_ct = cmp_ct.at(j);
|
||
|
max_idx = j;
|
||
|
min_size = data_size(s);
|
||
|
min_iv_offset = p.offset_in_bytes();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (max_ct > 0)
|
||
|
set_align_to_ref(memops.at(max_idx)->as_Mem());
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord && Verbose) {
|
||
|
tty->print_cr("\nVector memops after find_align_to_refs");
|
||
|
for (uint i = 0; i < memops.size(); i++) {
|
||
|
MemNode* s = memops.at(i)->as_Mem();
|
||
|
s->dump();
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//------------------------------ref_is_alignable---------------------------
|
||
|
// Can the preloop align the reference to position zero in the vector?
|
||
|
bool SuperWord::ref_is_alignable(SWPointer& p) {
|
||
|
if (!p.has_iv()) {
|
||
|
return true; // no induction variable
|
||
|
}
|
||
|
CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
|
||
|
assert(pre_end->stride_is_con(), "pre loop stride is constant");
|
||
|
int preloop_stride = pre_end->stride_con();
|
||
|
|
||
|
int span = preloop_stride * p.scale_in_bytes();
|
||
|
|
||
|
// Stride one accesses are alignable.
|
||
|
if (ABS(span) == p.memory_size())
|
||
|
return true;
|
||
|
|
||
|
// If initial offset from start of object is computable,
|
||
|
// compute alignment within the vector.
|
||
|
int vw = vector_width_in_bytes();
|
||
|
if (vw % span == 0) {
|
||
|
Node* init_nd = pre_end->init_trip();
|
||
|
if (init_nd->is_Con() && p.invar() == NULL) {
|
||
|
int init = init_nd->bottom_type()->is_int()->get_con();
|
||
|
|
||
|
int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
|
||
|
assert(init_offset >= 0, "positive offset from object start");
|
||
|
|
||
|
if (span > 0) {
|
||
|
return (vw - (init_offset % vw)) % span == 0;
|
||
|
} else {
|
||
|
assert(span < 0, "nonzero stride * scale");
|
||
|
return (init_offset % vw) % -span == 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//---------------------------dependence_graph---------------------------
|
||
|
// Construct dependency graph.
|
||
|
// Add dependence edges to load/store nodes for memory dependence
|
||
|
// A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
|
||
|
void SuperWord::dependence_graph() {
|
||
|
// First, assign a dependence node to each memory node
|
||
|
for (int i = 0; i < _block.length(); i++ ) {
|
||
|
Node *n = _block.at(i);
|
||
|
if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
|
||
|
_dg.make_node(n);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// For each memory slice, create the dependences
|
||
|
for (int i = 0; i < _mem_slice_head.length(); i++) {
|
||
|
Node* n = _mem_slice_head.at(i);
|
||
|
Node* n_tail = _mem_slice_tail.at(i);
|
||
|
|
||
|
// Get slice in predecessor order (last is first)
|
||
|
mem_slice_preds(n_tail, n, _nlist);
|
||
|
|
||
|
// Make the slice dependent on the root
|
||
|
DepMem* slice = _dg.dep(n);
|
||
|
_dg.make_edge(_dg.root(), slice);
|
||
|
|
||
|
// Create a sink for the slice
|
||
|
DepMem* slice_sink = _dg.make_node(NULL);
|
||
|
_dg.make_edge(slice_sink, _dg.tail());
|
||
|
|
||
|
// Now visit each pair of memory ops, creating the edges
|
||
|
for (int j = _nlist.length() - 1; j >= 0 ; j--) {
|
||
|
Node* s1 = _nlist.at(j);
|
||
|
|
||
|
// If no dependency yet, use slice
|
||
|
if (_dg.dep(s1)->in_cnt() == 0) {
|
||
|
_dg.make_edge(slice, s1);
|
||
|
}
|
||
|
SWPointer p1(s1->as_Mem(), this);
|
||
|
bool sink_dependent = true;
|
||
|
for (int k = j - 1; k >= 0; k--) {
|
||
|
Node* s2 = _nlist.at(k);
|
||
|
if (s1->is_Load() && s2->is_Load())
|
||
|
continue;
|
||
|
SWPointer p2(s2->as_Mem(), this);
|
||
|
|
||
|
int cmp = p1.cmp(p2);
|
||
|
if (SuperWordRTDepCheck &&
|
||
|
p1.base() != p2.base() && p1.valid() && p2.valid()) {
|
||
|
// Create a runtime check to disambiguate
|
||
|
OrderedPair pp(p1.base(), p2.base());
|
||
|
_disjoint_ptrs.append_if_missing(pp);
|
||
|
} else if (!SWPointer::not_equal(cmp)) {
|
||
|
// Possibly same address
|
||
|
_dg.make_edge(s1, s2);
|
||
|
sink_dependent = false;
|
||
|
}
|
||
|
}
|
||
|
if (sink_dependent) {
|
||
|
_dg.make_edge(s1, slice_sink);
|
||
|
}
|
||
|
}
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord) {
|
||
|
tty->print_cr("\nDependence graph for slice: %d", n->_idx);
|
||
|
for (int q = 0; q < _nlist.length(); q++) {
|
||
|
_dg.print(_nlist.at(q));
|
||
|
}
|
||
|
tty->cr();
|
||
|
}
|
||
|
#endif
|
||
|
_nlist.clear();
|
||
|
}
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord) {
|
||
|
tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
|
||
|
for (int r = 0; r < _disjoint_ptrs.length(); r++) {
|
||
|
_disjoint_ptrs.at(r).print();
|
||
|
tty->cr();
|
||
|
}
|
||
|
tty->cr();
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//---------------------------mem_slice_preds---------------------------
|
||
|
// Return a memory slice (node list) in predecessor order starting at "start"
|
||
|
void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
|
||
|
assert(preds.length() == 0, "start empty");
|
||
|
Node* n = start;
|
||
|
Node* prev = NULL;
|
||
|
while (true) {
|
||
|
assert(in_bb(n), "must be in block");
|
||
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
||
|
Node* out = n->fast_out(i);
|
||
|
if (out->is_Load()) {
|
||
|
if (in_bb(out)) {
|
||
|
preds.push(out);
|
||
|
}
|
||
|
} else {
|
||
|
// FIXME
|
||
|
if (out->is_MergeMem() && !in_bb(out)) {
|
||
|
// Either unrolling is causing a memory edge not to disappear,
|
||
|
// or need to run igvn.optimize() again before SLP
|
||
|
} else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
|
||
|
// Ditto. Not sure what else to check further.
|
||
|
} else if (out->Opcode() == Op_StoreCM && out->in(4) == n) {
|
||
|
// StoreCM has an input edge used as a precedence edge.
|
||
|
// Maybe an issue when oop stores are vectorized.
|
||
|
} else {
|
||
|
assert(out == prev || prev == NULL, "no branches off of store slice");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (n == stop) break;
|
||
|
preds.push(n);
|
||
|
prev = n;
|
||
|
n = n->in(MemNode::Memory);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------stmts_can_pack---------------------------
|
||
|
// Can s1 and s2 be in a pack with s1 immediately preceeding s2 and
|
||
|
// s1 aligned at "align"
|
||
|
bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
|
||
|
if (isomorphic(s1, s2)) {
|
||
|
if (independent(s1, s2)) {
|
||
|
if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
|
||
|
if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
|
||
|
int s1_align = alignment(s1);
|
||
|
int s2_align = alignment(s2);
|
||
|
if (s1_align == top_align || s1_align == align) {
|
||
|
if (s2_align == top_align || s2_align == align + data_size(s1)) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//------------------------------exists_at---------------------------
|
||
|
// Does s exist in a pack at position pos?
|
||
|
bool SuperWord::exists_at(Node* s, uint pos) {
|
||
|
for (int i = 0; i < _packset.length(); i++) {
|
||
|
Node_List* p = _packset.at(i);
|
||
|
if (p->at(pos) == s) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//------------------------------are_adjacent_refs---------------------------
|
||
|
// Is s1 immediately before s2 in memory?
|
||
|
bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
|
||
|
if (!s1->is_Mem() || !s2->is_Mem()) return false;
|
||
|
if (!in_bb(s1) || !in_bb(s2)) return false;
|
||
|
// FIXME - co_locate_pack fails on Stores in different mem-slices, so
|
||
|
// only pack memops that are in the same alias set until that's fixed.
|
||
|
if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
|
||
|
_phase->C->get_alias_index(s2->as_Mem()->adr_type()))
|
||
|
return false;
|
||
|
SWPointer p1(s1->as_Mem(), this);
|
||
|
SWPointer p2(s2->as_Mem(), this);
|
||
|
if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
|
||
|
int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
|
||
|
return diff == data_size(s1);
|
||
|
}
|
||
|
|
||
|
//------------------------------isomorphic---------------------------
|
||
|
// Are s1 and s2 similar?
|
||
|
bool SuperWord::isomorphic(Node* s1, Node* s2) {
|
||
|
if (s1->Opcode() != s2->Opcode()) return false;
|
||
|
if (s1->req() != s2->req()) return false;
|
||
|
if (s1->in(0) != s2->in(0)) return false;
|
||
|
if (velt_type(s1) != velt_type(s2)) return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//------------------------------independent---------------------------
|
||
|
// Is there no data path from s1 to s2 or s2 to s1?
|
||
|
bool SuperWord::independent(Node* s1, Node* s2) {
|
||
|
// assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
|
||
|
int d1 = depth(s1);
|
||
|
int d2 = depth(s2);
|
||
|
if (d1 == d2) return s1 != s2;
|
||
|
Node* deep = d1 > d2 ? s1 : s2;
|
||
|
Node* shallow = d1 > d2 ? s2 : s1;
|
||
|
|
||
|
visited_clear();
|
||
|
|
||
|
return independent_path(shallow, deep);
|
||
|
}
|
||
|
|
||
|
//------------------------------independent_path------------------------------
|
||
|
// Helper for independent
|
||
|
bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
|
||
|
if (dp >= 1000) return false; // stop deep recursion
|
||
|
visited_set(deep);
|
||
|
int shal_depth = depth(shallow);
|
||
|
assert(shal_depth <= depth(deep), "must be");
|
||
|
for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
|
||
|
Node* pred = preds.current();
|
||
|
if (in_bb(pred) && !visited_test(pred)) {
|
||
|
if (shallow == pred) {
|
||
|
return false;
|
||
|
}
|
||
|
if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//------------------------------set_alignment---------------------------
|
||
|
void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
|
||
|
set_alignment(s1, align);
|
||
|
set_alignment(s2, align + data_size(s1));
|
||
|
}
|
||
|
|
||
|
//------------------------------data_size---------------------------
|
||
|
int SuperWord::data_size(Node* s) {
|
||
|
const Type* t = velt_type(s);
|
||
|
BasicType bt = t->array_element_basic_type();
|
||
|
int bsize = type2aelembytes[bt];
|
||
|
assert(bsize != 0, "valid size");
|
||
|
return bsize;
|
||
|
}
|
||
|
|
||
|
//------------------------------extend_packlist---------------------------
|
||
|
// Extend packset by following use->def and def->use links from pack members.
|
||
|
void SuperWord::extend_packlist() {
|
||
|
bool changed;
|
||
|
do {
|
||
|
changed = false;
|
||
|
for (int i = 0; i < _packset.length(); i++) {
|
||
|
Node_List* p = _packset.at(i);
|
||
|
changed |= follow_use_defs(p);
|
||
|
changed |= follow_def_uses(p);
|
||
|
}
|
||
|
} while (changed);
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord) {
|
||
|
tty->print_cr("\nAfter extend_packlist");
|
||
|
print_packset();
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//------------------------------follow_use_defs---------------------------
|
||
|
// Extend the packset by visiting operand definitions of nodes in pack p
|
||
|
bool SuperWord::follow_use_defs(Node_List* p) {
|
||
|
Node* s1 = p->at(0);
|
||
|
Node* s2 = p->at(1);
|
||
|
assert(p->size() == 2, "just checking");
|
||
|
assert(s1->req() == s2->req(), "just checking");
|
||
|
assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
|
||
|
|
||
|
if (s1->is_Load()) return false;
|
||
|
|
||
|
int align = alignment(s1);
|
||
|
bool changed = false;
|
||
|
int start = s1->is_Store() ? MemNode::ValueIn : 1;
|
||
|
int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
|
||
|
for (int j = start; j < end; j++) {
|
||
|
Node* t1 = s1->in(j);
|
||
|
Node* t2 = s2->in(j);
|
||
|
if (!in_bb(t1) || !in_bb(t2))
|
||
|
continue;
|
||
|
if (stmts_can_pack(t1, t2, align)) {
|
||
|
if (est_savings(t1, t2) >= 0) {
|
||
|
Node_List* pair = new Node_List();
|
||
|
pair->push(t1);
|
||
|
pair->push(t2);
|
||
|
_packset.append(pair);
|
||
|
set_alignment(t1, t2, align);
|
||
|
changed = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return changed;
|
||
|
}
|
||
|
|
||
|
//------------------------------follow_def_uses---------------------------
|
||
|
// Extend the packset by visiting uses of nodes in pack p
|
||
|
bool SuperWord::follow_def_uses(Node_List* p) {
|
||
|
bool changed = false;
|
||
|
Node* s1 = p->at(0);
|
||
|
Node* s2 = p->at(1);
|
||
|
assert(p->size() == 2, "just checking");
|
||
|
assert(s1->req() == s2->req(), "just checking");
|
||
|
assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
|
||
|
|
||
|
if (s1->is_Store()) return false;
|
||
|
|
||
|
int align = alignment(s1);
|
||
|
int savings = -1;
|
||
|
Node* u1 = NULL;
|
||
|
Node* u2 = NULL;
|
||
|
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
|
||
|
Node* t1 = s1->fast_out(i);
|
||
|
if (!in_bb(t1)) continue;
|
||
|
for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
|
||
|
Node* t2 = s2->fast_out(j);
|
||
|
if (!in_bb(t2)) continue;
|
||
|
if (!opnd_positions_match(s1, t1, s2, t2))
|
||
|
continue;
|
||
|
if (stmts_can_pack(t1, t2, align)) {
|
||
|
int my_savings = est_savings(t1, t2);
|
||
|
if (my_savings > savings) {
|
||
|
savings = my_savings;
|
||
|
u1 = t1;
|
||
|
u2 = t2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (savings >= 0) {
|
||
|
Node_List* pair = new Node_List();
|
||
|
pair->push(u1);
|
||
|
pair->push(u2);
|
||
|
_packset.append(pair);
|
||
|
set_alignment(u1, u2, align);
|
||
|
changed = true;
|
||
|
}
|
||
|
return changed;
|
||
|
}
|
||
|
|
||
|
//---------------------------opnd_positions_match-------------------------
|
||
|
// Is the use of d1 in u1 at the same operand position as d2 in u2?
|
||
|
bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
|
||
|
uint ct = u1->req();
|
||
|
if (ct != u2->req()) return false;
|
||
|
uint i1 = 0;
|
||
|
uint i2 = 0;
|
||
|
do {
|
||
|
for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
|
||
|
for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
|
||
|
if (i1 != i2) {
|
||
|
return false;
|
||
|
}
|
||
|
} while (i1 < ct);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//------------------------------est_savings---------------------------
|
||
|
// Estimate the savings from executing s1 and s2 as a pack
|
||
|
int SuperWord::est_savings(Node* s1, Node* s2) {
|
||
|
int save = 2 - 1; // 2 operations per instruction in packed form
|
||
|
|
||
|
// inputs
|
||
|
for (uint i = 1; i < s1->req(); i++) {
|
||
|
Node* x1 = s1->in(i);
|
||
|
Node* x2 = s2->in(i);
|
||
|
if (x1 != x2) {
|
||
|
if (are_adjacent_refs(x1, x2)) {
|
||
|
save += adjacent_profit(x1, x2);
|
||
|
} else if (!in_packset(x1, x2)) {
|
||
|
save -= pack_cost(2);
|
||
|
} else {
|
||
|
save += unpack_cost(2);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// uses of result
|
||
|
uint ct = 0;
|
||
|
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
|
||
|
Node* s1_use = s1->fast_out(i);
|
||
|
for (int j = 0; j < _packset.length(); j++) {
|
||
|
Node_List* p = _packset.at(j);
|
||
|
if (p->at(0) == s1_use) {
|
||
|
for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
|
||
|
Node* s2_use = s2->fast_out(k);
|
||
|
if (p->at(p->size()-1) == s2_use) {
|
||
|
ct++;
|
||
|
if (are_adjacent_refs(s1_use, s2_use)) {
|
||
|
save += adjacent_profit(s1_use, s2_use);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ct < s1->outcnt()) save += unpack_cost(1);
|
||
|
if (ct < s2->outcnt()) save += unpack_cost(1);
|
||
|
|
||
|
return save;
|
||
|
}
|
||
|
|
||
|
//------------------------------costs---------------------------
|
||
|
int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
|
||
|
int SuperWord::pack_cost(int ct) { return ct; }
|
||
|
int SuperWord::unpack_cost(int ct) { return ct; }
|
||
|
|
||
|
//------------------------------combine_packs---------------------------
|
||
|
// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
|
||
|
void SuperWord::combine_packs() {
|
||
|
bool changed;
|
||
|
do {
|
||
|
changed = false;
|
||
|
for (int i = 0; i < _packset.length(); i++) {
|
||
|
Node_List* p1 = _packset.at(i);
|
||
|
if (p1 == NULL) continue;
|
||
|
for (int j = 0; j < _packset.length(); j++) {
|
||
|
Node_List* p2 = _packset.at(j);
|
||
|
if (p2 == NULL) continue;
|
||
|
if (p1->at(p1->size()-1) == p2->at(0)) {
|
||
|
for (uint k = 1; k < p2->size(); k++) {
|
||
|
p1->push(p2->at(k));
|
||
|
}
|
||
|
_packset.at_put(j, NULL);
|
||
|
changed = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} while (changed);
|
||
|
|
||
|
for (int i = _packset.length() - 1; i >= 0; i--) {
|
||
|
Node_List* p1 = _packset.at(i);
|
||
|
if (p1 == NULL) {
|
||
|
_packset.remove_at(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord) {
|
||
|
tty->print_cr("\nAfter combine_packs");
|
||
|
print_packset();
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//-----------------------------construct_my_pack_map--------------------------
|
||
|
// Construct the map from nodes to packs. Only valid after the
|
||
|
// point where a node is only in one pack (after combine_packs).
|
||
|
void SuperWord::construct_my_pack_map() {
|
||
|
Node_List* rslt = NULL;
|
||
|
for (int i = 0; i < _packset.length(); i++) {
|
||
|
Node_List* p = _packset.at(i);
|
||
|
for (uint j = 0; j < p->size(); j++) {
|
||
|
Node* s = p->at(j);
|
||
|
assert(my_pack(s) == NULL, "only in one pack");
|
||
|
set_my_pack(s, p);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------filter_packs---------------------------
|
||
|
// Remove packs that are not implemented or not profitable.
|
||
|
void SuperWord::filter_packs() {
|
||
|
|
||
|
// Remove packs that are not implemented
|
||
|
for (int i = _packset.length() - 1; i >= 0; i--) {
|
||
|
Node_List* pk = _packset.at(i);
|
||
|
bool impl = implemented(pk);
|
||
|
if (!impl) {
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord && Verbose) {
|
||
|
tty->print_cr("Unimplemented");
|
||
|
pk->at(0)->dump();
|
||
|
}
|
||
|
#endif
|
||
|
remove_pack_at(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Remove packs that are not profitable
|
||
|
bool changed;
|
||
|
do {
|
||
|
changed = false;
|
||
|
for (int i = _packset.length() - 1; i >= 0; i--) {
|
||
|
Node_List* pk = _packset.at(i);
|
||
|
bool prof = profitable(pk);
|
||
|
if (!prof) {
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord && Verbose) {
|
||
|
tty->print_cr("Unprofitable");
|
||
|
pk->at(0)->dump();
|
||
|
}
|
||
|
#endif
|
||
|
remove_pack_at(i);
|
||
|
changed = true;
|
||
|
}
|
||
|
}
|
||
|
} while (changed);
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord) {
|
||
|
tty->print_cr("\nAfter filter_packs");
|
||
|
print_packset();
|
||
|
tty->cr();
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//------------------------------implemented---------------------------
|
||
|
// Can code be generated for pack p?
|
||
|
bool SuperWord::implemented(Node_List* p) {
|
||
|
Node* p0 = p->at(0);
|
||
|
int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
|
||
|
return vopc > 0 && Matcher::has_match_rule(vopc);
|
||
|
}
|
||
|
|
||
|
//------------------------------profitable---------------------------
|
||
|
// For pack p, are all operands and all uses (with in the block) vector?
|
||
|
bool SuperWord::profitable(Node_List* p) {
|
||
|
Node* p0 = p->at(0);
|
||
|
uint start, end;
|
||
|
vector_opd_range(p0, &start, &end);
|
||
|
|
||
|
// Return false if some input is not vector and inside block
|
||
|
for (uint i = start; i < end; i++) {
|
||
|
if (!is_vector_use(p0, i)) {
|
||
|
// For now, return false if not scalar promotion case (inputs are the same.)
|
||
|
// Later, implement PackNode and allow differring, non-vector inputs
|
||
|
// (maybe just the ones from outside the block.)
|
||
|
Node* p0_def = p0->in(i);
|
||
|
for (uint j = 1; j < p->size(); j++) {
|
||
|
Node* use = p->at(j);
|
||
|
Node* def = use->in(i);
|
||
|
if (p0_def != def)
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (!p0->is_Store()) {
|
||
|
// For now, return false if not all uses are vector.
|
||
|
// Later, implement ExtractNode and allow non-vector uses (maybe
|
||
|
// just the ones outside the block.)
|
||
|
for (uint i = 0; i < p->size(); i++) {
|
||
|
Node* def = p->at(i);
|
||
|
for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
|
||
|
Node* use = def->fast_out(j);
|
||
|
for (uint k = 0; k < use->req(); k++) {
|
||
|
Node* n = use->in(k);
|
||
|
if (def == n) {
|
||
|
if (!is_vector_use(use, k)) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//------------------------------schedule---------------------------
|
||
|
// Adjust the memory graph for the packed operations
|
||
|
void SuperWord::schedule() {
|
||
|
|
||
|
// Co-locate in the memory graph the members of each memory pack
|
||
|
for (int i = 0; i < _packset.length(); i++) {
|
||
|
co_locate_pack(_packset.at(i));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------co_locate_pack---------------------------
|
||
|
// Within a pack, move stores down to the last executed store,
|
||
|
// and move loads up to the first executed load.
|
||
|
void SuperWord::co_locate_pack(Node_List* pk) {
|
||
|
if (pk->at(0)->is_Store()) {
|
||
|
// Push Stores down towards last executed pack member
|
||
|
MemNode* first = executed_first(pk)->as_Mem();
|
||
|
MemNode* last = executed_last(pk)->as_Mem();
|
||
|
MemNode* insert_pt = last;
|
||
|
MemNode* current = last->in(MemNode::Memory)->as_Mem();
|
||
|
while (true) {
|
||
|
assert(in_bb(current), "stay in block");
|
||
|
Node* my_mem = current->in(MemNode::Memory);
|
||
|
if (in_pack(current, pk)) {
|
||
|
// Forward users of my memory state to my input memory state
|
||
|
_igvn.hash_delete(current);
|
||
|
_igvn.hash_delete(my_mem);
|
||
|
for (DUIterator i = current->outs(); current->has_out(i); i++) {
|
||
|
Node* use = current->out(i);
|
||
|
if (use->is_Mem()) {
|
||
|
assert(use->in(MemNode::Memory) == current, "must be");
|
||
|
_igvn.hash_delete(use);
|
||
|
use->set_req(MemNode::Memory, my_mem);
|
||
|
_igvn._worklist.push(use);
|
||
|
--i; // deleted this edge; rescan position
|
||
|
}
|
||
|
}
|
||
|
// put current immediately before insert_pt
|
||
|
current->set_req(MemNode::Memory, insert_pt->in(MemNode::Memory));
|
||
|
_igvn.hash_delete(insert_pt);
|
||
|
insert_pt->set_req(MemNode::Memory, current);
|
||
|
_igvn._worklist.push(insert_pt);
|
||
|
_igvn._worklist.push(current);
|
||
|
insert_pt = current;
|
||
|
}
|
||
|
if (current == first) break;
|
||
|
current = my_mem->as_Mem();
|
||
|
}
|
||
|
} else if (pk->at(0)->is_Load()) {
|
||
|
// Pull Loads up towards first executed pack member
|
||
|
LoadNode* first = executed_first(pk)->as_Load();
|
||
|
Node* first_mem = first->in(MemNode::Memory);
|
||
|
_igvn.hash_delete(first_mem);
|
||
|
// Give each load same memory state as first
|
||
|
for (uint i = 0; i < pk->size(); i++) {
|
||
|
LoadNode* ld = pk->at(i)->as_Load();
|
||
|
_igvn.hash_delete(ld);
|
||
|
ld->set_req(MemNode::Memory, first_mem);
|
||
|
_igvn._worklist.push(ld);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------output---------------------------
|
||
|
// Convert packs into vector node operations
|
||
|
void SuperWord::output() {
|
||
|
if (_packset.length() == 0) return;
|
||
|
|
||
|
// MUST ENSURE main loop's initial value is properly aligned:
|
||
|
// (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
|
||
|
|
||
|
align_initial_loop_index(align_to_ref());
|
||
|
|
||
|
// Insert extract (unpack) operations for scalar uses
|
||
|
for (int i = 0; i < _packset.length(); i++) {
|
||
|
insert_extracts(_packset.at(i));
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < _block.length(); i++) {
|
||
|
Node* n = _block.at(i);
|
||
|
Node_List* p = my_pack(n);
|
||
|
if (p && n == executed_last(p)) {
|
||
|
uint vlen = p->size();
|
||
|
Node* vn = NULL;
|
||
|
Node* low_adr = p->at(0);
|
||
|
Node* first = executed_first(p);
|
||
|
if (n->is_Load()) {
|
||
|
int opc = n->Opcode();
|
||
|
Node* ctl = n->in(MemNode::Control);
|
||
|
Node* mem = first->in(MemNode::Memory);
|
||
|
Node* adr = low_adr->in(MemNode::Address);
|
||
|
const TypePtr* atyp = n->adr_type();
|
||
|
vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
|
||
|
|
||
|
} else if (n->is_Store()) {
|
||
|
// Promote value to be stored to vector
|
||
|
VectorNode* val = vector_opd(p, MemNode::ValueIn);
|
||
|
|
||
|
int opc = n->Opcode();
|
||
|
Node* ctl = n->in(MemNode::Control);
|
||
|
Node* mem = first->in(MemNode::Memory);
|
||
|
Node* adr = low_adr->in(MemNode::Address);
|
||
|
const TypePtr* atyp = n->adr_type();
|
||
|
vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
|
||
|
|
||
|
} else if (n->req() == 3) {
|
||
|
// Promote operands to vector
|
||
|
Node* in1 = vector_opd(p, 1);
|
||
|
Node* in2 = vector_opd(p, 2);
|
||
|
vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
|
||
|
|
||
|
} else {
|
||
|
ShouldNotReachHere();
|
||
|
}
|
||
|
|
||
|
_phase->_igvn.register_new_node_with_optimizer(vn);
|
||
|
_phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
|
||
|
for (uint j = 0; j < p->size(); j++) {
|
||
|
Node* pm = p->at(j);
|
||
|
_igvn.hash_delete(pm);
|
||
|
_igvn.subsume_node(pm, vn);
|
||
|
}
|
||
|
_igvn._worklist.push(vn);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------vector_opd---------------------------
|
||
|
// Create a vector operand for the nodes in pack p for operand: in(opd_idx)
|
||
|
VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
|
||
|
Node* p0 = p->at(0);
|
||
|
uint vlen = p->size();
|
||
|
Node* opd = p0->in(opd_idx);
|
||
|
|
||
|
bool same_opd = true;
|
||
|
for (uint i = 1; i < vlen; i++) {
|
||
|
Node* pi = p->at(i);
|
||
|
Node* in = pi->in(opd_idx);
|
||
|
if (opd != in) {
|
||
|
same_opd = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (same_opd) {
|
||
|
if (opd->is_Vector()) {
|
||
|
return (VectorNode*)opd; // input is matching vector
|
||
|
}
|
||
|
// Convert scalar input to vector. Use p0's type because it's container
|
||
|
// maybe smaller than the operand's container.
|
||
|
const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
|
||
|
const Type* p0_t = velt_type(p0);
|
||
|
if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
|
||
|
VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
|
||
|
|
||
|
_phase->_igvn.register_new_node_with_optimizer(vn);
|
||
|
_phase->set_ctrl(vn, _phase->get_ctrl(opd));
|
||
|
return vn;
|
||
|
}
|
||
|
|
||
|
// Insert pack operation
|
||
|
const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
|
||
|
PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
|
||
|
|
||
|
for (uint i = 1; i < vlen; i++) {
|
||
|
Node* pi = p->at(i);
|
||
|
Node* in = pi->in(opd_idx);
|
||
|
assert(my_pack(in) == NULL, "Should already have been unpacked");
|
||
|
assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
|
||
|
pk->add_opd(in);
|
||
|
}
|
||
|
_phase->_igvn.register_new_node_with_optimizer(pk);
|
||
|
_phase->set_ctrl(pk, _phase->get_ctrl(opd));
|
||
|
return pk;
|
||
|
}
|
||
|
|
||
|
//------------------------------insert_extracts---------------------------
|
||
|
// If a use of pack p is not a vector use, then replace the
|
||
|
// use with an extract operation.
|
||
|
void SuperWord::insert_extracts(Node_List* p) {
|
||
|
if (p->at(0)->is_Store()) return;
|
||
|
assert(_n_idx_list.is_empty(), "empty (node,index) list");
|
||
|
|
||
|
// Inspect each use of each pack member. For each use that is
|
||
|
// not a vector use, replace the use with an extract operation.
|
||
|
|
||
|
for (uint i = 0; i < p->size(); i++) {
|
||
|
Node* def = p->at(i);
|
||
|
for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
|
||
|
Node* use = def->fast_out(j);
|
||
|
for (uint k = 0; k < use->req(); k++) {
|
||
|
Node* n = use->in(k);
|
||
|
if (def == n) {
|
||
|
if (!is_vector_use(use, k)) {
|
||
|
_n_idx_list.push(use, k);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
while (_n_idx_list.is_nonempty()) {
|
||
|
Node* use = _n_idx_list.node();
|
||
|
int idx = _n_idx_list.index();
|
||
|
_n_idx_list.pop();
|
||
|
Node* def = use->in(idx);
|
||
|
|
||
|
// Insert extract operation
|
||
|
_igvn.hash_delete(def);
|
||
|
_igvn.hash_delete(use);
|
||
|
int def_pos = alignment(def) / data_size(def);
|
||
|
const Type* def_t = velt_type(def);
|
||
|
|
||
|
Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
|
||
|
_phase->_igvn.register_new_node_with_optimizer(ex);
|
||
|
_phase->set_ctrl(ex, _phase->get_ctrl(def));
|
||
|
use->set_req(idx, ex);
|
||
|
_igvn._worklist.push(def);
|
||
|
_igvn._worklist.push(use);
|
||
|
|
||
|
bb_insert_after(ex, bb_idx(def));
|
||
|
set_velt_type(ex, def_t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------is_vector_use---------------------------
|
||
|
// Is use->in(u_idx) a vector use?
|
||
|
bool SuperWord::is_vector_use(Node* use, int u_idx) {
|
||
|
Node_List* u_pk = my_pack(use);
|
||
|
if (u_pk == NULL) return false;
|
||
|
Node* def = use->in(u_idx);
|
||
|
Node_List* d_pk = my_pack(def);
|
||
|
if (d_pk == NULL) {
|
||
|
// check for scalar promotion
|
||
|
Node* n = u_pk->at(0)->in(u_idx);
|
||
|
for (uint i = 1; i < u_pk->size(); i++) {
|
||
|
if (u_pk->at(i)->in(u_idx) != n) return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
if (u_pk->size() != d_pk->size())
|
||
|
return false;
|
||
|
for (uint i = 0; i < u_pk->size(); i++) {
|
||
|
Node* ui = u_pk->at(i);
|
||
|
Node* di = d_pk->at(i);
|
||
|
if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//------------------------------construct_bb---------------------------
|
||
|
// Construct reverse postorder list of block members
|
||
|
void SuperWord::construct_bb() {
|
||
|
Node* entry = bb();
|
||
|
|
||
|
assert(_stk.length() == 0, "stk is empty");
|
||
|
assert(_block.length() == 0, "block is empty");
|
||
|
assert(_data_entry.length() == 0, "data_entry is empty");
|
||
|
assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
|
||
|
assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
|
||
|
|
||
|
// Find non-control nodes with no inputs from within block,
|
||
|
// create a temporary map from node _idx to bb_idx for use
|
||
|
// by the visited and post_visited sets,
|
||
|
// and count number of nodes in block.
|
||
|
int bb_ct = 0;
|
||
|
for (uint i = 0; i < lpt()->_body.size(); i++ ) {
|
||
|
Node *n = lpt()->_body.at(i);
|
||
|
set_bb_idx(n, i); // Create a temporary map
|
||
|
if (in_bb(n)) {
|
||
|
bb_ct++;
|
||
|
if (!n->is_CFG()) {
|
||
|
bool found = false;
|
||
|
for (uint j = 0; j < n->req(); j++) {
|
||
|
Node* def = n->in(j);
|
||
|
if (def && in_bb(def)) {
|
||
|
found = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!found) {
|
||
|
assert(n != entry, "can't be entry");
|
||
|
_data_entry.push(n);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Find memory slices (head and tail)
|
||
|
for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
|
||
|
Node *n = lp()->fast_out(i);
|
||
|
if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
|
||
|
Node* n_tail = n->in(LoopNode::LoopBackControl);
|
||
|
_mem_slice_head.push(n);
|
||
|
_mem_slice_tail.push(n_tail);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create an RPO list of nodes in block
|
||
|
|
||
|
visited_clear();
|
||
|
post_visited_clear();
|
||
|
|
||
|
// Push all non-control nodes with no inputs from within block, then control entry
|
||
|
for (int j = 0; j < _data_entry.length(); j++) {
|
||
|
Node* n = _data_entry.at(j);
|
||
|
visited_set(n);
|
||
|
_stk.push(n);
|
||
|
}
|
||
|
visited_set(entry);
|
||
|
_stk.push(entry);
|
||
|
|
||
|
// Do a depth first walk over out edges
|
||
|
int rpo_idx = bb_ct - 1;
|
||
|
int size;
|
||
|
while ((size = _stk.length()) > 0) {
|
||
|
Node* n = _stk.top(); // Leave node on stack
|
||
|
if (!visited_test_set(n)) {
|
||
|
// forward arc in graph
|
||
|
} else if (!post_visited_test(n)) {
|
||
|
// cross or back arc
|
||
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
||
|
Node *use = n->fast_out(i);
|
||
|
if (in_bb(use) && !visited_test(use) &&
|
||
|
// Don't go around backedge
|
||
|
(!use->is_Phi() || n == entry)) {
|
||
|
_stk.push(use);
|
||
|
}
|
||
|
}
|
||
|
if (_stk.length() == size) {
|
||
|
// There were no additional uses, post visit node now
|
||
|
_stk.pop(); // Remove node from stack
|
||
|
assert(rpo_idx >= 0, "");
|
||
|
_block.at_put_grow(rpo_idx, n);
|
||
|
rpo_idx--;
|
||
|
post_visited_set(n);
|
||
|
assert(rpo_idx >= 0 || _stk.is_empty(), "");
|
||
|
}
|
||
|
} else {
|
||
|
_stk.pop(); // Remove post-visited node from stack
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create real map of block indices for nodes
|
||
|
for (int j = 0; j < _block.length(); j++) {
|
||
|
Node* n = _block.at(j);
|
||
|
set_bb_idx(n, j);
|
||
|
}
|
||
|
|
||
|
initialize_bb(); // Ensure extra info is allocated.
|
||
|
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord) {
|
||
|
print_bb();
|
||
|
tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
|
||
|
for (int m = 0; m < _data_entry.length(); m++) {
|
||
|
tty->print("%3d ", m);
|
||
|
_data_entry.at(m)->dump();
|
||
|
}
|
||
|
tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
|
||
|
for (int m = 0; m < _mem_slice_head.length(); m++) {
|
||
|
tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
|
||
|
tty->print(" "); _mem_slice_tail.at(m)->dump();
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
|
||
|
}
|
||
|
|
||
|
//------------------------------initialize_bb---------------------------
|
||
|
// Initialize per node info
|
||
|
void SuperWord::initialize_bb() {
|
||
|
Node* last = _block.at(_block.length() - 1);
|
||
|
grow_node_info(bb_idx(last));
|
||
|
}
|
||
|
|
||
|
//------------------------------bb_insert_after---------------------------
|
||
|
// Insert n into block after pos
|
||
|
void SuperWord::bb_insert_after(Node* n, int pos) {
|
||
|
int n_pos = pos + 1;
|
||
|
// Make room
|
||
|
for (int i = _block.length() - 1; i >= n_pos; i--) {
|
||
|
_block.at_put_grow(i+1, _block.at(i));
|
||
|
}
|
||
|
for (int j = _node_info.length() - 1; j >= n_pos; j--) {
|
||
|
_node_info.at_put_grow(j+1, _node_info.at(j));
|
||
|
}
|
||
|
// Set value
|
||
|
_block.at_put_grow(n_pos, n);
|
||
|
_node_info.at_put_grow(n_pos, SWNodeInfo::initial);
|
||
|
// Adjust map from node->_idx to _block index
|
||
|
for (int i = n_pos; i < _block.length(); i++) {
|
||
|
set_bb_idx(_block.at(i), i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------compute_max_depth---------------------------
|
||
|
// Compute max depth for expressions from beginning of block
|
||
|
// Use to prune search paths during test for independence.
|
||
|
void SuperWord::compute_max_depth() {
|
||
|
int ct = 0;
|
||
|
bool again;
|
||
|
do {
|
||
|
again = false;
|
||
|
for (int i = 0; i < _block.length(); i++) {
|
||
|
Node* n = _block.at(i);
|
||
|
if (!n->is_Phi()) {
|
||
|
int d_orig = depth(n);
|
||
|
int d_in = 0;
|
||
|
for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
|
||
|
Node* pred = preds.current();
|
||
|
if (in_bb(pred)) {
|
||
|
d_in = MAX2(d_in, depth(pred));
|
||
|
}
|
||
|
}
|
||
|
if (d_in + 1 != d_orig) {
|
||
|
set_depth(n, d_in + 1);
|
||
|
again = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
ct++;
|
||
|
} while (again);
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord && Verbose)
|
||
|
tty->print_cr("compute_max_depth iterated: %d times", ct);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//-------------------------compute_vector_element_type-----------------------
|
||
|
// Compute necessary vector element type for expressions
|
||
|
// This propagates backwards a narrower integer type when the
|
||
|
// upper bits of the value are not needed.
|
||
|
// Example: char a,b,c; a = b + c;
|
||
|
// Normally the type of the add is integer, but for packed character
|
||
|
// operations the type of the add needs to be char.
|
||
|
void SuperWord::compute_vector_element_type() {
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord && Verbose)
|
||
|
tty->print_cr("\ncompute_velt_type:");
|
||
|
#endif
|
||
|
|
||
|
// Initial type
|
||
|
for (int i = 0; i < _block.length(); i++) {
|
||
|
Node* n = _block.at(i);
|
||
|
const Type* t = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
|
||
|
: _igvn.type(n);
|
||
|
const Type* vt = container_type(t);
|
||
|
set_velt_type(n, vt);
|
||
|
}
|
||
|
|
||
|
// Propagate narrowed type backwards through operations
|
||
|
// that don't depend on higher order bits
|
||
|
for (int i = _block.length() - 1; i >= 0; i--) {
|
||
|
Node* n = _block.at(i);
|
||
|
// Only integer types need be examined
|
||
|
if (n->bottom_type()->isa_int()) {
|
||
|
uint start, end;
|
||
|
vector_opd_range(n, &start, &end);
|
||
|
const Type* vt = velt_type(n);
|
||
|
|
||
|
for (uint j = start; j < end; j++) {
|
||
|
Node* in = n->in(j);
|
||
|
// Don't propagate through a type conversion
|
||
|
if (n->bottom_type() != in->bottom_type())
|
||
|
continue;
|
||
|
switch(in->Opcode()) {
|
||
|
case Op_AddI: case Op_AddL:
|
||
|
case Op_SubI: case Op_SubL:
|
||
|
case Op_MulI: case Op_MulL:
|
||
|
case Op_AndI: case Op_AndL:
|
||
|
case Op_OrI: case Op_OrL:
|
||
|
case Op_XorI: case Op_XorL:
|
||
|
case Op_LShiftI: case Op_LShiftL:
|
||
|
case Op_CMoveI: case Op_CMoveL:
|
||
|
if (in_bb(in)) {
|
||
|
bool same_type = true;
|
||
|
for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
|
||
|
Node *use = in->fast_out(k);
|
||
|
if (!in_bb(use) || velt_type(use) != vt) {
|
||
|
same_type = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (same_type) {
|
||
|
set_velt_type(in, vt);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#ifndef PRODUCT
|
||
|
if (TraceSuperWord && Verbose) {
|
||
|
for (int i = 0; i < _block.length(); i++) {
|
||
|
Node* n = _block.at(i);
|
||
|
velt_type(n)->dump();
|
||
|
tty->print("\t");
|
||
|
n->dump();
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//------------------------------memory_alignment---------------------------
|
||
|
// Alignment within a vector memory reference
|
||
|
int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
|
||
|
SWPointer p(s, this);
|
||
|
if (!p.valid()) {
|
||
|
return bottom_align;
|
||
|
}
|
||
|
int offset = p.offset_in_bytes();
|
||
|
offset += iv_adjust_in_bytes;
|
||
|
int off_rem = offset % vector_width_in_bytes();
|
||
|
int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
|
||
|
return off_mod;
|
||
|
}
|
||
|
|
||
|
//---------------------------container_type---------------------------
|
||
|
// Smallest type containing range of values
|
||
|
const Type* SuperWord::container_type(const Type* t) {
|
||
|
if (t->isa_aryptr()) {
|
||
|
t = t->is_aryptr()->elem();
|
||
|
}
|
||
|
if (t->basic_type() == T_INT) {
|
||
|
if (t->higher_equal(TypeInt::BOOL)) return TypeInt::BOOL;
|
||
|
if (t->higher_equal(TypeInt::BYTE)) return TypeInt::BYTE;
|
||
|
if (t->higher_equal(TypeInt::CHAR)) return TypeInt::CHAR;
|
||
|
if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
|
||
|
return TypeInt::INT;
|
||
|
}
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
//-------------------------vector_opd_range-----------------------
|
||
|
// (Start, end] half-open range defining which operands are vector
|
||
|
void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
|
||
|
switch (n->Opcode()) {
|
||
|
case Op_LoadB: case Op_LoadC:
|
||
|
case Op_LoadI: case Op_LoadL:
|
||
|
case Op_LoadF: case Op_LoadD:
|
||
|
case Op_LoadP:
|
||
|
*start = 0;
|
||
|
*end = 0;
|
||
|
return;
|
||
|
case Op_StoreB: case Op_StoreC:
|
||
|
case Op_StoreI: case Op_StoreL:
|
||
|
case Op_StoreF: case Op_StoreD:
|
||
|
case Op_StoreP:
|
||
|
*start = MemNode::ValueIn;
|
||
|
*end = *start + 1;
|
||
|
return;
|
||
|
case Op_LShiftI: case Op_LShiftL:
|
||
|
*start = 1;
|
||
|
*end = 2;
|
||
|
return;
|
||
|
case Op_CMoveI: case Op_CMoveL: case Op_CMoveF: case Op_CMoveD:
|
||
|
*start = 2;
|
||
|
*end = n->req();
|
||
|
return;
|
||
|
}
|
||
|
*start = 1;
|
||
|
*end = n->req(); // default is all operands
|
||
|
}
|
||
|
|
||
|
//------------------------------in_packset---------------------------
|
||
|
// Are s1 and s2 in a pack pair and ordered as s1,s2?
|
||
|
bool SuperWord::in_packset(Node* s1, Node* s2) {
|
||
|
for (int i = 0; i < _packset.length(); i++) {
|
||
|
Node_List* p = _packset.at(i);
|
||
|
assert(p->size() == 2, "must be");
|
||
|
if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//------------------------------in_pack---------------------------
|
||
|
// Is s in pack p?
|
||
|
Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
|
||
|
for (uint i = 0; i < p->size(); i++) {
|
||
|
if (p->at(i) == s) {
|
||
|
return p;
|
||
|
}
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
//------------------------------remove_pack_at---------------------------
|
||
|
// Remove the pack at position pos in the packset
|
||
|
void SuperWord::remove_pack_at(int pos) {
|
||
|
Node_List* p = _packset.at(pos);
|
||
|
for (uint i = 0; i < p->size(); i++) {
|
||
|
Node* s = p->at(i);
|
||
|
set_my_pack(s, NULL);
|
||
|
}
|
||
|
_packset.remove_at(pos);
|
||
|
}
|
||
|
|
||
|
//------------------------------executed_first---------------------------
|
||
|
// Return the node executed first in pack p. Uses the RPO block list
|
||
|
// to determine order.
|
||
|
Node* SuperWord::executed_first(Node_List* p) {
|
||
|
Node* n = p->at(0);
|
||
|
int n_rpo = bb_idx(n);
|
||
|
for (uint i = 1; i < p->size(); i++) {
|
||
|
Node* s = p->at(i);
|
||
|
int s_rpo = bb_idx(s);
|
||
|
if (s_rpo < n_rpo) {
|
||
|
n = s;
|
||
|
n_rpo = s_rpo;
|
||
|
}
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
//------------------------------executed_last---------------------------
|
||
|
// Return the node executed last in pack p.
|
||
|
Node* SuperWord::executed_last(Node_List* p) {
|
||
|
Node* n = p->at(0);
|
||
|
int n_rpo = bb_idx(n);
|
||
|
for (uint i = 1; i < p->size(); i++) {
|
||
|
Node* s = p->at(i);
|
||
|
int s_rpo = bb_idx(s);
|
||
|
if (s_rpo > n_rpo) {
|
||
|
n = s;
|
||
|
n_rpo = s_rpo;
|
||
|
}
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
//----------------------------align_initial_loop_index---------------------------
|
||
|
// Adjust pre-loop limit so that in main loop, a load/store reference
|
||
|
// to align_to_ref will be a position zero in the vector.
|
||
|
// (iv + k) mod vector_align == 0
|
||
|
void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
|
||
|
CountedLoopNode *main_head = lp()->as_CountedLoop();
|
||
|
assert(main_head->is_main_loop(), "");
|
||
|
CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
|
||
|
assert(pre_end != NULL, "");
|
||
|
Node *pre_opaq1 = pre_end->limit();
|
||
|
assert(pre_opaq1->Opcode() == Op_Opaque1, "");
|
||
|
Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
|
||
|
Node *pre_limit = pre_opaq->in(1);
|
||
|
|
||
|
// Where we put new limit calculations
|
||
|
Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
|
||
|
|
||
|
// Ensure the original loop limit is available from the
|
||
|
// pre-loop Opaque1 node.
|
||
|
Node *orig_limit = pre_opaq->original_loop_limit();
|
||
|
assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
|
||
|
|
||
|
SWPointer align_to_ref_p(align_to_ref, this);
|
||
|
|
||
|
// Let l0 == original pre_limit, l == new pre_limit, V == v_align
|
||
|
//
|
||
|
// For stride > 0
|
||
|
// Need l such that l > l0 && (l+k)%V == 0
|
||
|
// Find n such that l = (l0 + n)
|
||
|
// (l0 + n + k) % V == 0
|
||
|
// n = [V - (l0 + k)%V]%V
|
||
|
// new limit = l0 + [V - (l0 + k)%V]%V
|
||
|
// For stride < 0
|
||
|
// Need l such that l < l0 && (l+k)%V == 0
|
||
|
// Find n such that l = (l0 - n)
|
||
|
// (l0 - n + k) % V == 0
|
||
|
// n = (l0 + k)%V
|
||
|
// new limit = l0 - (l0 + k)%V
|
||
|
|
||
|
int elt_size = align_to_ref_p.memory_size();
|
||
|
int v_align = vector_width_in_bytes() / elt_size;
|
||
|
int k = align_to_ref_p.offset_in_bytes() / elt_size;
|
||
|
|
||
|
Node *kn = _igvn.intcon(k);
|
||
|
Node *limk = new (_phase->C, 3) AddINode(pre_limit, kn);
|
||
|
_phase->_igvn.register_new_node_with_optimizer(limk);
|
||
|
_phase->set_ctrl(limk, pre_ctrl);
|
||
|
if (align_to_ref_p.invar() != NULL) {
|
||
|
Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
|
||
|
Node* aref = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
|
||
|
_phase->_igvn.register_new_node_with_optimizer(aref);
|
||
|
_phase->set_ctrl(aref, pre_ctrl);
|
||
|
if (!align_to_ref_p.negate_invar()) {
|
||
|
limk = new (_phase->C, 3) AddINode(limk, aref);
|
||
|
} else {
|
||
|
limk = new (_phase->C, 3) SubINode(limk, aref);
|
||
|
}
|
||
|
_phase->_igvn.register_new_node_with_optimizer(limk);
|
||
|
_phase->set_ctrl(limk, pre_ctrl);
|
||
|
}
|
||
|
Node* va_msk = _igvn.intcon(v_align - 1);
|
||
|
Node* n = new (_phase->C, 3) AndINode(limk, va_msk);
|
||
|
_phase->_igvn.register_new_node_with_optimizer(n);
|
||
|
_phase->set_ctrl(n, pre_ctrl);
|
||
|
Node* newlim;
|
||
|
if (iv_stride() > 0) {
|
||
|
Node* va = _igvn.intcon(v_align);
|
||
|
Node* adj = new (_phase->C, 3) SubINode(va, n);
|
||
|
_phase->_igvn.register_new_node_with_optimizer(adj);
|
||
|
_phase->set_ctrl(adj, pre_ctrl);
|
||
|
Node* adj2 = new (_phase->C, 3) AndINode(adj, va_msk);
|
||
|
_phase->_igvn.register_new_node_with_optimizer(adj2);
|
||
|
_phase->set_ctrl(adj2, pre_ctrl);
|
||
|
newlim = new (_phase->C, 3) AddINode(pre_limit, adj2);
|
||
|
} else {
|
||
|
newlim = new (_phase->C, 3) SubINode(pre_limit, n);
|
||
|
}
|
||
|
_phase->_igvn.register_new_node_with_optimizer(newlim);
|
||
|
_phase->set_ctrl(newlim, pre_ctrl);
|
||
|
Node* constrained =
|
||
|
(iv_stride() > 0) ? (Node*) new (_phase->C,3) MinINode(newlim, orig_limit)
|
||
|
: (Node*) new (_phase->C,3) MaxINode(newlim, orig_limit);
|
||
|
_phase->_igvn.register_new_node_with_optimizer(constrained);
|
||
|
_phase->set_ctrl(constrained, pre_ctrl);
|
||
|
_igvn.hash_delete(pre_opaq);
|
||
|
pre_opaq->set_req(1, constrained);
|
||
|
}
|
||
|
|
||
|
//----------------------------get_pre_loop_end---------------------------
|
||
|
// Find pre loop end from main loop. Returns null if none.
|
||
|
CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
|
||
|
Node *ctrl = cl->in(LoopNode::EntryControl);
|
||
|
if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
|
||
|
Node *iffm = ctrl->in(0);
|
||
|
if (!iffm->is_If()) return NULL;
|
||
|
Node *p_f = iffm->in(0);
|
||
|
if (!p_f->is_IfFalse()) return NULL;
|
||
|
if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
|
||
|
CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
|
||
|
if (!pre_end->loopnode()->is_pre_loop()) return NULL;
|
||
|
return pre_end;
|
||
|
}
|
||
|
|
||
|
|
||
|
//------------------------------init---------------------------
|
||
|
void SuperWord::init() {
|
||
|
_dg.init();
|
||
|
_packset.clear();
|
||
|
_disjoint_ptrs.clear();
|
||
|
_block.clear();
|
||
|
_data_entry.clear();
|
||
|
_mem_slice_head.clear();
|
||
|
_mem_slice_tail.clear();
|
||
|
_node_info.clear();
|
||
|
_align_to_ref = NULL;
|
||
|
_lpt = NULL;
|
||
|
_lp = NULL;
|
||
|
_bb = NULL;
|
||
|
_iv = NULL;
|
||
|
}
|
||
|
|
||
|
//------------------------------print_packset---------------------------
|
||
|
void SuperWord::print_packset() {
|
||
|
#ifndef PRODUCT
|
||
|
tty->print_cr("packset");
|
||
|
for (int i = 0; i < _packset.length(); i++) {
|
||
|
tty->print_cr("Pack: %d", i);
|
||
|
Node_List* p = _packset.at(i);
|
||
|
print_pack(p);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//------------------------------print_pack---------------------------
|
||
|
void SuperWord::print_pack(Node_List* p) {
|
||
|
for (uint i = 0; i < p->size(); i++) {
|
||
|
print_stmt(p->at(i));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------print_bb---------------------------
|
||
|
void SuperWord::print_bb() {
|
||
|
#ifndef PRODUCT
|
||
|
tty->print_cr("\nBlock");
|
||
|
for (int i = 0; i < _block.length(); i++) {
|
||
|
Node* n = _block.at(i);
|
||
|
tty->print("%d ", i);
|
||
|
if (n) {
|
||
|
n->dump();
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//------------------------------print_stmt---------------------------
|
||
|
void SuperWord::print_stmt(Node* s) {
|
||
|
#ifndef PRODUCT
|
||
|
tty->print(" align: %d \t", alignment(s));
|
||
|
s->dump();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//------------------------------blank---------------------------
|
||
|
char* SuperWord::blank(uint depth) {
|
||
|
static char blanks[101];
|
||
|
assert(depth < 101, "too deep");
|
||
|
for (uint i = 0; i < depth; i++) blanks[i] = ' ';
|
||
|
blanks[depth] = '\0';
|
||
|
return blanks;
|
||
|
}
|
||
|
|
||
|
|
||
|
//==============================SWPointer===========================
|
||
|
|
||
|
//----------------------------SWPointer------------------------
|
||
|
SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
|
||
|
_mem(mem), _slp(slp), _base(NULL), _adr(NULL),
|
||
|
_scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
|
||
|
|
||
|
Node* adr = mem->in(MemNode::Address);
|
||
|
if (!adr->is_AddP()) {
|
||
|
assert(!valid(), "too complex");
|
||
|
return;
|
||
|
}
|
||
|
// Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
|
||
|
Node* base = adr->in(AddPNode::Base);
|
||
|
for (int i = 0; i < 3; i++) {
|
||
|
if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
|
||
|
assert(!valid(), "too complex");
|
||
|
return;
|
||
|
}
|
||
|
adr = adr->in(AddPNode::Address);
|
||
|
if (base == adr || !adr->is_AddP()) {
|
||
|
break; // stop looking at addp's
|
||
|
}
|
||
|
}
|
||
|
_base = base;
|
||
|
_adr = adr;
|
||
|
assert(valid(), "Usable");
|
||
|
}
|
||
|
|
||
|
// Following is used to create a temporary object during
|
||
|
// the pattern match of an address expression.
|
||
|
SWPointer::SWPointer(SWPointer* p) :
|
||
|
_mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
|
||
|
_scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
|
||
|
|
||
|
//------------------------scaled_iv_plus_offset--------------------
|
||
|
// Match: k*iv + offset
|
||
|
// where: k is a constant that maybe zero, and
|
||
|
// offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
|
||
|
bool SWPointer::scaled_iv_plus_offset(Node* n) {
|
||
|
if (scaled_iv(n)) {
|
||
|
return true;
|
||
|
}
|
||
|
if (offset_plus_k(n)) {
|
||
|
return true;
|
||
|
}
|
||
|
int opc = n->Opcode();
|
||
|
if (opc == Op_AddI) {
|
||
|
if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
|
||
|
return true;
|
||
|
}
|
||
|
if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
|
||
|
return true;
|
||
|
}
|
||
|
} else if (opc == Op_SubI) {
|
||
|
if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
|
||
|
return true;
|
||
|
}
|
||
|
if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
|
||
|
_scale *= -1;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//----------------------------scaled_iv------------------------
|
||
|
// Match: k*iv where k is a constant that's not zero
|
||
|
bool SWPointer::scaled_iv(Node* n) {
|
||
|
if (_scale != 0) {
|
||
|
return false; // already found a scale
|
||
|
}
|
||
|
if (n == iv()) {
|
||
|
_scale = 1;
|
||
|
return true;
|
||
|
}
|
||
|
int opc = n->Opcode();
|
||
|
if (opc == Op_MulI) {
|
||
|
if (n->in(1) == iv() && n->in(2)->is_Con()) {
|
||
|
_scale = n->in(2)->get_int();
|
||
|
return true;
|
||
|
} else if (n->in(2) == iv() && n->in(1)->is_Con()) {
|
||
|
_scale = n->in(1)->get_int();
|
||
|
return true;
|
||
|
}
|
||
|
} else if (opc == Op_LShiftI) {
|
||
|
if (n->in(1) == iv() && n->in(2)->is_Con()) {
|
||
|
_scale = 1 << n->in(2)->get_int();
|
||
|
return true;
|
||
|
}
|
||
|
} else if (opc == Op_ConvI2L) {
|
||
|
if (scaled_iv_plus_offset(n->in(1))) {
|
||
|
return true;
|
||
|
}
|
||
|
} else if (opc == Op_LShiftL) {
|
||
|
if (!has_iv() && _invar == NULL) {
|
||
|
// Need to preserve the current _offset value, so
|
||
|
// create a temporary object for this expression subtree.
|
||
|
// Hacky, so should re-engineer the address pattern match.
|
||
|
SWPointer tmp(this);
|
||
|
if (tmp.scaled_iv_plus_offset(n->in(1))) {
|
||
|
if (tmp._invar == NULL) {
|
||
|
int mult = 1 << n->in(2)->get_int();
|
||
|
_scale = tmp._scale * mult;
|
||
|
_offset += tmp._offset * mult;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//----------------------------offset_plus_k------------------------
|
||
|
// Match: offset is (k [+/- invariant])
|
||
|
// where k maybe zero and invariant is optional, but not both.
|
||
|
bool SWPointer::offset_plus_k(Node* n, bool negate) {
|
||
|
int opc = n->Opcode();
|
||
|
if (opc == Op_ConI) {
|
||
|
_offset += negate ? -(n->get_int()) : n->get_int();
|
||
|
return true;
|
||
|
} else if (opc == Op_ConL) {
|
||
|
// Okay if value fits into an int
|
||
|
const TypeLong* t = n->find_long_type();
|
||
|
if (t->higher_equal(TypeLong::INT)) {
|
||
|
jlong loff = n->get_long();
|
||
|
jint off = (jint)loff;
|
||
|
_offset += negate ? -off : loff;
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
if (_invar != NULL) return false; // already have an invariant
|
||
|
if (opc == Op_AddI) {
|
||
|
if (n->in(2)->is_Con() && invariant(n->in(1))) {
|
||
|
_negate_invar = negate;
|
||
|
_invar = n->in(1);
|
||
|
_offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
|
||
|
return true;
|
||
|
} else if (n->in(1)->is_Con() && invariant(n->in(2))) {
|
||
|
_offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
|
||
|
_negate_invar = negate;
|
||
|
_invar = n->in(2);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
if (opc == Op_SubI) {
|
||
|
if (n->in(2)->is_Con() && invariant(n->in(1))) {
|
||
|
_negate_invar = negate;
|
||
|
_invar = n->in(1);
|
||
|
_offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
|
||
|
return true;
|
||
|
} else if (n->in(1)->is_Con() && invariant(n->in(2))) {
|
||
|
_offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
|
||
|
_negate_invar = !negate;
|
||
|
_invar = n->in(2);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
if (invariant(n)) {
|
||
|
_negate_invar = negate;
|
||
|
_invar = n;
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//----------------------------print------------------------
|
||
|
void SWPointer::print() {
|
||
|
#ifndef PRODUCT
|
||
|
tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
|
||
|
_base != NULL ? _base->_idx : 0,
|
||
|
_adr != NULL ? _adr->_idx : 0,
|
||
|
_scale, _offset,
|
||
|
_negate_invar?'-':'+',
|
||
|
_invar != NULL ? _invar->_idx : 0);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// ========================= OrderedPair =====================
|
||
|
|
||
|
const OrderedPair OrderedPair::initial;
|
||
|
|
||
|
// ========================= SWNodeInfo =====================
|
||
|
|
||
|
const SWNodeInfo SWNodeInfo::initial;
|
||
|
|
||
|
|
||
|
// ============================ DepGraph ===========================
|
||
|
|
||
|
//------------------------------make_node---------------------------
|
||
|
// Make a new dependence graph node for an ideal node.
|
||
|
DepMem* DepGraph::make_node(Node* node) {
|
||
|
DepMem* m = new (_arena) DepMem(node);
|
||
|
if (node != NULL) {
|
||
|
assert(_map.at_grow(node->_idx) == NULL, "one init only");
|
||
|
_map.at_put_grow(node->_idx, m);
|
||
|
}
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
//------------------------------make_edge---------------------------
|
||
|
// Make a new dependence graph edge from dpred -> dsucc
|
||
|
DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
|
||
|
DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
|
||
|
dpred->set_out_head(e);
|
||
|
dsucc->set_in_head(e);
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
// ========================== DepMem ========================
|
||
|
|
||
|
//------------------------------in_cnt---------------------------
|
||
|
int DepMem::in_cnt() {
|
||
|
int ct = 0;
|
||
|
for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
|
||
|
return ct;
|
||
|
}
|
||
|
|
||
|
//------------------------------out_cnt---------------------------
|
||
|
int DepMem::out_cnt() {
|
||
|
int ct = 0;
|
||
|
for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
|
||
|
return ct;
|
||
|
}
|
||
|
|
||
|
//------------------------------print-----------------------------
|
||
|
void DepMem::print() {
|
||
|
#ifndef PRODUCT
|
||
|
tty->print(" DepNode %d (", _node->_idx);
|
||
|
for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
|
||
|
Node* pred = p->pred()->node();
|
||
|
tty->print(" %d", pred != NULL ? pred->_idx : 0);
|
||
|
}
|
||
|
tty->print(") [");
|
||
|
for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
|
||
|
Node* succ = s->succ()->node();
|
||
|
tty->print(" %d", succ != NULL ? succ->_idx : 0);
|
||
|
}
|
||
|
tty->print_cr(" ]");
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// =========================== DepEdge =========================
|
||
|
|
||
|
//------------------------------DepPreds---------------------------
|
||
|
void DepEdge::print() {
|
||
|
#ifndef PRODUCT
|
||
|
tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// =========================== DepPreds =========================
|
||
|
// Iterator over predecessor edges in the dependence graph.
|
||
|
|
||
|
//------------------------------DepPreds---------------------------
|
||
|
DepPreds::DepPreds(Node* n, DepGraph& dg) {
|
||
|
_n = n;
|
||
|
_done = false;
|
||
|
if (_n->is_Store() || _n->is_Load()) {
|
||
|
_next_idx = MemNode::Address;
|
||
|
_end_idx = n->req();
|
||
|
_dep_next = dg.dep(_n)->in_head();
|
||
|
} else if (_n->is_Mem()) {
|
||
|
_next_idx = 0;
|
||
|
_end_idx = 0;
|
||
|
_dep_next = dg.dep(_n)->in_head();
|
||
|
} else {
|
||
|
_next_idx = 1;
|
||
|
_end_idx = _n->req();
|
||
|
_dep_next = NULL;
|
||
|
}
|
||
|
next();
|
||
|
}
|
||
|
|
||
|
//------------------------------next---------------------------
|
||
|
void DepPreds::next() {
|
||
|
if (_dep_next != NULL) {
|
||
|
_current = _dep_next->pred()->node();
|
||
|
_dep_next = _dep_next->next_in();
|
||
|
} else if (_next_idx < _end_idx) {
|
||
|
_current = _n->in(_next_idx++);
|
||
|
} else {
|
||
|
_done = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// =========================== DepSuccs =========================
|
||
|
// Iterator over successor edges in the dependence graph.
|
||
|
|
||
|
//------------------------------DepSuccs---------------------------
|
||
|
DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
|
||
|
_n = n;
|
||
|
_done = false;
|
||
|
if (_n->is_Load()) {
|
||
|
_next_idx = 0;
|
||
|
_end_idx = _n->outcnt();
|
||
|
_dep_next = dg.dep(_n)->out_head();
|
||
|
} else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
|
||
|
_next_idx = 0;
|
||
|
_end_idx = 0;
|
||
|
_dep_next = dg.dep(_n)->out_head();
|
||
|
} else {
|
||
|
_next_idx = 0;
|
||
|
_end_idx = _n->outcnt();
|
||
|
_dep_next = NULL;
|
||
|
}
|
||
|
next();
|
||
|
}
|
||
|
|
||
|
//-------------------------------next---------------------------
|
||
|
void DepSuccs::next() {
|
||
|
if (_dep_next != NULL) {
|
||
|
_current = _dep_next->succ()->node();
|
||
|
_dep_next = _dep_next->next_out();
|
||
|
} else if (_next_idx < _end_idx) {
|
||
|
_current = _n->raw_out(_next_idx++);
|
||
|
} else {
|
||
|
_done = true;
|
||
|
}
|
||
|
}
|