2007-12-01 00:00:00 +00:00
|
|
|
/*
|
2008-07-02 12:55:16 -07:00
|
|
|
* Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
|
2007-12-01 00:00:00 +00:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
|
|
* have any questions.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
// do not include precompiled header file
|
|
|
|
# include "incls/_os_linux.cpp.incl"
|
|
|
|
|
|
|
|
// put OS-includes here
|
|
|
|
# include <sys/types.h>
|
|
|
|
# include <sys/mman.h>
|
|
|
|
# include <pthread.h>
|
|
|
|
# include <signal.h>
|
|
|
|
# include <errno.h>
|
|
|
|
# include <dlfcn.h>
|
|
|
|
# include <stdio.h>
|
|
|
|
# include <unistd.h>
|
|
|
|
# include <sys/resource.h>
|
|
|
|
# include <pthread.h>
|
|
|
|
# include <sys/stat.h>
|
|
|
|
# include <sys/time.h>
|
|
|
|
# include <sys/times.h>
|
|
|
|
# include <sys/utsname.h>
|
|
|
|
# include <sys/socket.h>
|
|
|
|
# include <sys/wait.h>
|
|
|
|
# include <pwd.h>
|
|
|
|
# include <poll.h>
|
|
|
|
# include <semaphore.h>
|
|
|
|
# include <fcntl.h>
|
|
|
|
# include <string.h>
|
|
|
|
# include <syscall.h>
|
|
|
|
# include <sys/sysinfo.h>
|
|
|
|
# include <gnu/libc-version.h>
|
|
|
|
# include <sys/ipc.h>
|
|
|
|
# include <sys/shm.h>
|
|
|
|
# include <link.h>
|
|
|
|
|
|
|
|
#define MAX_PATH (2 * K)
|
|
|
|
|
|
|
|
// for timer info max values which include all bits
|
|
|
|
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
|
|
|
|
#define SEC_IN_NANOSECS 1000000000LL
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// global variables
|
|
|
|
julong os::Linux::_physical_memory = 0;
|
|
|
|
|
|
|
|
address os::Linux::_initial_thread_stack_bottom = NULL;
|
|
|
|
uintptr_t os::Linux::_initial_thread_stack_size = 0;
|
|
|
|
|
|
|
|
int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
|
|
|
|
int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
|
|
|
|
Mutex* os::Linux::_createThread_lock = NULL;
|
|
|
|
pthread_t os::Linux::_main_thread;
|
|
|
|
int os::Linux::_page_size = -1;
|
|
|
|
bool os::Linux::_is_floating_stack = false;
|
|
|
|
bool os::Linux::_is_NPTL = false;
|
|
|
|
bool os::Linux::_supports_fast_thread_cpu_time = false;
|
2008-06-17 09:59:59 -07:00
|
|
|
const char * os::Linux::_glibc_version = NULL;
|
|
|
|
const char * os::Linux::_libpthread_version = NULL;
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
static jlong initial_time_count=0;
|
|
|
|
|
|
|
|
static int clock_tics_per_sec = 100;
|
|
|
|
|
|
|
|
// For diagnostics to print a message once. see run_periodic_checks
|
|
|
|
static sigset_t check_signal_done;
|
|
|
|
static bool check_signals = true;;
|
|
|
|
|
|
|
|
static pid_t _initial_pid = 0;
|
|
|
|
|
|
|
|
/* Signal number used to suspend/resume a thread */
|
|
|
|
|
|
|
|
/* do not use any signal number less than SIGSEGV, see 4355769 */
|
|
|
|
static int SR_signum = SIGUSR2;
|
|
|
|
sigset_t SR_sigset;
|
|
|
|
|
2008-07-28 14:07:44 -04:00
|
|
|
/* Used to protect dlsym() calls */
|
|
|
|
static pthread_mutex_t dl_mutex;
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// utility functions
|
|
|
|
|
|
|
|
static int SR_initialize();
|
|
|
|
static int SR_finalize();
|
|
|
|
|
|
|
|
julong os::available_memory() {
|
|
|
|
return Linux::available_memory();
|
|
|
|
}
|
|
|
|
|
|
|
|
julong os::Linux::available_memory() {
|
|
|
|
// values in struct sysinfo are "unsigned long"
|
|
|
|
struct sysinfo si;
|
|
|
|
sysinfo(&si);
|
|
|
|
|
|
|
|
return (julong)si.freeram * si.mem_unit;
|
|
|
|
}
|
|
|
|
|
|
|
|
julong os::physical_memory() {
|
|
|
|
return Linux::physical_memory();
|
|
|
|
}
|
|
|
|
|
2007-12-05 09:04:00 -08:00
|
|
|
julong os::allocatable_physical_memory(julong size) {
|
|
|
|
#ifdef _LP64
|
|
|
|
return size;
|
|
|
|
#else
|
|
|
|
julong result = MIN2(size, (julong)3800*M);
|
|
|
|
if (!is_allocatable(result)) {
|
|
|
|
// See comments under solaris for alignment considerations
|
|
|
|
julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
|
|
|
|
result = MIN2(size, reasonable_size);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
#endif // _LP64
|
|
|
|
}
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// environment support
|
|
|
|
|
|
|
|
bool os::getenv(const char* name, char* buf, int len) {
|
|
|
|
const char* val = ::getenv(name);
|
|
|
|
if (val != NULL && strlen(val) < (size_t)len) {
|
|
|
|
strcpy(buf, val);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (len > 0) buf[0] = 0; // return a null string
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Return true if user is running as root.
|
|
|
|
|
|
|
|
bool os::have_special_privileges() {
|
|
|
|
static bool init = false;
|
|
|
|
static bool privileges = false;
|
|
|
|
if (!init) {
|
|
|
|
privileges = (getuid() != geteuid()) || (getgid() != getegid());
|
|
|
|
init = true;
|
|
|
|
}
|
|
|
|
return privileges;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef SYS_gettid
|
|
|
|
// i386: 224, ia64: 1105, amd64: 186, sparc 143
|
|
|
|
#ifdef __ia64__
|
|
|
|
#define SYS_gettid 1105
|
|
|
|
#elif __i386__
|
|
|
|
#define SYS_gettid 224
|
|
|
|
#elif __amd64__
|
|
|
|
#define SYS_gettid 186
|
|
|
|
#elif __sparc__
|
|
|
|
#define SYS_gettid 143
|
|
|
|
#else
|
|
|
|
#error define gettid for the arch
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Cpu architecture string
|
|
|
|
#if defined(IA64)
|
|
|
|
static char cpu_arch[] = "ia64";
|
|
|
|
#elif defined(IA32)
|
|
|
|
static char cpu_arch[] = "i386";
|
|
|
|
#elif defined(AMD64)
|
|
|
|
static char cpu_arch[] = "amd64";
|
|
|
|
#elif defined(SPARC)
|
|
|
|
# ifdef _LP64
|
|
|
|
static char cpu_arch[] = "sparcv9";
|
|
|
|
# else
|
|
|
|
static char cpu_arch[] = "sparc";
|
|
|
|
# endif
|
|
|
|
#else
|
|
|
|
#error Add appropriate cpu_arch setting
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// pid_t gettid()
|
|
|
|
//
|
|
|
|
// Returns the kernel thread id of the currently running thread. Kernel
|
|
|
|
// thread id is used to access /proc.
|
|
|
|
//
|
|
|
|
// (Note that getpid() on LinuxThreads returns kernel thread id too; but
|
|
|
|
// on NPTL, it returns the same pid for all threads, as required by POSIX.)
|
|
|
|
//
|
|
|
|
pid_t os::Linux::gettid() {
|
|
|
|
int rslt = syscall(SYS_gettid);
|
|
|
|
if (rslt == -1) {
|
|
|
|
// old kernel, no NPTL support
|
|
|
|
return getpid();
|
|
|
|
} else {
|
|
|
|
return (pid_t)rslt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Most versions of linux have a bug where the number of processors are
|
|
|
|
// determined by looking at the /proc file system. In a chroot environment,
|
|
|
|
// the system call returns 1. This causes the VM to act as if it is
|
|
|
|
// a single processor and elide locking (see is_MP() call).
|
|
|
|
static bool unsafe_chroot_detected = false;
|
2008-06-17 09:59:59 -07:00
|
|
|
static const char *unstable_chroot_error = "/proc file system not found.\n"
|
|
|
|
"Java may be unstable running multithreaded in a chroot "
|
|
|
|
"environment on Linux when /proc filesystem is not mounted.";
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
void os::Linux::initialize_system_info() {
|
|
|
|
_processor_count = sysconf(_SC_NPROCESSORS_CONF);
|
|
|
|
if (_processor_count == 1) {
|
|
|
|
pid_t pid = os::Linux::gettid();
|
|
|
|
char fname[32];
|
|
|
|
jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
|
|
|
|
FILE *fp = fopen(fname, "r");
|
|
|
|
if (fp == NULL) {
|
|
|
|
unsafe_chroot_detected = true;
|
|
|
|
} else {
|
|
|
|
fclose(fp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
|
|
|
|
assert(_processor_count > 0, "linux error");
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::init_system_properties_values() {
|
|
|
|
// char arch[12];
|
|
|
|
// sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
|
|
|
|
|
|
|
|
// The next steps are taken in the product version:
|
|
|
|
//
|
|
|
|
// Obtain the JAVA_HOME value from the location of libjvm[_g].so.
|
|
|
|
// This library should be located at:
|
|
|
|
// <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
|
|
|
|
//
|
|
|
|
// If "/jre/lib/" appears at the right place in the path, then we
|
|
|
|
// assume libjvm[_g].so is installed in a JDK and we use this path.
|
|
|
|
//
|
|
|
|
// Otherwise exit with message: "Could not create the Java virtual machine."
|
|
|
|
//
|
|
|
|
// The following extra steps are taken in the debugging version:
|
|
|
|
//
|
|
|
|
// If "/jre/lib/" does NOT appear at the right place in the path
|
|
|
|
// instead of exit check for $JAVA_HOME environment variable.
|
|
|
|
//
|
|
|
|
// If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
|
|
|
|
// then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
|
|
|
|
// it looks like libjvm[_g].so is installed there
|
|
|
|
// <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
|
|
|
|
//
|
|
|
|
// Otherwise exit.
|
|
|
|
//
|
|
|
|
// Important note: if the location of libjvm.so changes this
|
|
|
|
// code needs to be changed accordingly.
|
|
|
|
|
|
|
|
// The next few definitions allow the code to be verbatim:
|
|
|
|
#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
|
|
|
|
#define getenv(n) ::getenv(n)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* See ld(1):
|
|
|
|
* The linker uses the following search paths to locate required
|
|
|
|
* shared libraries:
|
|
|
|
* 1: ...
|
|
|
|
* ...
|
|
|
|
* 7: The default directories, normally /lib and /usr/lib.
|
|
|
|
*/
|
|
|
|
#define DEFAULT_LIBPATH "/lib:/usr/lib"
|
|
|
|
|
|
|
|
#define EXTENSIONS_DIR "/lib/ext"
|
|
|
|
#define ENDORSED_DIR "/lib/endorsed"
|
|
|
|
#define REG_DIR "/usr/java/packages"
|
|
|
|
|
|
|
|
{
|
|
|
|
/* sysclasspath, java_home, dll_dir */
|
|
|
|
{
|
|
|
|
char *home_path;
|
|
|
|
char *dll_path;
|
|
|
|
char *pslash;
|
|
|
|
char buf[MAXPATHLEN];
|
|
|
|
os::jvm_path(buf, sizeof(buf));
|
|
|
|
|
|
|
|
// Found the full path to libjvm.so.
|
|
|
|
// Now cut the path to <java_home>/jre if we can.
|
|
|
|
*(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
|
|
|
|
pslash = strrchr(buf, '/');
|
|
|
|
if (pslash != NULL)
|
|
|
|
*pslash = '\0'; /* get rid of /{client|server|hotspot} */
|
|
|
|
dll_path = malloc(strlen(buf) + 1);
|
|
|
|
if (dll_path == NULL)
|
|
|
|
return;
|
|
|
|
strcpy(dll_path, buf);
|
|
|
|
Arguments::set_dll_dir(dll_path);
|
|
|
|
|
|
|
|
if (pslash != NULL) {
|
|
|
|
pslash = strrchr(buf, '/');
|
|
|
|
if (pslash != NULL) {
|
|
|
|
*pslash = '\0'; /* get rid of /<arch> */
|
|
|
|
pslash = strrchr(buf, '/');
|
|
|
|
if (pslash != NULL)
|
|
|
|
*pslash = '\0'; /* get rid of /lib */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
home_path = malloc(strlen(buf) + 1);
|
|
|
|
if (home_path == NULL)
|
|
|
|
return;
|
|
|
|
strcpy(home_path, buf);
|
|
|
|
Arguments::set_java_home(home_path);
|
|
|
|
|
|
|
|
if (!set_boot_path('/', ':'))
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Where to look for native libraries
|
|
|
|
*
|
|
|
|
* Note: Due to a legacy implementation, most of the library path
|
|
|
|
* is set in the launcher. This was to accomodate linking restrictions
|
|
|
|
* on legacy Linux implementations (which are no longer supported).
|
|
|
|
* Eventually, all the library path setting will be done here.
|
|
|
|
*
|
|
|
|
* However, to prevent the proliferation of improperly built native
|
|
|
|
* libraries, the new path component /usr/java/packages is added here.
|
|
|
|
* Eventually, all the library path setting will be done here.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
char *ld_library_path;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Construct the invariant part of ld_library_path. Note that the
|
|
|
|
* space for the colon and the trailing null are provided by the
|
|
|
|
* nulls included by the sizeof operator (so actually we allocate
|
|
|
|
* a byte more than necessary).
|
|
|
|
*/
|
|
|
|
ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
|
|
|
|
strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
|
|
|
|
sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the user setting of LD_LIBRARY_PATH, and prepended it. It
|
|
|
|
* should always exist (until the legacy problem cited above is
|
|
|
|
* addressed).
|
|
|
|
*/
|
|
|
|
char *v = getenv("LD_LIBRARY_PATH");
|
|
|
|
if (v != NULL) {
|
|
|
|
char *t = ld_library_path;
|
|
|
|
/* That's +1 for the colon and +1 for the trailing '\0' */
|
|
|
|
ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
|
|
|
|
sprintf(ld_library_path, "%s:%s", v, t);
|
|
|
|
}
|
|
|
|
Arguments::set_library_path(ld_library_path);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extensions directories.
|
|
|
|
*
|
|
|
|
* Note that the space for the colon and the trailing null are provided
|
|
|
|
* by the nulls included by the sizeof operator (so actually one byte more
|
|
|
|
* than necessary is allocated).
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
char *buf = malloc(strlen(Arguments::get_java_home()) +
|
|
|
|
sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
|
|
|
|
sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
|
|
|
|
Arguments::get_java_home());
|
|
|
|
Arguments::set_ext_dirs(buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Endorsed standards default directory. */
|
|
|
|
{
|
|
|
|
char * buf;
|
|
|
|
buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
|
|
|
|
sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
|
|
|
|
Arguments::set_endorsed_dirs(buf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef malloc
|
|
|
|
#undef getenv
|
|
|
|
#undef EXTENSIONS_DIR
|
|
|
|
#undef ENDORSED_DIR
|
|
|
|
|
|
|
|
// Done
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// breakpoint support
|
|
|
|
|
|
|
|
void os::breakpoint() {
|
|
|
|
BREAKPOINT;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" void breakpoint() {
|
|
|
|
// use debugger to set breakpoint here
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// signal support
|
|
|
|
|
|
|
|
debug_only(static bool signal_sets_initialized = false);
|
|
|
|
static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
|
|
|
|
|
|
|
|
bool os::Linux::is_sig_ignored(int sig) {
|
|
|
|
struct sigaction oact;
|
|
|
|
sigaction(sig, (struct sigaction*)NULL, &oact);
|
|
|
|
void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
|
|
|
|
: CAST_FROM_FN_PTR(void*, oact.sa_handler);
|
|
|
|
if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
|
|
|
|
return true;
|
|
|
|
else
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::Linux::signal_sets_init() {
|
|
|
|
// Should also have an assertion stating we are still single-threaded.
|
|
|
|
assert(!signal_sets_initialized, "Already initialized");
|
|
|
|
// Fill in signals that are necessarily unblocked for all threads in
|
|
|
|
// the VM. Currently, we unblock the following signals:
|
|
|
|
// SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
|
|
|
|
// by -Xrs (=ReduceSignalUsage));
|
|
|
|
// BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
|
|
|
|
// other threads. The "ReduceSignalUsage" boolean tells us not to alter
|
|
|
|
// the dispositions or masks wrt these signals.
|
|
|
|
// Programs embedding the VM that want to use the above signals for their
|
|
|
|
// own purposes must, at this time, use the "-Xrs" option to prevent
|
|
|
|
// interference with shutdown hooks and BREAK_SIGNAL thread dumping.
|
|
|
|
// (See bug 4345157, and other related bugs).
|
|
|
|
// In reality, though, unblocking these signals is really a nop, since
|
|
|
|
// these signals are not blocked by default.
|
|
|
|
sigemptyset(&unblocked_sigs);
|
|
|
|
sigemptyset(&allowdebug_blocked_sigs);
|
|
|
|
sigaddset(&unblocked_sigs, SIGILL);
|
|
|
|
sigaddset(&unblocked_sigs, SIGSEGV);
|
|
|
|
sigaddset(&unblocked_sigs, SIGBUS);
|
|
|
|
sigaddset(&unblocked_sigs, SIGFPE);
|
|
|
|
sigaddset(&unblocked_sigs, SR_signum);
|
|
|
|
|
|
|
|
if (!ReduceSignalUsage) {
|
|
|
|
if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
|
|
|
|
sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
|
|
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
|
|
|
|
}
|
|
|
|
if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
|
|
|
|
sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
|
|
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
|
|
|
|
}
|
|
|
|
if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
|
|
|
|
sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
|
|
|
|
sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Fill in signals that are blocked by all but the VM thread.
|
|
|
|
sigemptyset(&vm_sigs);
|
|
|
|
if (!ReduceSignalUsage)
|
|
|
|
sigaddset(&vm_sigs, BREAK_SIGNAL);
|
|
|
|
debug_only(signal_sets_initialized = true);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// These are signals that are unblocked while a thread is running Java.
|
|
|
|
// (For some reason, they get blocked by default.)
|
|
|
|
sigset_t* os::Linux::unblocked_signals() {
|
|
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
|
|
return &unblocked_sigs;
|
|
|
|
}
|
|
|
|
|
|
|
|
// These are the signals that are blocked while a (non-VM) thread is
|
|
|
|
// running Java. Only the VM thread handles these signals.
|
|
|
|
sigset_t* os::Linux::vm_signals() {
|
|
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
|
|
return &vm_sigs;
|
|
|
|
}
|
|
|
|
|
|
|
|
// These are signals that are blocked during cond_wait to allow debugger in
|
|
|
|
sigset_t* os::Linux::allowdebug_blocked_signals() {
|
|
|
|
assert(signal_sets_initialized, "Not initialized");
|
|
|
|
return &allowdebug_blocked_sigs;
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::Linux::hotspot_sigmask(Thread* thread) {
|
|
|
|
|
|
|
|
//Save caller's signal mask before setting VM signal mask
|
|
|
|
sigset_t caller_sigmask;
|
|
|
|
pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
|
|
|
|
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
|
|
osthread->set_caller_sigmask(caller_sigmask);
|
|
|
|
|
|
|
|
pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
|
|
|
|
|
|
|
|
if (!ReduceSignalUsage) {
|
|
|
|
if (thread->is_VM_thread()) {
|
|
|
|
// Only the VM thread handles BREAK_SIGNAL ...
|
|
|
|
pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
|
|
|
|
} else {
|
|
|
|
// ... all other threads block BREAK_SIGNAL
|
|
|
|
pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// detecting pthread library
|
|
|
|
|
|
|
|
void os::Linux::libpthread_init() {
|
|
|
|
// Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
|
|
|
|
// and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
|
|
|
|
// generic name for earlier versions.
|
|
|
|
// Define macros here so we can build HotSpot on old systems.
|
|
|
|
# ifndef _CS_GNU_LIBC_VERSION
|
|
|
|
# define _CS_GNU_LIBC_VERSION 2
|
|
|
|
# endif
|
|
|
|
# ifndef _CS_GNU_LIBPTHREAD_VERSION
|
|
|
|
# define _CS_GNU_LIBPTHREAD_VERSION 3
|
|
|
|
# endif
|
|
|
|
|
|
|
|
size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
|
|
|
|
if (n > 0) {
|
|
|
|
char *str = (char *)malloc(n);
|
|
|
|
confstr(_CS_GNU_LIBC_VERSION, str, n);
|
|
|
|
os::Linux::set_glibc_version(str);
|
|
|
|
} else {
|
|
|
|
// _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
|
|
|
|
static char _gnu_libc_version[32];
|
|
|
|
jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
|
|
|
|
"glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
|
|
|
|
os::Linux::set_glibc_version(_gnu_libc_version);
|
|
|
|
}
|
|
|
|
|
|
|
|
n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
|
|
|
|
if (n > 0) {
|
|
|
|
char *str = (char *)malloc(n);
|
|
|
|
confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
|
|
|
|
// Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
|
|
|
|
// us "NPTL-0.29" even we are running with LinuxThreads. Check if this
|
2008-06-17 09:59:59 -07:00
|
|
|
// is the case. LinuxThreads has a hard limit on max number of threads.
|
|
|
|
// So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
|
|
|
|
// On the other hand, NPTL does not have such a limit, sysconf()
|
|
|
|
// will return -1 and errno is not changed. Check if it is really NPTL.
|
2007-12-01 00:00:00 +00:00
|
|
|
if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
|
2008-06-17 09:59:59 -07:00
|
|
|
strstr(str, "NPTL") &&
|
|
|
|
sysconf(_SC_THREAD_THREADS_MAX) > 0) {
|
|
|
|
free(str);
|
|
|
|
os::Linux::set_libpthread_version("linuxthreads");
|
|
|
|
} else {
|
|
|
|
os::Linux::set_libpthread_version(str);
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
} else {
|
2008-06-17 09:59:59 -07:00
|
|
|
// glibc before 2.3.2 only has LinuxThreads.
|
|
|
|
os::Linux::set_libpthread_version("linuxthreads");
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (strstr(libpthread_version(), "NPTL")) {
|
|
|
|
os::Linux::set_is_NPTL();
|
|
|
|
} else {
|
|
|
|
os::Linux::set_is_LinuxThreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
// LinuxThreads have two flavors: floating-stack mode, which allows variable
|
|
|
|
// stack size; and fixed-stack mode. NPTL is always floating-stack.
|
|
|
|
if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
|
|
|
|
os::Linux::set_is_floating_stack();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
// thread stack
|
|
|
|
|
|
|
|
// Force Linux kernel to expand current thread stack. If "bottom" is close
|
|
|
|
// to the stack guard, caller should block all signals.
|
|
|
|
//
|
|
|
|
// MAP_GROWSDOWN:
|
|
|
|
// A special mmap() flag that is used to implement thread stacks. It tells
|
|
|
|
// kernel that the memory region should extend downwards when needed. This
|
|
|
|
// allows early versions of LinuxThreads to only mmap the first few pages
|
|
|
|
// when creating a new thread. Linux kernel will automatically expand thread
|
|
|
|
// stack as needed (on page faults).
|
|
|
|
//
|
|
|
|
// However, because the memory region of a MAP_GROWSDOWN stack can grow on
|
|
|
|
// demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
|
|
|
|
// region, it's hard to tell if the fault is due to a legitimate stack
|
|
|
|
// access or because of reading/writing non-exist memory (e.g. buffer
|
|
|
|
// overrun). As a rule, if the fault happens below current stack pointer,
|
|
|
|
// Linux kernel does not expand stack, instead a SIGSEGV is sent to the
|
|
|
|
// application (see Linux kernel fault.c).
|
|
|
|
//
|
|
|
|
// This Linux feature can cause SIGSEGV when VM bangs thread stack for
|
|
|
|
// stack overflow detection.
|
|
|
|
//
|
|
|
|
// Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
|
|
|
|
// not use this flag. However, the stack of initial thread is not created
|
|
|
|
// by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
|
|
|
|
// unlikely) that user code can create a thread with MAP_GROWSDOWN stack
|
|
|
|
// and then attach the thread to JVM.
|
|
|
|
//
|
|
|
|
// To get around the problem and allow stack banging on Linux, we need to
|
|
|
|
// manually expand thread stack after receiving the SIGSEGV.
|
|
|
|
//
|
|
|
|
// There are two ways to expand thread stack to address "bottom", we used
|
|
|
|
// both of them in JVM before 1.5:
|
|
|
|
// 1. adjust stack pointer first so that it is below "bottom", and then
|
|
|
|
// touch "bottom"
|
|
|
|
// 2. mmap() the page in question
|
|
|
|
//
|
|
|
|
// Now alternate signal stack is gone, it's harder to use 2. For instance,
|
|
|
|
// if current sp is already near the lower end of page 101, and we need to
|
|
|
|
// call mmap() to map page 100, it is possible that part of the mmap() frame
|
|
|
|
// will be placed in page 100. When page 100 is mapped, it is zero-filled.
|
|
|
|
// That will destroy the mmap() frame and cause VM to crash.
|
|
|
|
//
|
|
|
|
// The following code works by adjusting sp first, then accessing the "bottom"
|
|
|
|
// page to force a page fault. Linux kernel will then automatically expand the
|
|
|
|
// stack mapping.
|
|
|
|
//
|
|
|
|
// _expand_stack_to() assumes its frame size is less than page size, which
|
|
|
|
// should always be true if the function is not inlined.
|
|
|
|
|
|
|
|
#if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
|
|
|
|
#define NOINLINE
|
|
|
|
#else
|
|
|
|
#define NOINLINE __attribute__ ((noinline))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void _expand_stack_to(address bottom) NOINLINE;
|
|
|
|
|
|
|
|
static void _expand_stack_to(address bottom) {
|
|
|
|
address sp;
|
|
|
|
size_t size;
|
|
|
|
volatile char *p;
|
|
|
|
|
|
|
|
// Adjust bottom to point to the largest address within the same page, it
|
|
|
|
// gives us a one-page buffer if alloca() allocates slightly more memory.
|
|
|
|
bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
|
|
|
|
bottom += os::Linux::page_size() - 1;
|
|
|
|
|
|
|
|
// sp might be slightly above current stack pointer; if that's the case, we
|
|
|
|
// will alloca() a little more space than necessary, which is OK. Don't use
|
|
|
|
// os::current_stack_pointer(), as its result can be slightly below current
|
|
|
|
// stack pointer, causing us to not alloca enough to reach "bottom".
|
|
|
|
sp = (address)&sp;
|
|
|
|
|
|
|
|
if (sp > bottom) {
|
|
|
|
size = sp - bottom;
|
|
|
|
p = (volatile char *)alloca(size);
|
|
|
|
assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
|
|
|
|
p[0] = '\0';
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
|
|
|
|
assert(t!=NULL, "just checking");
|
|
|
|
assert(t->osthread()->expanding_stack(), "expand should be set");
|
|
|
|
assert(t->stack_base() != NULL, "stack_base was not initialized");
|
|
|
|
|
|
|
|
if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
|
|
|
|
sigset_t mask_all, old_sigset;
|
|
|
|
sigfillset(&mask_all);
|
|
|
|
pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
|
|
|
|
_expand_stack_to(addr);
|
|
|
|
pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// create new thread
|
|
|
|
|
|
|
|
static address highest_vm_reserved_address();
|
|
|
|
|
|
|
|
// check if it's safe to start a new thread
|
|
|
|
static bool _thread_safety_check(Thread* thread) {
|
|
|
|
if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
|
|
|
|
// Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
|
|
|
|
// Heap is mmap'ed at lower end of memory space. Thread stacks are
|
|
|
|
// allocated (MAP_FIXED) from high address space. Every thread stack
|
|
|
|
// occupies a fixed size slot (usually 2Mbytes, but user can change
|
|
|
|
// it to other values if they rebuild LinuxThreads).
|
|
|
|
//
|
|
|
|
// Problem with MAP_FIXED is that mmap() can still succeed even part of
|
|
|
|
// the memory region has already been mmap'ed. That means if we have too
|
|
|
|
// many threads and/or very large heap, eventually thread stack will
|
|
|
|
// collide with heap.
|
|
|
|
//
|
|
|
|
// Here we try to prevent heap/stack collision by comparing current
|
|
|
|
// stack bottom with the highest address that has been mmap'ed by JVM
|
|
|
|
// plus a safety margin for memory maps created by native code.
|
|
|
|
//
|
|
|
|
// This feature can be disabled by setting ThreadSafetyMargin to 0
|
|
|
|
//
|
|
|
|
if (ThreadSafetyMargin > 0) {
|
|
|
|
address stack_bottom = os::current_stack_base() - os::current_stack_size();
|
|
|
|
|
|
|
|
// not safe if our stack extends below the safety margin
|
|
|
|
return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
|
|
|
|
} else {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Floating stack LinuxThreads or NPTL:
|
|
|
|
// Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
|
|
|
|
// there's not enough space left, pthread_create() will fail. If we come
|
|
|
|
// here, that means enough space has been reserved for stack.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Thread start routine for all newly created threads
|
|
|
|
static void *java_start(Thread *thread) {
|
|
|
|
// Try to randomize the cache line index of hot stack frames.
|
|
|
|
// This helps when threads of the same stack traces evict each other's
|
|
|
|
// cache lines. The threads can be either from the same JVM instance, or
|
|
|
|
// from different JVM instances. The benefit is especially true for
|
|
|
|
// processors with hyperthreading technology.
|
|
|
|
static int counter = 0;
|
|
|
|
int pid = os::current_process_id();
|
|
|
|
alloca(((pid ^ counter++) & 7) * 128);
|
|
|
|
|
|
|
|
ThreadLocalStorage::set_thread(thread);
|
|
|
|
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
|
|
Monitor* sync = osthread->startThread_lock();
|
|
|
|
|
|
|
|
// non floating stack LinuxThreads needs extra check, see above
|
|
|
|
if (!_thread_safety_check(thread)) {
|
|
|
|
// notify parent thread
|
|
|
|
MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
|
|
|
|
osthread->set_state(ZOMBIE);
|
|
|
|
sync->notify_all();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// thread_id is kernel thread id (similar to Solaris LWP id)
|
|
|
|
osthread->set_thread_id(os::Linux::gettid());
|
|
|
|
|
|
|
|
if (UseNUMA) {
|
|
|
|
int lgrp_id = os::numa_get_group_id();
|
|
|
|
if (lgrp_id != -1) {
|
|
|
|
thread->set_lgrp_id(lgrp_id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// initialize signal mask for this thread
|
|
|
|
os::Linux::hotspot_sigmask(thread);
|
|
|
|
|
|
|
|
// initialize floating point control register
|
|
|
|
os::Linux::init_thread_fpu_state();
|
|
|
|
|
|
|
|
// handshaking with parent thread
|
|
|
|
{
|
|
|
|
MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
|
|
|
|
|
|
|
|
// notify parent thread
|
|
|
|
osthread->set_state(INITIALIZED);
|
|
|
|
sync->notify_all();
|
|
|
|
|
|
|
|
// wait until os::start_thread()
|
|
|
|
while (osthread->get_state() == INITIALIZED) {
|
|
|
|
sync->wait(Mutex::_no_safepoint_check_flag);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// call one more level start routine
|
|
|
|
thread->run();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
|
|
|
|
assert(thread->osthread() == NULL, "caller responsible");
|
|
|
|
|
|
|
|
// Allocate the OSThread object
|
|
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
|
|
if (osthread == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// set the correct thread state
|
|
|
|
osthread->set_thread_type(thr_type);
|
|
|
|
|
|
|
|
// Initial state is ALLOCATED but not INITIALIZED
|
|
|
|
osthread->set_state(ALLOCATED);
|
|
|
|
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
|
|
|
|
// init thread attributes
|
|
|
|
pthread_attr_t attr;
|
|
|
|
pthread_attr_init(&attr);
|
|
|
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
|
|
|
|
|
|
|
// stack size
|
|
|
|
if (os::Linux::supports_variable_stack_size()) {
|
|
|
|
// calculate stack size if it's not specified by caller
|
|
|
|
if (stack_size == 0) {
|
|
|
|
stack_size = os::Linux::default_stack_size(thr_type);
|
|
|
|
|
|
|
|
switch (thr_type) {
|
|
|
|
case os::java_thread:
|
|
|
|
// Java threads use ThreadStackSize which default value can be changed with the flag -Xss
|
|
|
|
if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
|
|
|
|
break;
|
|
|
|
case os::compiler_thread:
|
|
|
|
if (CompilerThreadStackSize > 0) {
|
|
|
|
stack_size = (size_t)(CompilerThreadStackSize * K);
|
|
|
|
break;
|
|
|
|
} // else fall through:
|
|
|
|
// use VMThreadStackSize if CompilerThreadStackSize is not defined
|
|
|
|
case os::vm_thread:
|
|
|
|
case os::pgc_thread:
|
|
|
|
case os::cgc_thread:
|
|
|
|
case os::watcher_thread:
|
|
|
|
if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
|
|
|
|
pthread_attr_setstacksize(&attr, stack_size);
|
|
|
|
} else {
|
|
|
|
// let pthread_create() pick the default value.
|
|
|
|
}
|
|
|
|
|
|
|
|
// glibc guard page
|
|
|
|
pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
|
|
|
|
|
|
|
|
ThreadState state;
|
|
|
|
|
|
|
|
{
|
|
|
|
// Serialize thread creation if we are running with fixed stack LinuxThreads
|
|
|
|
bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
|
|
|
|
if (lock) {
|
|
|
|
os::Linux::createThread_lock()->lock_without_safepoint_check();
|
|
|
|
}
|
|
|
|
|
|
|
|
pthread_t tid;
|
|
|
|
int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
|
|
|
|
|
|
|
|
pthread_attr_destroy(&attr);
|
|
|
|
|
|
|
|
if (ret != 0) {
|
|
|
|
if (PrintMiscellaneous && (Verbose || WizardMode)) {
|
|
|
|
perror("pthread_create()");
|
|
|
|
}
|
|
|
|
// Need to clean up stuff we've allocated so far
|
|
|
|
thread->set_osthread(NULL);
|
|
|
|
delete osthread;
|
|
|
|
if (lock) os::Linux::createThread_lock()->unlock();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Store pthread info into the OSThread
|
|
|
|
osthread->set_pthread_id(tid);
|
|
|
|
|
|
|
|
// Wait until child thread is either initialized or aborted
|
|
|
|
{
|
|
|
|
Monitor* sync_with_child = osthread->startThread_lock();
|
|
|
|
MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
|
|
|
|
while ((state = osthread->get_state()) == ALLOCATED) {
|
|
|
|
sync_with_child->wait(Mutex::_no_safepoint_check_flag);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lock) {
|
|
|
|
os::Linux::createThread_lock()->unlock();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Aborted due to thread limit being reached
|
|
|
|
if (state == ZOMBIE) {
|
|
|
|
thread->set_osthread(NULL);
|
|
|
|
delete osthread;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The thread is returned suspended (in state INITIALIZED),
|
|
|
|
// and is started higher up in the call chain
|
|
|
|
assert(state == INITIALIZED, "race condition");
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
// attach existing thread
|
|
|
|
|
|
|
|
// bootstrap the main thread
|
|
|
|
bool os::create_main_thread(JavaThread* thread) {
|
|
|
|
assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
|
|
|
|
return create_attached_thread(thread);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::create_attached_thread(JavaThread* thread) {
|
|
|
|
#ifdef ASSERT
|
|
|
|
thread->verify_not_published();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Allocate the OSThread object
|
|
|
|
OSThread* osthread = new OSThread(NULL, NULL);
|
|
|
|
|
|
|
|
if (osthread == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Store pthread info into the OSThread
|
|
|
|
osthread->set_thread_id(os::Linux::gettid());
|
|
|
|
osthread->set_pthread_id(::pthread_self());
|
|
|
|
|
|
|
|
// initialize floating point control register
|
|
|
|
os::Linux::init_thread_fpu_state();
|
|
|
|
|
|
|
|
// Initial thread state is RUNNABLE
|
|
|
|
osthread->set_state(RUNNABLE);
|
|
|
|
|
|
|
|
thread->set_osthread(osthread);
|
|
|
|
|
|
|
|
if (UseNUMA) {
|
|
|
|
int lgrp_id = os::numa_get_group_id();
|
|
|
|
if (lgrp_id != -1) {
|
|
|
|
thread->set_lgrp_id(lgrp_id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (os::Linux::is_initial_thread()) {
|
|
|
|
// If current thread is initial thread, its stack is mapped on demand,
|
|
|
|
// see notes about MAP_GROWSDOWN. Here we try to force kernel to map
|
|
|
|
// the entire stack region to avoid SEGV in stack banging.
|
|
|
|
// It is also useful to get around the heap-stack-gap problem on SuSE
|
|
|
|
// kernel (see 4821821 for details). We first expand stack to the top
|
|
|
|
// of yellow zone, then enable stack yellow zone (order is significant,
|
|
|
|
// enabling yellow zone first will crash JVM on SuSE Linux), so there
|
|
|
|
// is no gap between the last two virtual memory regions.
|
|
|
|
|
|
|
|
JavaThread *jt = (JavaThread *)thread;
|
|
|
|
address addr = jt->stack_yellow_zone_base();
|
|
|
|
assert(addr != NULL, "initialization problem?");
|
|
|
|
assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
|
|
|
|
|
|
|
|
osthread->set_expanding_stack();
|
|
|
|
os::Linux::manually_expand_stack(jt, addr);
|
|
|
|
osthread->clear_expanding_stack();
|
|
|
|
}
|
|
|
|
|
|
|
|
// initialize signal mask for this thread
|
|
|
|
// and save the caller's signal mask
|
|
|
|
os::Linux::hotspot_sigmask(thread);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::pd_start_thread(Thread* thread) {
|
|
|
|
OSThread * osthread = thread->osthread();
|
|
|
|
assert(osthread->get_state() != INITIALIZED, "just checking");
|
|
|
|
Monitor* sync_with_child = osthread->startThread_lock();
|
|
|
|
MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
|
|
|
|
sync_with_child->notify();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Free Linux resources related to the OSThread
|
|
|
|
void os::free_thread(OSThread* osthread) {
|
|
|
|
assert(osthread != NULL, "osthread not set");
|
|
|
|
|
|
|
|
if (Thread::current()->osthread() == osthread) {
|
|
|
|
// Restore caller's signal mask
|
|
|
|
sigset_t sigmask = osthread->caller_sigmask();
|
|
|
|
pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
delete osthread;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// thread local storage
|
|
|
|
|
|
|
|
int os::allocate_thread_local_storage() {
|
|
|
|
pthread_key_t key;
|
|
|
|
int rslt = pthread_key_create(&key, NULL);
|
|
|
|
assert(rslt == 0, "cannot allocate thread local storage");
|
|
|
|
return (int)key;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note: This is currently not used by VM, as we don't destroy TLS key
|
|
|
|
// on VM exit.
|
|
|
|
void os::free_thread_local_storage(int index) {
|
|
|
|
int rslt = pthread_key_delete((pthread_key_t)index);
|
|
|
|
assert(rslt == 0, "invalid index");
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::thread_local_storage_at_put(int index, void* value) {
|
|
|
|
int rslt = pthread_setspecific((pthread_key_t)index, value);
|
|
|
|
assert(rslt == 0, "pthread_setspecific failed");
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" Thread* get_thread() {
|
|
|
|
return ThreadLocalStorage::thread();
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// initial thread
|
|
|
|
|
|
|
|
// Check if current thread is the initial thread, similar to Solaris thr_main.
|
|
|
|
bool os::Linux::is_initial_thread(void) {
|
|
|
|
char dummy;
|
|
|
|
// If called before init complete, thread stack bottom will be null.
|
|
|
|
// Can be called if fatal error occurs before initialization.
|
|
|
|
if (initial_thread_stack_bottom() == NULL) return false;
|
|
|
|
assert(initial_thread_stack_bottom() != NULL &&
|
|
|
|
initial_thread_stack_size() != 0,
|
|
|
|
"os::init did not locate initial thread's stack region");
|
|
|
|
if ((address)&dummy >= initial_thread_stack_bottom() &&
|
|
|
|
(address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
|
|
|
|
return true;
|
|
|
|
else return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find the virtual memory area that contains addr
|
|
|
|
static bool find_vma(address addr, address* vma_low, address* vma_high) {
|
|
|
|
FILE *fp = fopen("/proc/self/maps", "r");
|
|
|
|
if (fp) {
|
|
|
|
address low, high;
|
|
|
|
while (!feof(fp)) {
|
|
|
|
if (fscanf(fp, "%p-%p", &low, &high) == 2) {
|
|
|
|
if (low <= addr && addr < high) {
|
|
|
|
if (vma_low) *vma_low = low;
|
|
|
|
if (vma_high) *vma_high = high;
|
|
|
|
fclose (fp);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (;;) {
|
|
|
|
int ch = fgetc(fp);
|
|
|
|
if (ch == EOF || ch == (int)'\n') break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Locate initial thread stack. This special handling of initial thread stack
|
|
|
|
// is needed because pthread_getattr_np() on most (all?) Linux distros returns
|
|
|
|
// bogus value for initial thread.
|
|
|
|
void os::Linux::capture_initial_stack(size_t max_size) {
|
|
|
|
// stack size is the easy part, get it from RLIMIT_STACK
|
|
|
|
size_t stack_size;
|
|
|
|
struct rlimit rlim;
|
|
|
|
getrlimit(RLIMIT_STACK, &rlim);
|
|
|
|
stack_size = rlim.rlim_cur;
|
|
|
|
|
|
|
|
// 6308388: a bug in ld.so will relocate its own .data section to the
|
|
|
|
// lower end of primordial stack; reduce ulimit -s value a little bit
|
|
|
|
// so we won't install guard page on ld.so's data section.
|
|
|
|
stack_size -= 2 * page_size();
|
|
|
|
|
|
|
|
// 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
|
|
|
|
// 7.1, in both cases we will get 2G in return value.
|
|
|
|
// 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
|
|
|
|
// SuSE 7.2, Debian) can not handle alternate signal stack correctly
|
|
|
|
// for initial thread if its stack size exceeds 6M. Cap it at 2M,
|
|
|
|
// in case other parts in glibc still assumes 2M max stack size.
|
|
|
|
// FIXME: alt signal stack is gone, maybe we can relax this constraint?
|
|
|
|
#ifndef IA64
|
|
|
|
if (stack_size > 2 * K * K) stack_size = 2 * K * K;
|
|
|
|
#else
|
|
|
|
// Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
|
|
|
|
if (stack_size > 4 * K * K) stack_size = 4 * K * K;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Try to figure out where the stack base (top) is. This is harder.
|
|
|
|
//
|
|
|
|
// When an application is started, glibc saves the initial stack pointer in
|
|
|
|
// a global variable "__libc_stack_end", which is then used by system
|
|
|
|
// libraries. __libc_stack_end should be pretty close to stack top. The
|
|
|
|
// variable is available since the very early days. However, because it is
|
|
|
|
// a private interface, it could disappear in the future.
|
|
|
|
//
|
|
|
|
// Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
|
|
|
|
// to __libc_stack_end, it is very close to stack top, but isn't the real
|
|
|
|
// stack top. Note that /proc may not exist if VM is running as a chroot
|
|
|
|
// program, so reading /proc/<pid>/stat could fail. Also the contents of
|
|
|
|
// /proc/<pid>/stat could change in the future (though unlikely).
|
|
|
|
//
|
|
|
|
// We try __libc_stack_end first. If that doesn't work, look for
|
|
|
|
// /proc/<pid>/stat. If neither of them works, we use current stack pointer
|
|
|
|
// as a hint, which should work well in most cases.
|
|
|
|
|
|
|
|
uintptr_t stack_start;
|
|
|
|
|
|
|
|
// try __libc_stack_end first
|
|
|
|
uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
|
|
|
|
if (p && *p) {
|
|
|
|
stack_start = *p;
|
|
|
|
} else {
|
|
|
|
// see if we can get the start_stack field from /proc/self/stat
|
|
|
|
FILE *fp;
|
|
|
|
int pid;
|
|
|
|
char state;
|
|
|
|
int ppid;
|
|
|
|
int pgrp;
|
|
|
|
int session;
|
|
|
|
int nr;
|
|
|
|
int tpgrp;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long minflt;
|
|
|
|
unsigned long cminflt;
|
|
|
|
unsigned long majflt;
|
|
|
|
unsigned long cmajflt;
|
|
|
|
unsigned long utime;
|
|
|
|
unsigned long stime;
|
|
|
|
long cutime;
|
|
|
|
long cstime;
|
|
|
|
long prio;
|
|
|
|
long nice;
|
|
|
|
long junk;
|
|
|
|
long it_real;
|
|
|
|
uintptr_t start;
|
|
|
|
uintptr_t vsize;
|
|
|
|
uintptr_t rss;
|
|
|
|
unsigned long rsslim;
|
|
|
|
uintptr_t scodes;
|
|
|
|
uintptr_t ecode;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
// Figure what the primordial thread stack base is. Code is inspired
|
|
|
|
// by email from Hans Boehm. /proc/self/stat begins with current pid,
|
|
|
|
// followed by command name surrounded by parentheses, state, etc.
|
|
|
|
char stat[2048];
|
|
|
|
int statlen;
|
|
|
|
|
|
|
|
fp = fopen("/proc/self/stat", "r");
|
|
|
|
if (fp) {
|
|
|
|
statlen = fread(stat, 1, 2047, fp);
|
|
|
|
stat[statlen] = '\0';
|
|
|
|
fclose(fp);
|
|
|
|
|
|
|
|
// Skip pid and the command string. Note that we could be dealing with
|
|
|
|
// weird command names, e.g. user could decide to rename java launcher
|
|
|
|
// to "java 1.4.2 :)", then the stat file would look like
|
|
|
|
// 1234 (java 1.4.2 :)) R ... ...
|
|
|
|
// We don't really need to know the command string, just find the last
|
|
|
|
// occurrence of ")" and then start parsing from there. See bug 4726580.
|
|
|
|
char * s = strrchr(stat, ')');
|
|
|
|
|
|
|
|
i = 0;
|
|
|
|
if (s) {
|
|
|
|
// Skip blank chars
|
|
|
|
do s++; while (isspace(*s));
|
|
|
|
|
|
|
|
/* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
|
|
|
|
/* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
|
|
|
|
i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu",
|
|
|
|
&state, /* 3 %c */
|
|
|
|
&ppid, /* 4 %d */
|
|
|
|
&pgrp, /* 5 %d */
|
|
|
|
&session, /* 6 %d */
|
|
|
|
&nr, /* 7 %d */
|
|
|
|
&tpgrp, /* 8 %d */
|
|
|
|
&flags, /* 9 %lu */
|
|
|
|
&minflt, /* 10 %lu */
|
|
|
|
&cminflt, /* 11 %lu */
|
|
|
|
&majflt, /* 12 %lu */
|
|
|
|
&cmajflt, /* 13 %lu */
|
|
|
|
&utime, /* 14 %lu */
|
|
|
|
&stime, /* 15 %lu */
|
|
|
|
&cutime, /* 16 %ld */
|
|
|
|
&cstime, /* 17 %ld */
|
|
|
|
&prio, /* 18 %ld */
|
|
|
|
&nice, /* 19 %ld */
|
|
|
|
&junk, /* 20 %ld */
|
|
|
|
&it_real, /* 21 %ld */
|
|
|
|
&start, /* 22 %lu */
|
|
|
|
&vsize, /* 23 %lu */
|
|
|
|
&rss, /* 24 %ld */
|
|
|
|
&rsslim, /* 25 %lu */
|
|
|
|
&scodes, /* 26 %lu */
|
|
|
|
&ecode, /* 27 %lu */
|
|
|
|
&stack_start); /* 28 %lu */
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i != 28 - 2) {
|
|
|
|
assert(false, "Bad conversion from /proc/self/stat");
|
|
|
|
// product mode - assume we are the initial thread, good luck in the
|
|
|
|
// embedded case.
|
|
|
|
warning("Can't detect initial thread stack location - bad conversion");
|
|
|
|
stack_start = (uintptr_t) &rlim;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// For some reason we can't open /proc/self/stat (for example, running on
|
|
|
|
// FreeBSD with a Linux emulator, or inside chroot), this should work for
|
|
|
|
// most cases, so don't abort:
|
|
|
|
warning("Can't detect initial thread stack location - no /proc/self/stat");
|
|
|
|
stack_start = (uintptr_t) &rlim;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now we have a pointer (stack_start) very close to the stack top, the
|
|
|
|
// next thing to do is to figure out the exact location of stack top. We
|
|
|
|
// can find out the virtual memory area that contains stack_start by
|
|
|
|
// reading /proc/self/maps, it should be the last vma in /proc/self/maps,
|
|
|
|
// and its upper limit is the real stack top. (again, this would fail if
|
|
|
|
// running inside chroot, because /proc may not exist.)
|
|
|
|
|
|
|
|
uintptr_t stack_top;
|
|
|
|
address low, high;
|
|
|
|
if (find_vma((address)stack_start, &low, &high)) {
|
|
|
|
// success, "high" is the true stack top. (ignore "low", because initial
|
|
|
|
// thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
|
|
|
|
stack_top = (uintptr_t)high;
|
|
|
|
} else {
|
|
|
|
// failed, likely because /proc/self/maps does not exist
|
|
|
|
warning("Can't detect initial thread stack location - find_vma failed");
|
|
|
|
// best effort: stack_start is normally within a few pages below the real
|
|
|
|
// stack top, use it as stack top, and reduce stack size so we won't put
|
|
|
|
// guard page outside stack.
|
|
|
|
stack_top = stack_start;
|
|
|
|
stack_size -= 16 * page_size();
|
|
|
|
}
|
|
|
|
|
|
|
|
// stack_top could be partially down the page so align it
|
|
|
|
stack_top = align_size_up(stack_top, page_size());
|
|
|
|
|
|
|
|
if (max_size && stack_size > max_size) {
|
|
|
|
_initial_thread_stack_size = max_size;
|
|
|
|
} else {
|
|
|
|
_initial_thread_stack_size = stack_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
_initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
|
|
|
|
_initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// time support
|
|
|
|
|
|
|
|
// Time since start-up in seconds to a fine granularity.
|
|
|
|
// Used by VMSelfDestructTimer and the MemProfiler.
|
|
|
|
double os::elapsedTime() {
|
|
|
|
|
|
|
|
return (double)(os::elapsed_counter()) * 0.000001;
|
|
|
|
}
|
|
|
|
|
|
|
|
jlong os::elapsed_counter() {
|
|
|
|
timeval time;
|
|
|
|
int status = gettimeofday(&time, NULL);
|
|
|
|
return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
jlong os::elapsed_frequency() {
|
|
|
|
return (1000 * 1000);
|
|
|
|
}
|
|
|
|
|
2008-06-05 15:57:56 -07:00
|
|
|
// For now, we say that linux does not support vtime. I have no idea
|
|
|
|
// whether it can actually be made to (DLD, 9/13/05).
|
|
|
|
|
|
|
|
bool os::supports_vtime() { return false; }
|
|
|
|
bool os::enable_vtime() { return false; }
|
|
|
|
bool os::vtime_enabled() { return false; }
|
|
|
|
double os::elapsedVTime() {
|
|
|
|
// better than nothing, but not much
|
|
|
|
return elapsedTime();
|
|
|
|
}
|
|
|
|
|
2008-03-19 09:58:01 -04:00
|
|
|
jlong os::javaTimeMillis() {
|
2007-12-01 00:00:00 +00:00
|
|
|
timeval time;
|
|
|
|
int status = gettimeofday(&time, NULL);
|
|
|
|
assert(status != -1, "linux error");
|
|
|
|
return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CLOCK_MONOTONIC
|
|
|
|
#define CLOCK_MONOTONIC (1)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void os::Linux::clock_init() {
|
|
|
|
// we do dlopen's in this particular order due to bug in linux
|
|
|
|
// dynamical loader (see 6348968) leading to crash on exit
|
|
|
|
void* handle = dlopen("librt.so.1", RTLD_LAZY);
|
|
|
|
if (handle == NULL) {
|
|
|
|
handle = dlopen("librt.so", RTLD_LAZY);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (handle) {
|
|
|
|
int (*clock_getres_func)(clockid_t, struct timespec*) =
|
|
|
|
(int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
|
|
|
|
int (*clock_gettime_func)(clockid_t, struct timespec*) =
|
|
|
|
(int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
|
|
|
|
if (clock_getres_func && clock_gettime_func) {
|
|
|
|
// See if monotonic clock is supported by the kernel. Note that some
|
|
|
|
// early implementations simply return kernel jiffies (updated every
|
|
|
|
// 1/100 or 1/1000 second). It would be bad to use such a low res clock
|
|
|
|
// for nano time (though the monotonic property is still nice to have).
|
|
|
|
// It's fixed in newer kernels, however clock_getres() still returns
|
|
|
|
// 1/HZ. We check if clock_getres() works, but will ignore its reported
|
|
|
|
// resolution for now. Hopefully as people move to new kernels, this
|
|
|
|
// won't be a problem.
|
|
|
|
struct timespec res;
|
|
|
|
struct timespec tp;
|
|
|
|
if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
|
|
|
|
clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
|
|
|
|
// yes, monotonic clock is supported
|
|
|
|
_clock_gettime = clock_gettime_func;
|
|
|
|
} else {
|
|
|
|
// close librt if there is no monotonic clock
|
|
|
|
dlclose(handle);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SYS_clock_getres
|
|
|
|
|
|
|
|
#if defined(IA32) || defined(AMD64)
|
|
|
|
#define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
|
|
|
|
#else
|
|
|
|
#error Value of SYS_clock_getres not known on this platform
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
|
|
|
|
|
|
|
|
void os::Linux::fast_thread_clock_init() {
|
|
|
|
if (!UseLinuxPosixThreadCPUClocks) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
clockid_t clockid;
|
|
|
|
struct timespec tp;
|
|
|
|
int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
|
|
|
|
(int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
|
|
|
|
|
|
|
|
// Switch to using fast clocks for thread cpu time if
|
|
|
|
// the sys_clock_getres() returns 0 error code.
|
|
|
|
// Note, that some kernels may support the current thread
|
|
|
|
// clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
|
|
|
|
// returned by the pthread_getcpuclockid().
|
|
|
|
// If the fast Posix clocks are supported then the sys_clock_getres()
|
|
|
|
// must return at least tp.tv_sec == 0 which means a resolution
|
|
|
|
// better than 1 sec. This is extra check for reliability.
|
|
|
|
|
|
|
|
if(pthread_getcpuclockid_func &&
|
|
|
|
pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
|
|
|
|
sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
|
|
|
|
|
|
|
|
_supports_fast_thread_cpu_time = true;
|
|
|
|
_pthread_getcpuclockid = pthread_getcpuclockid_func;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
jlong os::javaTimeNanos() {
|
|
|
|
if (Linux::supports_monotonic_clock()) {
|
|
|
|
struct timespec tp;
|
|
|
|
int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
|
|
|
|
assert(status == 0, "gettime error");
|
|
|
|
jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
|
|
|
|
return result;
|
|
|
|
} else {
|
|
|
|
timeval time;
|
|
|
|
int status = gettimeofday(&time, NULL);
|
|
|
|
assert(status != -1, "linux error");
|
|
|
|
jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
|
|
|
|
return 1000 * usecs;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
|
|
|
|
if (Linux::supports_monotonic_clock()) {
|
|
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
|
|
|
|
|
|
// CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
|
|
|
|
info_ptr->may_skip_backward = false; // not subject to resetting or drifting
|
|
|
|
info_ptr->may_skip_forward = false; // not subject to resetting or drifting
|
|
|
|
} else {
|
|
|
|
// gettimeofday - based on time in seconds since the Epoch thus does not wrap
|
|
|
|
info_ptr->max_value = ALL_64_BITS;
|
|
|
|
|
|
|
|
// gettimeofday is a real time clock so it skips
|
|
|
|
info_ptr->may_skip_backward = true;
|
|
|
|
info_ptr->may_skip_forward = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the real, user, and system times in seconds from an
|
|
|
|
// arbitrary fixed point in the past.
|
|
|
|
bool os::getTimesSecs(double* process_real_time,
|
|
|
|
double* process_user_time,
|
|
|
|
double* process_system_time) {
|
|
|
|
struct tms ticks;
|
|
|
|
clock_t real_ticks = times(&ticks);
|
|
|
|
|
|
|
|
if (real_ticks == (clock_t) (-1)) {
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
double ticks_per_second = (double) clock_tics_per_sec;
|
|
|
|
*process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
|
|
|
|
*process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
|
|
|
|
*process_real_time = ((double) real_ticks) / ticks_per_second;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char * os::local_time_string(char *buf, size_t buflen) {
|
|
|
|
struct tm t;
|
|
|
|
time_t long_time;
|
|
|
|
time(&long_time);
|
|
|
|
localtime_r(&long_time, &t);
|
|
|
|
jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
|
|
|
|
t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
|
|
|
|
t.tm_hour, t.tm_min, t.tm_sec);
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// runtime exit support
|
|
|
|
|
|
|
|
// Note: os::shutdown() might be called very early during initialization, or
|
|
|
|
// called from signal handler. Before adding something to os::shutdown(), make
|
|
|
|
// sure it is async-safe and can handle partially initialized VM.
|
|
|
|
void os::shutdown() {
|
|
|
|
|
|
|
|
// allow PerfMemory to attempt cleanup of any persistent resources
|
|
|
|
perfMemory_exit();
|
|
|
|
|
|
|
|
// needs to remove object in file system
|
|
|
|
AttachListener::abort();
|
|
|
|
|
|
|
|
// flush buffered output, finish log files
|
|
|
|
ostream_abort();
|
|
|
|
|
|
|
|
// Check for abort hook
|
|
|
|
abort_hook_t abort_hook = Arguments::abort_hook();
|
|
|
|
if (abort_hook != NULL) {
|
|
|
|
abort_hook();
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note: os::abort() might be called very early during initialization, or
|
|
|
|
// called from signal handler. Before adding something to os::abort(), make
|
|
|
|
// sure it is async-safe and can handle partially initialized VM.
|
|
|
|
void os::abort(bool dump_core) {
|
|
|
|
os::shutdown();
|
|
|
|
if (dump_core) {
|
|
|
|
#ifndef PRODUCT
|
|
|
|
fdStream out(defaultStream::output_fd());
|
|
|
|
out.print_raw("Current thread is ");
|
|
|
|
char buf[16];
|
|
|
|
jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
|
|
|
|
out.print_raw_cr(buf);
|
|
|
|
out.print_raw_cr("Dumping core ...");
|
|
|
|
#endif
|
|
|
|
::abort(); // dump core
|
|
|
|
}
|
|
|
|
|
|
|
|
::exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Die immediately, no exit hook, no abort hook, no cleanup.
|
|
|
|
void os::die() {
|
|
|
|
// _exit() on LinuxThreads only kills current thread
|
|
|
|
::abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
// unused on linux for now.
|
|
|
|
void os::set_error_file(const char *logfile) {}
|
|
|
|
|
|
|
|
intx os::current_thread_id() { return (intx)pthread_self(); }
|
|
|
|
int os::current_process_id() {
|
|
|
|
|
|
|
|
// Under the old linux thread library, linux gives each thread
|
|
|
|
// its own process id. Because of this each thread will return
|
|
|
|
// a different pid if this method were to return the result
|
|
|
|
// of getpid(2). Linux provides no api that returns the pid
|
|
|
|
// of the launcher thread for the vm. This implementation
|
|
|
|
// returns a unique pid, the pid of the launcher thread
|
|
|
|
// that starts the vm 'process'.
|
|
|
|
|
|
|
|
// Under the NPTL, getpid() returns the same pid as the
|
|
|
|
// launcher thread rather than a unique pid per thread.
|
|
|
|
// Use gettid() if you want the old pre NPTL behaviour.
|
|
|
|
|
|
|
|
// if you are looking for the result of a call to getpid() that
|
|
|
|
// returns a unique pid for the calling thread, then look at the
|
|
|
|
// OSThread::thread_id() method in osThread_linux.hpp file
|
|
|
|
|
|
|
|
return (int)(_initial_pid ? _initial_pid : getpid());
|
|
|
|
}
|
|
|
|
|
|
|
|
// DLL functions
|
|
|
|
|
|
|
|
const char* os::dll_file_extension() { return ".so"; }
|
|
|
|
|
|
|
|
const char* os::get_temp_directory() { return "/tmp/"; }
|
|
|
|
|
2008-07-28 14:07:44 -04:00
|
|
|
void os::dll_build_name(
|
|
|
|
char* buffer, size_t buflen, const char* pname, const char* fname) {
|
|
|
|
// copied from libhpi
|
|
|
|
const size_t pnamelen = pname ? strlen(pname) : 0;
|
|
|
|
|
|
|
|
/* Quietly truncate on buffer overflow. Should be an error. */
|
|
|
|
if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
|
|
|
|
*buffer = '\0';
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pnamelen == 0) {
|
|
|
|
sprintf(buffer, "lib%s.so", fname);
|
|
|
|
} else {
|
|
|
|
sprintf(buffer, "%s/lib%s.so", pname, fname);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
const char* os::get_current_directory(char *buf, int buflen) {
|
|
|
|
return getcwd(buf, buflen);
|
|
|
|
}
|
|
|
|
|
|
|
|
// check if addr is inside libjvm[_g].so
|
|
|
|
bool os::address_is_in_vm(address addr) {
|
|
|
|
static address libjvm_base_addr;
|
|
|
|
Dl_info dlinfo;
|
|
|
|
|
|
|
|
if (libjvm_base_addr == NULL) {
|
|
|
|
dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
|
|
|
|
libjvm_base_addr = (address)dlinfo.dli_fbase;
|
|
|
|
assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dladdr((void *)addr, &dlinfo)) {
|
|
|
|
if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::dll_address_to_function_name(address addr, char *buf,
|
|
|
|
int buflen, int *offset) {
|
|
|
|
Dl_info dlinfo;
|
|
|
|
|
|
|
|
if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
|
|
|
|
if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
|
|
|
|
if (offset) *offset = addr - (address)dlinfo.dli_saddr;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
if (buf) buf[0] = '\0';
|
|
|
|
if (offset) *offset = -1;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct _address_to_library_name {
|
|
|
|
address addr; // input : memory address
|
|
|
|
size_t buflen; // size of fname
|
|
|
|
char* fname; // output: library name
|
|
|
|
address base; // library base addr
|
|
|
|
};
|
|
|
|
|
|
|
|
static int address_to_library_name_callback(struct dl_phdr_info *info,
|
|
|
|
size_t size, void *data) {
|
|
|
|
int i;
|
|
|
|
bool found = false;
|
|
|
|
address libbase = NULL;
|
|
|
|
struct _address_to_library_name * d = (struct _address_to_library_name *)data;
|
|
|
|
|
|
|
|
// iterate through all loadable segments
|
|
|
|
for (i = 0; i < info->dlpi_phnum; i++) {
|
|
|
|
address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
|
|
|
|
if (info->dlpi_phdr[i].p_type == PT_LOAD) {
|
|
|
|
// base address of a library is the lowest address of its loaded
|
|
|
|
// segments.
|
|
|
|
if (libbase == NULL || libbase > segbase) {
|
|
|
|
libbase = segbase;
|
|
|
|
}
|
|
|
|
// see if 'addr' is within current segment
|
|
|
|
if (segbase <= d->addr &&
|
|
|
|
d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
|
|
|
|
found = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// dlpi_name is NULL or empty if the ELF file is executable, return 0
|
|
|
|
// so dll_address_to_library_name() can fall through to use dladdr() which
|
|
|
|
// can figure out executable name from argv[0].
|
|
|
|
if (found && info->dlpi_name && info->dlpi_name[0]) {
|
|
|
|
d->base = libbase;
|
|
|
|
if (d->fname) {
|
|
|
|
jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::dll_address_to_library_name(address addr, char* buf,
|
|
|
|
int buflen, int* offset) {
|
|
|
|
Dl_info dlinfo;
|
|
|
|
struct _address_to_library_name data;
|
|
|
|
|
|
|
|
// There is a bug in old glibc dladdr() implementation that it could resolve
|
|
|
|
// to wrong library name if the .so file has a base address != NULL. Here
|
|
|
|
// we iterate through the program headers of all loaded libraries to find
|
|
|
|
// out which library 'addr' really belongs to. This workaround can be
|
|
|
|
// removed once the minimum requirement for glibc is moved to 2.3.x.
|
|
|
|
data.addr = addr;
|
|
|
|
data.fname = buf;
|
|
|
|
data.buflen = buflen;
|
|
|
|
data.base = NULL;
|
|
|
|
int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
|
|
|
|
|
|
|
|
if (rslt) {
|
|
|
|
// buf already contains library name
|
|
|
|
if (offset) *offset = addr - data.base;
|
|
|
|
return true;
|
|
|
|
} else if (dladdr((void*)addr, &dlinfo)){
|
|
|
|
if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
|
|
|
|
if (offset) *offset = addr - (address)dlinfo.dli_fbase;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
if (buf) buf[0] = '\0';
|
|
|
|
if (offset) *offset = -1;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Loads .dll/.so and
|
|
|
|
// in case of error it checks if .dll/.so was built for the
|
|
|
|
// same architecture as Hotspot is running on
|
|
|
|
|
|
|
|
void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
|
|
|
|
{
|
|
|
|
void * result= ::dlopen(filename, RTLD_LAZY);
|
|
|
|
if (result != NULL) {
|
|
|
|
// Successful loading
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
Elf32_Ehdr elf_head;
|
|
|
|
|
|
|
|
// Read system error message into ebuf
|
|
|
|
// It may or may not be overwritten below
|
|
|
|
::strncpy(ebuf, ::dlerror(), ebuflen-1);
|
|
|
|
ebuf[ebuflen-1]='\0';
|
|
|
|
int diag_msg_max_length=ebuflen-strlen(ebuf);
|
|
|
|
char* diag_msg_buf=ebuf+strlen(ebuf);
|
|
|
|
|
|
|
|
if (diag_msg_max_length==0) {
|
|
|
|
// No more space in ebuf for additional diagnostics message
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
|
|
|
|
|
|
|
|
if (file_descriptor < 0) {
|
|
|
|
// Can't open library, report dlerror() message
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool failed_to_read_elf_head=
|
|
|
|
(sizeof(elf_head)!=
|
|
|
|
(::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
|
|
|
|
|
|
|
|
::close(file_descriptor);
|
|
|
|
if (failed_to_read_elf_head) {
|
|
|
|
// file i/o error - report dlerror() msg
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
Elf32_Half code; // Actual value as defined in elf.h
|
|
|
|
Elf32_Half compat_class; // Compatibility of archs at VM's sense
|
|
|
|
char elf_class; // 32 or 64 bit
|
|
|
|
char endianess; // MSB or LSB
|
|
|
|
char* name; // String representation
|
|
|
|
} arch_t;
|
|
|
|
|
|
|
|
#ifndef EM_486
|
|
|
|
#define EM_486 6 /* Intel 80486 */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static const arch_t arch_array[]={
|
|
|
|
{EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
|
|
|
|
{EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
|
|
|
|
{EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
|
|
|
|
{EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
|
|
|
|
{EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
|
|
|
|
{EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
|
|
|
|
{EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
|
|
|
|
{EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
|
|
|
|
{EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
|
|
|
|
};
|
|
|
|
|
|
|
|
#if (defined IA32)
|
|
|
|
static Elf32_Half running_arch_code=EM_386;
|
|
|
|
#elif (defined AMD64)
|
|
|
|
static Elf32_Half running_arch_code=EM_X86_64;
|
|
|
|
#elif (defined IA64)
|
|
|
|
static Elf32_Half running_arch_code=EM_IA_64;
|
|
|
|
#elif (defined __sparc) && (defined _LP64)
|
|
|
|
static Elf32_Half running_arch_code=EM_SPARCV9;
|
|
|
|
#elif (defined __sparc) && (!defined _LP64)
|
|
|
|
static Elf32_Half running_arch_code=EM_SPARC;
|
|
|
|
#elif (defined __powerpc64__)
|
|
|
|
static Elf32_Half running_arch_code=EM_PPC64;
|
|
|
|
#elif (defined __powerpc__)
|
|
|
|
static Elf32_Half running_arch_code=EM_PPC;
|
|
|
|
#else
|
|
|
|
#error Method os::dll_load requires that one of following is defined:\
|
|
|
|
IA32, AMD64, IA64, __sparc, __powerpc__
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Identify compatability class for VM's architecture and library's architecture
|
|
|
|
// Obtain string descriptions for architectures
|
|
|
|
|
|
|
|
arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
|
|
|
|
int running_arch_index=-1;
|
|
|
|
|
|
|
|
for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
|
|
|
|
if (running_arch_code == arch_array[i].code) {
|
|
|
|
running_arch_index = i;
|
|
|
|
}
|
|
|
|
if (lib_arch.code == arch_array[i].code) {
|
|
|
|
lib_arch.compat_class = arch_array[i].compat_class;
|
|
|
|
lib_arch.name = arch_array[i].name;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(running_arch_index != -1,
|
|
|
|
"Didn't find running architecture code (running_arch_code) in arch_array");
|
|
|
|
if (running_arch_index == -1) {
|
|
|
|
// Even though running architecture detection failed
|
|
|
|
// we may still continue with reporting dlerror() message
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
|
|
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
|
|
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
|
|
|
|
if ( lib_arch.name!=NULL ) {
|
|
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
|
|
" (Possible cause: can't load %s-bit .so on a %s-bit platform)",
|
|
|
|
lib_arch.name, arch_array[running_arch_index].name);
|
|
|
|
} else {
|
|
|
|
::snprintf(diag_msg_buf, diag_msg_max_length-1,
|
|
|
|
" (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
|
|
|
|
lib_arch.code,
|
|
|
|
arch_array[running_arch_index].name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2008-07-28 14:07:44 -04:00
|
|
|
/*
|
|
|
|
* glibc-2.0 libdl is not MT safe. If you are building with any glibc,
|
|
|
|
* chances are you might want to run the generated bits against glibc-2.0
|
|
|
|
* libdl.so, so always use locking for any version of glibc.
|
|
|
|
*/
|
|
|
|
void* os::dll_lookup(void* handle, const char* name) {
|
|
|
|
pthread_mutex_lock(&dl_mutex);
|
|
|
|
void* res = dlsym(handle, name);
|
|
|
|
pthread_mutex_unlock(&dl_mutex);
|
|
|
|
return res;
|
|
|
|
}
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
bool _print_ascii_file(const char* filename, outputStream* st) {
|
|
|
|
int fd = open(filename, O_RDONLY);
|
|
|
|
if (fd == -1) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
char buf[32];
|
|
|
|
int bytes;
|
|
|
|
while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
|
|
|
|
st->print_raw(buf, bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
close(fd);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::print_dll_info(outputStream *st) {
|
|
|
|
st->print_cr("Dynamic libraries:");
|
|
|
|
|
|
|
|
char fname[32];
|
|
|
|
pid_t pid = os::Linux::gettid();
|
|
|
|
|
|
|
|
jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
|
|
|
|
|
|
|
|
if (!_print_ascii_file(fname, st)) {
|
|
|
|
st->print("Can not get library information for pid = %d\n", pid);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void os::print_os_info(outputStream* st) {
|
|
|
|
st->print("OS:");
|
|
|
|
|
|
|
|
// Try to identify popular distros.
|
|
|
|
// Most Linux distributions have /etc/XXX-release file, which contains
|
|
|
|
// the OS version string. Some have more than one /etc/XXX-release file
|
|
|
|
// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
|
|
|
|
// so the order is important.
|
|
|
|
if (!_print_ascii_file("/etc/mandrake-release", st) &&
|
|
|
|
!_print_ascii_file("/etc/sun-release", st) &&
|
|
|
|
!_print_ascii_file("/etc/redhat-release", st) &&
|
|
|
|
!_print_ascii_file("/etc/SuSE-release", st) &&
|
|
|
|
!_print_ascii_file("/etc/turbolinux-release", st) &&
|
|
|
|
!_print_ascii_file("/etc/gentoo-release", st) &&
|
|
|
|
!_print_ascii_file("/etc/debian_version", st)) {
|
|
|
|
st->print("Linux");
|
|
|
|
}
|
|
|
|
st->cr();
|
|
|
|
|
|
|
|
// kernel
|
|
|
|
st->print("uname:");
|
|
|
|
struct utsname name;
|
|
|
|
uname(&name);
|
|
|
|
st->print(name.sysname); st->print(" ");
|
|
|
|
st->print(name.release); st->print(" ");
|
|
|
|
st->print(name.version); st->print(" ");
|
|
|
|
st->print(name.machine);
|
|
|
|
st->cr();
|
|
|
|
|
|
|
|
// Print warning if unsafe chroot environment detected
|
|
|
|
if (unsafe_chroot_detected) {
|
|
|
|
st->print("WARNING!! ");
|
|
|
|
st->print_cr(unstable_chroot_error);
|
|
|
|
}
|
|
|
|
|
|
|
|
// libc, pthread
|
|
|
|
st->print("libc:");
|
|
|
|
st->print(os::Linux::glibc_version()); st->print(" ");
|
|
|
|
st->print(os::Linux::libpthread_version()); st->print(" ");
|
|
|
|
if (os::Linux::is_LinuxThreads()) {
|
|
|
|
st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
|
|
|
|
}
|
|
|
|
st->cr();
|
|
|
|
|
|
|
|
// rlimit
|
|
|
|
st->print("rlimit:");
|
|
|
|
struct rlimit rlim;
|
|
|
|
|
|
|
|
st->print(" STACK ");
|
|
|
|
getrlimit(RLIMIT_STACK, &rlim);
|
|
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
|
|
else st->print("%uk", rlim.rlim_cur >> 10);
|
|
|
|
|
|
|
|
st->print(", CORE ");
|
|
|
|
getrlimit(RLIMIT_CORE, &rlim);
|
|
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
|
|
else st->print("%uk", rlim.rlim_cur >> 10);
|
|
|
|
|
|
|
|
st->print(", NPROC ");
|
|
|
|
getrlimit(RLIMIT_NPROC, &rlim);
|
|
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
|
|
else st->print("%d", rlim.rlim_cur);
|
|
|
|
|
|
|
|
st->print(", NOFILE ");
|
|
|
|
getrlimit(RLIMIT_NOFILE, &rlim);
|
|
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
|
|
else st->print("%d", rlim.rlim_cur);
|
|
|
|
|
|
|
|
st->print(", AS ");
|
|
|
|
getrlimit(RLIMIT_AS, &rlim);
|
|
|
|
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
|
|
|
|
else st->print("%uk", rlim.rlim_cur >> 10);
|
|
|
|
st->cr();
|
|
|
|
|
|
|
|
// load average
|
|
|
|
st->print("load average:");
|
|
|
|
double loadavg[3];
|
|
|
|
os::loadavg(loadavg, 3);
|
|
|
|
st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
|
|
|
|
st->cr();
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::print_memory_info(outputStream* st) {
|
|
|
|
|
|
|
|
st->print("Memory:");
|
|
|
|
st->print(" %dk page", os::vm_page_size()>>10);
|
|
|
|
|
|
|
|
// values in struct sysinfo are "unsigned long"
|
|
|
|
struct sysinfo si;
|
|
|
|
sysinfo(&si);
|
|
|
|
|
|
|
|
st->print(", physical " UINT64_FORMAT "k",
|
|
|
|
os::physical_memory() >> 10);
|
|
|
|
st->print("(" UINT64_FORMAT "k free)",
|
|
|
|
os::available_memory() >> 10);
|
|
|
|
st->print(", swap " UINT64_FORMAT "k",
|
|
|
|
((jlong)si.totalswap * si.mem_unit) >> 10);
|
|
|
|
st->print("(" UINT64_FORMAT "k free)",
|
|
|
|
((jlong)si.freeswap * si.mem_unit) >> 10);
|
|
|
|
st->cr();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
|
|
|
|
// but they're the same for all the linux arch that we support
|
|
|
|
// and they're the same for solaris but there's no common place to put this.
|
|
|
|
const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
|
|
|
|
"ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
|
|
|
|
"ILL_COPROC", "ILL_BADSTK" };
|
|
|
|
|
|
|
|
const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
|
|
|
|
"FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
|
|
|
|
"FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
|
|
|
|
|
|
|
|
const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
|
|
|
|
|
|
|
|
const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
|
|
|
|
|
|
|
|
void os::print_siginfo(outputStream* st, void* siginfo) {
|
|
|
|
st->print("siginfo:");
|
|
|
|
|
|
|
|
const int buflen = 100;
|
|
|
|
char buf[buflen];
|
|
|
|
siginfo_t *si = (siginfo_t*)siginfo;
|
|
|
|
st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
|
|
|
|
if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
|
|
|
|
st->print("si_errno=%s", buf);
|
|
|
|
} else {
|
|
|
|
st->print("si_errno=%d", si->si_errno);
|
|
|
|
}
|
|
|
|
const int c = si->si_code;
|
|
|
|
assert(c > 0, "unexpected si_code");
|
|
|
|
switch (si->si_signo) {
|
|
|
|
case SIGILL:
|
|
|
|
st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
|
|
|
|
st->print(", si_addr=" PTR_FORMAT, si->si_addr);
|
|
|
|
break;
|
|
|
|
case SIGFPE:
|
|
|
|
st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
|
|
|
|
st->print(", si_addr=" PTR_FORMAT, si->si_addr);
|
|
|
|
break;
|
|
|
|
case SIGSEGV:
|
|
|
|
st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
|
|
|
|
st->print(", si_addr=" PTR_FORMAT, si->si_addr);
|
|
|
|
break;
|
|
|
|
case SIGBUS:
|
|
|
|
st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
|
|
|
|
st->print(", si_addr=" PTR_FORMAT, si->si_addr);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
st->print(", si_code=%d", si->si_code);
|
|
|
|
// no si_addr
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
|
|
|
|
UseSharedSpaces) {
|
|
|
|
FileMapInfo* mapinfo = FileMapInfo::current_info();
|
|
|
|
if (mapinfo->is_in_shared_space(si->si_addr)) {
|
|
|
|
st->print("\n\nError accessing class data sharing archive." \
|
|
|
|
" Mapped file inaccessible during execution, " \
|
|
|
|
" possible disk/network problem.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
st->cr();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void print_signal_handler(outputStream* st, int sig,
|
|
|
|
char* buf, size_t buflen);
|
|
|
|
|
|
|
|
void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
|
|
|
|
st->print_cr("Signal Handlers:");
|
|
|
|
print_signal_handler(st, SIGSEGV, buf, buflen);
|
|
|
|
print_signal_handler(st, SIGBUS , buf, buflen);
|
|
|
|
print_signal_handler(st, SIGFPE , buf, buflen);
|
|
|
|
print_signal_handler(st, SIGPIPE, buf, buflen);
|
|
|
|
print_signal_handler(st, SIGXFSZ, buf, buflen);
|
|
|
|
print_signal_handler(st, SIGILL , buf, buflen);
|
|
|
|
print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
|
|
|
|
print_signal_handler(st, SR_signum, buf, buflen);
|
|
|
|
print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
|
|
|
|
print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
|
|
|
|
print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
|
|
|
|
print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char saved_jvm_path[MAXPATHLEN] = {0};
|
|
|
|
|
|
|
|
// Find the full path to the current module, libjvm.so or libjvm_g.so
|
|
|
|
void os::jvm_path(char *buf, jint len) {
|
|
|
|
// Error checking.
|
|
|
|
if (len < MAXPATHLEN) {
|
|
|
|
assert(false, "must use a large-enough buffer");
|
|
|
|
buf[0] = '\0';
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Lazy resolve the path to current module.
|
|
|
|
if (saved_jvm_path[0] != 0) {
|
|
|
|
strcpy(buf, saved_jvm_path);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
char dli_fname[MAXPATHLEN];
|
|
|
|
bool ret = dll_address_to_library_name(
|
|
|
|
CAST_FROM_FN_PTR(address, os::jvm_path),
|
|
|
|
dli_fname, sizeof(dli_fname), NULL);
|
|
|
|
assert(ret != 0, "cannot locate libjvm");
|
|
|
|
realpath(dli_fname, buf);
|
|
|
|
|
|
|
|
if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
|
|
|
|
// Support for the gamma launcher. Typical value for buf is
|
|
|
|
// "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
|
|
|
|
// the right place in the string, then assume we are installed in a JDK and
|
|
|
|
// we're done. Otherwise, check for a JAVA_HOME environment variable and fix
|
|
|
|
// up the path so it looks like libjvm.so is installed there (append a
|
|
|
|
// fake suffix hotspot/libjvm.so).
|
|
|
|
const char *p = buf + strlen(buf) - 1;
|
|
|
|
for (int count = 0; p > buf && count < 5; ++count) {
|
|
|
|
for (--p; p > buf && *p != '/'; --p)
|
|
|
|
/* empty */ ;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (strncmp(p, "/jre/lib/", 9) != 0) {
|
|
|
|
// Look for JAVA_HOME in the environment.
|
|
|
|
char* java_home_var = ::getenv("JAVA_HOME");
|
|
|
|
if (java_home_var != NULL && java_home_var[0] != 0) {
|
|
|
|
// Check the current module name "libjvm.so" or "libjvm_g.so".
|
|
|
|
p = strrchr(buf, '/');
|
|
|
|
assert(strstr(p, "/libjvm") == p, "invalid library name");
|
|
|
|
p = strstr(p, "_g") ? "_g" : "";
|
|
|
|
|
|
|
|
realpath(java_home_var, buf);
|
|
|
|
sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
|
|
|
|
if (0 == access(buf, F_OK)) {
|
|
|
|
// Use current module name "libjvm[_g].so" instead of
|
|
|
|
// "libjvm"debug_only("_g")".so" since for fastdebug version
|
|
|
|
// we should have "libjvm.so" but debug_only("_g") adds "_g"!
|
|
|
|
// It is used when we are choosing the HPI library's name
|
|
|
|
// "libhpi[_g].so" in hpi::initialize_get_interface().
|
|
|
|
sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
|
|
|
|
} else {
|
|
|
|
// Go back to path of .so
|
|
|
|
realpath(dli_fname, buf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
strcpy(saved_jvm_path, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
|
|
|
|
// no prefix required, not even "_"
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
|
|
|
|
// no suffix required
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// sun.misc.Signal support
|
|
|
|
|
|
|
|
static volatile jint sigint_count = 0;
|
|
|
|
|
|
|
|
static void
|
|
|
|
UserHandler(int sig, void *siginfo, void *context) {
|
|
|
|
// 4511530 - sem_post is serialized and handled by the manager thread. When
|
|
|
|
// the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
|
|
|
|
// don't want to flood the manager thread with sem_post requests.
|
|
|
|
if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Ctrl-C is pressed during error reporting, likely because the error
|
|
|
|
// handler fails to abort. Let VM die immediately.
|
|
|
|
if (sig == SIGINT && is_error_reported()) {
|
|
|
|
os::die();
|
|
|
|
}
|
|
|
|
|
|
|
|
os::signal_notify(sig);
|
|
|
|
}
|
|
|
|
|
|
|
|
void* os::user_handler() {
|
|
|
|
return CAST_FROM_FN_PTR(void*, UserHandler);
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" {
|
|
|
|
typedef void (*sa_handler_t)(int);
|
|
|
|
typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
|
|
|
|
}
|
|
|
|
|
|
|
|
void* os::signal(int signal_number, void* handler) {
|
|
|
|
struct sigaction sigAct, oldSigAct;
|
|
|
|
|
|
|
|
sigfillset(&(sigAct.sa_mask));
|
|
|
|
sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
|
|
|
|
sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
|
|
|
|
|
|
|
|
if (sigaction(signal_number, &sigAct, &oldSigAct)) {
|
|
|
|
// -1 means registration failed
|
|
|
|
return (void *)-1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::signal_raise(int signal_number) {
|
|
|
|
::raise(signal_number);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The following code is moved from os.cpp for making this
|
|
|
|
* code platform specific, which it is by its very nature.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// Will be modified when max signal is changed to be dynamic
|
|
|
|
int os::sigexitnum_pd() {
|
|
|
|
return NSIG;
|
|
|
|
}
|
|
|
|
|
|
|
|
// a counter for each possible signal value
|
|
|
|
static volatile jint pending_signals[NSIG+1] = { 0 };
|
|
|
|
|
|
|
|
// Linux(POSIX) specific hand shaking semaphore.
|
|
|
|
static sem_t sig_sem;
|
|
|
|
|
|
|
|
void os::signal_init_pd() {
|
|
|
|
// Initialize signal structures
|
|
|
|
::memset((void*)pending_signals, 0, sizeof(pending_signals));
|
|
|
|
|
|
|
|
// Initialize signal semaphore
|
|
|
|
::sem_init(&sig_sem, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::signal_notify(int sig) {
|
|
|
|
Atomic::inc(&pending_signals[sig]);
|
|
|
|
::sem_post(&sig_sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int check_pending_signals(bool wait) {
|
|
|
|
Atomic::store(0, &sigint_count);
|
|
|
|
for (;;) {
|
|
|
|
for (int i = 0; i < NSIG + 1; i++) {
|
|
|
|
jint n = pending_signals[i];
|
|
|
|
if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!wait) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
JavaThread *thread = JavaThread::current();
|
|
|
|
ThreadBlockInVM tbivm(thread);
|
|
|
|
|
|
|
|
bool threadIsSuspended;
|
|
|
|
do {
|
|
|
|
thread->set_suspend_equivalent();
|
|
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
|
|
::sem_wait(&sig_sem);
|
|
|
|
|
|
|
|
// were we externally suspended while we were waiting?
|
|
|
|
threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
|
|
|
|
if (threadIsSuspended) {
|
|
|
|
//
|
|
|
|
// The semaphore has been incremented, but while we were waiting
|
|
|
|
// another thread suspended us. We don't want to continue running
|
|
|
|
// while suspended because that would surprise the thread that
|
|
|
|
// suspended us.
|
|
|
|
//
|
|
|
|
::sem_post(&sig_sem);
|
|
|
|
|
|
|
|
thread->java_suspend_self();
|
|
|
|
}
|
|
|
|
} while (threadIsSuspended);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::signal_lookup() {
|
|
|
|
return check_pending_signals(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::signal_wait() {
|
|
|
|
return check_pending_signals(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Virtual Memory
|
|
|
|
|
|
|
|
int os::vm_page_size() {
|
|
|
|
// Seems redundant as all get out
|
|
|
|
assert(os::Linux::page_size() != -1, "must call os::init");
|
|
|
|
return os::Linux::page_size();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Solaris allocates memory by pages.
|
|
|
|
int os::vm_allocation_granularity() {
|
|
|
|
assert(os::Linux::page_size() != -1, "must call os::init");
|
|
|
|
return os::Linux::page_size();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Rationale behind this function:
|
|
|
|
// current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
|
|
|
|
// mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
|
|
|
|
// samples for JITted code. Here we create private executable mapping over the code cache
|
|
|
|
// and then we can use standard (well, almost, as mapping can change) way to provide
|
|
|
|
// info for the reporting script by storing timestamp and location of symbol
|
|
|
|
void linux_wrap_code(char* base, size_t size) {
|
|
|
|
static volatile jint cnt = 0;
|
|
|
|
|
|
|
|
if (!UseOprofile) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
char buf[40];
|
|
|
|
int num = Atomic::add(1, &cnt);
|
|
|
|
|
|
|
|
sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
|
|
|
|
unlink(buf);
|
|
|
|
|
|
|
|
int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
|
|
|
|
|
|
|
|
if (fd != -1) {
|
|
|
|
off_t rv = lseek(fd, size-2, SEEK_SET);
|
|
|
|
if (rv != (off_t)-1) {
|
|
|
|
if (write(fd, "", 1) == 1) {
|
|
|
|
mmap(base, size,
|
|
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
|
|
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
close(fd);
|
|
|
|
unlink(buf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NOTE: Linux kernel does not really reserve the pages for us.
|
|
|
|
// All it does is to check if there are enough free pages
|
|
|
|
// left at the time of mmap(). This could be a potential
|
|
|
|
// problem.
|
|
|
|
bool os::commit_memory(char* addr, size_t size) {
|
|
|
|
uintptr_t res = (uintptr_t) ::mmap(addr, size,
|
|
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
|
|
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
|
|
|
|
return res != (uintptr_t) MAP_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
|
|
|
|
return commit_memory(addr, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
|
2008-04-29 13:51:26 +04:00
|
|
|
|
|
|
|
void os::free_memory(char *addr, size_t bytes) {
|
|
|
|
uncommit_memory(addr, bytes);
|
|
|
|
}
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
void os::numa_make_global(char *addr, size_t bytes) { }
|
2008-04-29 13:51:26 +04:00
|
|
|
|
|
|
|
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
|
|
|
|
Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::numa_topology_changed() { return false; }
|
|
|
|
|
|
|
|
size_t os::numa_get_groups_num() {
|
|
|
|
int max_node = Linux::numa_max_node();
|
|
|
|
return max_node > 0 ? max_node + 1 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::numa_get_group_id() {
|
|
|
|
int cpu_id = Linux::sched_getcpu();
|
|
|
|
if (cpu_id != -1) {
|
|
|
|
int lgrp_id = Linux::get_node_by_cpu(cpu_id);
|
|
|
|
if (lgrp_id != -1) {
|
|
|
|
return lgrp_id;
|
|
|
|
}
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-29 13:51:26 +04:00
|
|
|
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
|
|
|
|
for (size_t i = 0; i < size; i++) {
|
|
|
|
ids[i] = i;
|
|
|
|
}
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
bool os::get_page_info(char *start, page_info* info) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
|
|
|
|
return end;
|
|
|
|
}
|
|
|
|
|
2008-04-29 13:51:26 +04:00
|
|
|
extern "C" void numa_warn(int number, char *where, ...) { }
|
|
|
|
extern "C" void numa_error(char *where) { }
|
|
|
|
|
|
|
|
void os::Linux::libnuma_init() {
|
|
|
|
// sched_getcpu() should be in libc.
|
|
|
|
set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
|
|
|
|
dlsym(RTLD_DEFAULT, "sched_getcpu")));
|
|
|
|
|
|
|
|
if (sched_getcpu() != -1) { // Does it work?
|
2008-07-14 04:12:47 -07:00
|
|
|
void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
|
2008-04-29 13:51:26 +04:00
|
|
|
if (handle != NULL) {
|
|
|
|
set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
|
|
|
|
dlsym(handle, "numa_node_to_cpus")));
|
|
|
|
set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
|
|
|
|
dlsym(handle, "numa_max_node")));
|
|
|
|
set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
|
|
|
|
dlsym(handle, "numa_available")));
|
|
|
|
set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
|
|
|
|
dlsym(handle, "numa_tonode_memory")));
|
|
|
|
if (numa_available() != -1) {
|
|
|
|
// Create a cpu -> node mapping
|
|
|
|
_cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
|
|
|
|
rebuild_cpu_to_node_map();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
|
|
|
|
// The table is later used in get_node_by_cpu().
|
|
|
|
void os::Linux::rebuild_cpu_to_node_map() {
|
|
|
|
int cpu_num = os::active_processor_count();
|
|
|
|
cpu_to_node()->clear();
|
|
|
|
cpu_to_node()->at_grow(cpu_num - 1);
|
|
|
|
int node_num = numa_get_groups_num();
|
|
|
|
int cpu_map_size = (cpu_num + BitsPerLong - 1) / BitsPerLong;
|
|
|
|
unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
|
|
|
|
for (int i = 0; i < node_num; i++) {
|
|
|
|
if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
|
|
|
|
for (int j = 0; j < cpu_map_size; j++) {
|
|
|
|
if (cpu_map[j] != 0) {
|
|
|
|
for (int k = 0; k < BitsPerLong; k++) {
|
|
|
|
if (cpu_map[j] & (1UL << k)) {
|
|
|
|
cpu_to_node()->at_put(j * BitsPerLong + k, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::Linux::get_node_by_cpu(int cpu_id) {
|
|
|
|
if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
|
|
|
|
return cpu_to_node()->at(cpu_id);
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
GrowableArray<int>* os::Linux::_cpu_to_node;
|
|
|
|
os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
|
|
|
|
os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
|
|
|
|
os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
|
|
|
|
os::Linux::numa_available_func_t os::Linux::_numa_available;
|
|
|
|
os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
|
|
|
|
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
bool os::uncommit_memory(char* addr, size_t size) {
|
|
|
|
return ::mmap(addr, size,
|
|
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
|
|
MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
|
|
|
|
!= MAP_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static address _highest_vm_reserved_address = NULL;
|
|
|
|
|
|
|
|
// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
|
|
|
|
// at 'requested_addr'. If there are existing memory mappings at the same
|
|
|
|
// location, however, they will be overwritten. If 'fixed' is false,
|
|
|
|
// 'requested_addr' is only treated as a hint, the return value may or
|
|
|
|
// may not start from the requested address. Unlike Linux mmap(), this
|
|
|
|
// function returns NULL to indicate failure.
|
|
|
|
static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
|
|
|
|
char * addr;
|
|
|
|
int flags;
|
|
|
|
|
|
|
|
flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
|
|
|
|
if (fixed) {
|
|
|
|
assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
|
|
|
|
flags |= MAP_FIXED;
|
|
|
|
}
|
|
|
|
|
|
|
|
addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
|
|
flags, -1, 0);
|
|
|
|
|
|
|
|
if (addr != MAP_FAILED) {
|
|
|
|
// anon_mmap() should only get called during VM initialization,
|
|
|
|
// don't need lock (actually we can skip locking even it can be called
|
|
|
|
// from multiple threads, because _highest_vm_reserved_address is just a
|
|
|
|
// hint about the upper limit of non-stack memory regions.)
|
|
|
|
if ((address)addr + bytes > _highest_vm_reserved_address) {
|
|
|
|
_highest_vm_reserved_address = (address)addr + bytes;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return addr == MAP_FAILED ? NULL : addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Don't update _highest_vm_reserved_address, because there might be memory
|
|
|
|
// regions above addr + size. If so, releasing a memory region only creates
|
|
|
|
// a hole in the address space, it doesn't help prevent heap-stack collision.
|
|
|
|
//
|
|
|
|
static int anon_munmap(char * addr, size_t size) {
|
|
|
|
return ::munmap(addr, size) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
char* os::reserve_memory(size_t bytes, char* requested_addr,
|
|
|
|
size_t alignment_hint) {
|
|
|
|
return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::release_memory(char* addr, size_t size) {
|
|
|
|
return anon_munmap(addr, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static address highest_vm_reserved_address() {
|
|
|
|
return _highest_vm_reserved_address;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool linux_mprotect(char* addr, size_t size, int prot) {
|
|
|
|
// Linux wants the mprotect address argument to be page aligned.
|
|
|
|
char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
|
|
|
|
|
|
|
|
// According to SUSv3, mprotect() should only be used with mappings
|
|
|
|
// established by mmap(), and mmap() always maps whole pages. Unaligned
|
|
|
|
// 'addr' likely indicates problem in the VM (e.g. trying to change
|
|
|
|
// protection of malloc'ed or statically allocated memory). Check the
|
|
|
|
// caller if you hit this assert.
|
|
|
|
assert(addr == bottom, "sanity check");
|
|
|
|
|
|
|
|
size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
|
|
|
|
return ::mprotect(bottom, size, prot) == 0;
|
|
|
|
}
|
|
|
|
|
2008-07-19 17:38:22 -04:00
|
|
|
// Set protections specified
|
|
|
|
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
|
|
|
|
bool is_committed) {
|
|
|
|
unsigned int p = 0;
|
|
|
|
switch (prot) {
|
|
|
|
case MEM_PROT_NONE: p = PROT_NONE; break;
|
|
|
|
case MEM_PROT_READ: p = PROT_READ; break;
|
|
|
|
case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
|
|
|
|
case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
|
|
|
|
default:
|
|
|
|
ShouldNotReachHere();
|
|
|
|
}
|
|
|
|
// is_committed is unused.
|
|
|
|
return linux_mprotect(addr, bytes, p);
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool os::guard_memory(char* addr, size_t size) {
|
|
|
|
return linux_mprotect(addr, size, PROT_NONE);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::unguard_memory(char* addr, size_t size) {
|
|
|
|
return linux_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Large page support
|
|
|
|
|
|
|
|
static size_t _large_page_size = 0;
|
|
|
|
|
|
|
|
bool os::large_page_init() {
|
|
|
|
if (!UseLargePages) return false;
|
|
|
|
|
|
|
|
if (LargePageSizeInBytes) {
|
|
|
|
_large_page_size = LargePageSizeInBytes;
|
|
|
|
} else {
|
|
|
|
// large_page_size on Linux is used to round up heap size. x86 uses either
|
|
|
|
// 2M or 4M page, depending on whether PAE (Physical Address Extensions)
|
|
|
|
// mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
|
|
|
|
// page as large as 256M.
|
|
|
|
//
|
|
|
|
// Here we try to figure out page size by parsing /proc/meminfo and looking
|
|
|
|
// for a line with the following format:
|
|
|
|
// Hugepagesize: 2048 kB
|
|
|
|
//
|
|
|
|
// If we can't determine the value (e.g. /proc is not mounted, or the text
|
|
|
|
// format has been changed), we'll use the largest page size supported by
|
|
|
|
// the processor.
|
|
|
|
|
|
|
|
_large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
|
|
|
|
|
|
|
|
FILE *fp = fopen("/proc/meminfo", "r");
|
|
|
|
if (fp) {
|
|
|
|
while (!feof(fp)) {
|
|
|
|
int x = 0;
|
|
|
|
char buf[16];
|
|
|
|
if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
|
|
|
|
if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
|
|
|
|
_large_page_size = x * K;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// skip to next line
|
|
|
|
for (;;) {
|
|
|
|
int ch = fgetc(fp);
|
|
|
|
if (ch == EOF || ch == (int)'\n') break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t default_page_size = (size_t)Linux::page_size();
|
|
|
|
if (_large_page_size > default_page_size) {
|
|
|
|
_page_sizes[0] = _large_page_size;
|
|
|
|
_page_sizes[1] = default_page_size;
|
|
|
|
_page_sizes[2] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Large page support is available on 2.6 or newer kernel, some vendors
|
|
|
|
// (e.g. Redhat) have backported it to their 2.4 based distributions.
|
|
|
|
// We optimistically assume the support is available. If later it turns out
|
|
|
|
// not true, VM will automatically switch to use regular page size.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef SHM_HUGETLB
|
|
|
|
#define SHM_HUGETLB 04000
|
|
|
|
#endif
|
|
|
|
|
|
|
|
char* os::reserve_memory_special(size_t bytes) {
|
|
|
|
assert(UseLargePages, "only for large pages");
|
|
|
|
|
|
|
|
key_t key = IPC_PRIVATE;
|
|
|
|
char *addr;
|
|
|
|
|
|
|
|
bool warn_on_failure = UseLargePages &&
|
|
|
|
(!FLAG_IS_DEFAULT(UseLargePages) ||
|
|
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes)
|
|
|
|
);
|
|
|
|
char msg[128];
|
|
|
|
|
|
|
|
// Create a large shared memory region to attach to based on size.
|
|
|
|
// Currently, size is the total size of the heap
|
|
|
|
int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
|
|
|
|
if (shmid == -1) {
|
|
|
|
// Possible reasons for shmget failure:
|
|
|
|
// 1. shmmax is too small for Java heap.
|
|
|
|
// > check shmmax value: cat /proc/sys/kernel/shmmax
|
|
|
|
// > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
|
|
|
|
// 2. not enough large page memory.
|
|
|
|
// > check available large pages: cat /proc/meminfo
|
|
|
|
// > increase amount of large pages:
|
|
|
|
// echo new_value > /proc/sys/vm/nr_hugepages
|
|
|
|
// Note 1: different Linux may use different name for this property,
|
|
|
|
// e.g. on Redhat AS-3 it is "hugetlb_pool".
|
|
|
|
// Note 2: it's possible there's enough physical memory available but
|
|
|
|
// they are so fragmented after a long run that they can't
|
|
|
|
// coalesce into large pages. Try to reserve large pages when
|
|
|
|
// the system is still "fresh".
|
|
|
|
if (warn_on_failure) {
|
|
|
|
jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
|
|
|
|
warning(msg);
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// attach to the region
|
|
|
|
addr = (char*)shmat(shmid, NULL, 0);
|
|
|
|
int err = errno;
|
|
|
|
|
|
|
|
// Remove shmid. If shmat() is successful, the actual shared memory segment
|
|
|
|
// will be deleted when it's detached by shmdt() or when the process
|
|
|
|
// terminates. If shmat() is not successful this will remove the shared
|
|
|
|
// segment immediately.
|
|
|
|
shmctl(shmid, IPC_RMID, NULL);
|
|
|
|
|
|
|
|
if ((intptr_t)addr == -1) {
|
|
|
|
if (warn_on_failure) {
|
|
|
|
jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
|
|
|
|
warning(msg);
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::release_memory_special(char* base, size_t bytes) {
|
|
|
|
// detaching the SHM segment will also delete it, see reserve_memory_special()
|
|
|
|
int rslt = shmdt(base);
|
|
|
|
return rslt == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t os::large_page_size() {
|
|
|
|
return _large_page_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Linux does not support anonymous mmap with large page memory. The only way
|
|
|
|
// to reserve large page memory without file backing is through SysV shared
|
|
|
|
// memory API. The entire memory region is committed and pinned upfront.
|
|
|
|
// Hopefully this will change in the future...
|
|
|
|
bool os::can_commit_large_page_memory() {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2008-03-28 23:35:42 -07:00
|
|
|
bool os::can_execute_large_page_memory() {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
// Reserve memory at an arbitrary address, only if that area is
|
|
|
|
// available (and not reserved for something else).
|
|
|
|
|
|
|
|
char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
|
|
|
|
const int max_tries = 10;
|
|
|
|
char* base[max_tries];
|
|
|
|
size_t size[max_tries];
|
|
|
|
const size_t gap = 0x000000;
|
|
|
|
|
|
|
|
// Assert only that the size is a multiple of the page size, since
|
|
|
|
// that's all that mmap requires, and since that's all we really know
|
|
|
|
// about at this low abstraction level. If we need higher alignment,
|
|
|
|
// we can either pass an alignment to this method or verify alignment
|
|
|
|
// in one of the methods further up the call chain. See bug 5044738.
|
|
|
|
assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
|
|
|
|
|
|
|
|
// Repeatedly allocate blocks until the block is allocated at the
|
|
|
|
// right spot. Give up after max_tries. Note that reserve_memory() will
|
|
|
|
// automatically update _highest_vm_reserved_address if the call is
|
|
|
|
// successful. The variable tracks the highest memory address every reserved
|
|
|
|
// by JVM. It is used to detect heap-stack collision if running with
|
|
|
|
// fixed-stack LinuxThreads. Because here we may attempt to reserve more
|
|
|
|
// space than needed, it could confuse the collision detecting code. To
|
|
|
|
// solve the problem, save current _highest_vm_reserved_address and
|
|
|
|
// calculate the correct value before return.
|
|
|
|
address old_highest = _highest_vm_reserved_address;
|
|
|
|
|
|
|
|
// Linux mmap allows caller to pass an address as hint; give it a try first,
|
|
|
|
// if kernel honors the hint then we can return immediately.
|
|
|
|
char * addr = anon_mmap(requested_addr, bytes, false);
|
|
|
|
if (addr == requested_addr) {
|
|
|
|
return requested_addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (addr != NULL) {
|
|
|
|
// mmap() is successful but it fails to reserve at the requested address
|
|
|
|
anon_munmap(addr, bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < max_tries; ++i) {
|
|
|
|
base[i] = reserve_memory(bytes);
|
|
|
|
|
|
|
|
if (base[i] != NULL) {
|
|
|
|
// Is this the block we wanted?
|
|
|
|
if (base[i] == requested_addr) {
|
|
|
|
size[i] = bytes;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Does this overlap the block we wanted? Give back the overlapped
|
|
|
|
// parts and try again.
|
|
|
|
|
|
|
|
size_t top_overlap = requested_addr + (bytes + gap) - base[i];
|
|
|
|
if (top_overlap >= 0 && top_overlap < bytes) {
|
|
|
|
unmap_memory(base[i], top_overlap);
|
|
|
|
base[i] += top_overlap;
|
|
|
|
size[i] = bytes - top_overlap;
|
|
|
|
} else {
|
|
|
|
size_t bottom_overlap = base[i] + bytes - requested_addr;
|
|
|
|
if (bottom_overlap >= 0 && bottom_overlap < bytes) {
|
|
|
|
unmap_memory(requested_addr, bottom_overlap);
|
|
|
|
size[i] = bytes - bottom_overlap;
|
|
|
|
} else {
|
|
|
|
size[i] = bytes;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Give back the unused reserved pieces.
|
|
|
|
|
|
|
|
for (int j = 0; j < i; ++j) {
|
|
|
|
if (base[j] != NULL) {
|
|
|
|
unmap_memory(base[j], size[j]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i < max_tries) {
|
|
|
|
_highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
|
|
|
|
return requested_addr;
|
|
|
|
} else {
|
|
|
|
_highest_vm_reserved_address = old_highest;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t os::read(int fd, void *buf, unsigned int nBytes) {
|
|
|
|
return ::read(fd, buf, nBytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
|
|
|
|
// Solaris uses poll(), linux uses park().
|
|
|
|
// Poll() is likely a better choice, assuming that Thread.interrupt()
|
|
|
|
// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
|
|
|
|
// SIGSEGV, see 4355769.
|
|
|
|
|
|
|
|
const int NANOSECS_PER_MILLISECS = 1000000;
|
|
|
|
|
|
|
|
int os::sleep(Thread* thread, jlong millis, bool interruptible) {
|
|
|
|
assert(thread == Thread::current(), "thread consistency check");
|
|
|
|
|
|
|
|
ParkEvent * const slp = thread->_SleepEvent ;
|
|
|
|
slp->reset() ;
|
|
|
|
OrderAccess::fence() ;
|
|
|
|
|
|
|
|
if (interruptible) {
|
|
|
|
jlong prevtime = javaTimeNanos();
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
if (os::is_interrupted(thread, true)) {
|
|
|
|
return OS_INTRPT;
|
|
|
|
}
|
|
|
|
|
|
|
|
jlong newtime = javaTimeNanos();
|
|
|
|
|
|
|
|
if (newtime - prevtime < 0) {
|
|
|
|
// time moving backwards, should only happen if no monotonic clock
|
|
|
|
// not a guarantee() because JVM should not abort on kernel/glibc bugs
|
|
|
|
assert(!Linux::supports_monotonic_clock(), "time moving backwards");
|
|
|
|
} else {
|
|
|
|
millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(millis <= 0) {
|
|
|
|
return OS_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
prevtime = newtime;
|
|
|
|
|
|
|
|
{
|
|
|
|
assert(thread->is_Java_thread(), "sanity check");
|
|
|
|
JavaThread *jt = (JavaThread *) thread;
|
|
|
|
ThreadBlockInVM tbivm(jt);
|
|
|
|
OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
|
|
|
|
|
|
|
|
jt->set_suspend_equivalent();
|
|
|
|
// cleared by handle_special_suspend_equivalent_condition() or
|
|
|
|
// java_suspend_self() via check_and_wait_while_suspended()
|
|
|
|
|
|
|
|
slp->park(millis);
|
|
|
|
|
|
|
|
// were we externally suspended while we were waiting?
|
|
|
|
jt->check_and_wait_while_suspended();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
|
|
|
|
jlong prevtime = javaTimeNanos();
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
// It'd be nice to avoid the back-to-back javaTimeNanos() calls on
|
|
|
|
// the 1st iteration ...
|
|
|
|
jlong newtime = javaTimeNanos();
|
|
|
|
|
|
|
|
if (newtime - prevtime < 0) {
|
|
|
|
// time moving backwards, should only happen if no monotonic clock
|
|
|
|
// not a guarantee() because JVM should not abort on kernel/glibc bugs
|
|
|
|
assert(!Linux::supports_monotonic_clock(), "time moving backwards");
|
|
|
|
} else {
|
|
|
|
millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(millis <= 0) break ;
|
|
|
|
|
|
|
|
prevtime = newtime;
|
|
|
|
slp->park(millis);
|
|
|
|
}
|
|
|
|
return OS_OK ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::naked_sleep() {
|
|
|
|
// %% make the sleep time an integer flag. for now use 1 millisec.
|
|
|
|
return os::sleep(Thread::current(), 1, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sleep forever; naked call to OS-specific sleep; use with CAUTION
|
|
|
|
void os::infinite_sleep() {
|
|
|
|
while (true) { // sleep forever ...
|
|
|
|
::sleep(100); // ... 100 seconds at a time
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Used to convert frequent JVM_Yield() to nops
|
|
|
|
bool os::dont_yield() {
|
|
|
|
return DontYieldALot;
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::yield() {
|
|
|
|
sched_yield();
|
|
|
|
}
|
|
|
|
|
|
|
|
os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
|
|
|
|
|
|
|
|
void os::yield_all(int attempts) {
|
|
|
|
// Yields to all threads, including threads with lower priorities
|
|
|
|
// Threads on Linux are all with same priority. The Solaris style
|
|
|
|
// os::yield_all() with nanosleep(1ms) is not necessary.
|
|
|
|
sched_yield();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Called from the tight loops to possibly influence time-sharing heuristics
|
|
|
|
void os::loop_breaker(int attempts) {
|
|
|
|
os::yield_all(attempts);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// thread priority support
|
|
|
|
|
|
|
|
// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
|
|
|
|
// only supports dynamic priority, static priority must be zero. For real-time
|
|
|
|
// applications, Linux supports SCHED_RR which allows static priority (1-99).
|
|
|
|
// However, for large multi-threaded applications, SCHED_RR is not only slower
|
|
|
|
// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
|
|
|
|
// of 5 runs - Sep 2005).
|
|
|
|
//
|
|
|
|
// The following code actually changes the niceness of kernel-thread/LWP. It
|
|
|
|
// has an assumption that setpriority() only modifies one kernel-thread/LWP,
|
|
|
|
// not the entire user process, and user level threads are 1:1 mapped to kernel
|
|
|
|
// threads. It has always been the case, but could change in the future. For
|
|
|
|
// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
|
|
|
|
// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
|
|
|
|
|
|
|
|
int os::java_to_os_priority[MaxPriority + 1] = {
|
|
|
|
19, // 0 Entry should never be used
|
|
|
|
|
|
|
|
4, // 1 MinPriority
|
|
|
|
3, // 2
|
|
|
|
2, // 3
|
|
|
|
|
|
|
|
1, // 4
|
|
|
|
0, // 5 NormPriority
|
|
|
|
-1, // 6
|
|
|
|
|
|
|
|
-2, // 7
|
|
|
|
-3, // 8
|
|
|
|
-4, // 9 NearMaxPriority
|
|
|
|
|
|
|
|
-5 // 10 MaxPriority
|
|
|
|
};
|
|
|
|
|
|
|
|
static int prio_init() {
|
|
|
|
if (ThreadPriorityPolicy == 1) {
|
|
|
|
// Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
|
|
|
|
// if effective uid is not root. Perhaps, a more elegant way of doing
|
|
|
|
// this is to test CAP_SYS_NICE capability, but that will require libcap.so
|
|
|
|
if (geteuid() != 0) {
|
|
|
|
if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
|
|
|
|
warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
|
|
|
|
}
|
|
|
|
ThreadPriorityPolicy = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
OSReturn os::set_native_priority(Thread* thread, int newpri) {
|
|
|
|
if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
|
|
|
|
|
|
|
|
int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
|
|
|
|
return (ret == 0) ? OS_OK : OS_ERR;
|
|
|
|
}
|
|
|
|
|
|
|
|
OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
|
|
|
|
if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
|
|
|
|
*priority_ptr = java_to_os_priority[NormPriority];
|
|
|
|
return OS_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
errno = 0;
|
|
|
|
*priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
|
|
|
|
return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Hint to the underlying OS that a task switch would not be good.
|
|
|
|
// Void return because it's a hint and can fail.
|
|
|
|
void os::hint_no_preempt() {}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// suspend/resume support
|
|
|
|
|
|
|
|
// the low-level signal-based suspend/resume support is a remnant from the
|
|
|
|
// old VM-suspension that used to be for java-suspension, safepoints etc,
|
|
|
|
// within hotspot. Now there is a single use-case for this:
|
|
|
|
// - calling get_thread_pc() on the VMThread by the flat-profiler task
|
|
|
|
// that runs in the watcher thread.
|
|
|
|
// The remaining code is greatly simplified from the more general suspension
|
|
|
|
// code that used to be used.
|
|
|
|
//
|
|
|
|
// The protocol is quite simple:
|
|
|
|
// - suspend:
|
|
|
|
// - sends a signal to the target thread
|
|
|
|
// - polls the suspend state of the osthread using a yield loop
|
|
|
|
// - target thread signal handler (SR_handler) sets suspend state
|
|
|
|
// and blocks in sigsuspend until continued
|
|
|
|
// - resume:
|
|
|
|
// - sets target osthread state to continue
|
|
|
|
// - sends signal to end the sigsuspend loop in the SR_handler
|
|
|
|
//
|
|
|
|
// Note that the SR_lock plays no role in this suspend/resume protocol.
|
|
|
|
//
|
|
|
|
|
|
|
|
static void resume_clear_context(OSThread *osthread) {
|
|
|
|
osthread->set_ucontext(NULL);
|
|
|
|
osthread->set_siginfo(NULL);
|
|
|
|
|
|
|
|
// notify the suspend action is completed, we have now resumed
|
|
|
|
osthread->sr.clear_suspended();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
|
|
|
|
osthread->set_ucontext(context);
|
|
|
|
osthread->set_siginfo(siginfo);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Handler function invoked when a thread's execution is suspended or
|
|
|
|
// resumed. We have to be careful that only async-safe functions are
|
|
|
|
// called here (Note: most pthread functions are not async safe and
|
|
|
|
// should be avoided.)
|
|
|
|
//
|
|
|
|
// Note: sigwait() is a more natural fit than sigsuspend() from an
|
|
|
|
// interface point of view, but sigwait() prevents the signal hander
|
|
|
|
// from being run. libpthread would get very confused by not having
|
|
|
|
// its signal handlers run and prevents sigwait()'s use with the
|
|
|
|
// mutex granting granting signal.
|
|
|
|
//
|
|
|
|
// Currently only ever called on the VMThread
|
|
|
|
//
|
|
|
|
static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
|
|
|
|
// Save and restore errno to avoid confusing native code with EINTR
|
|
|
|
// after sigsuspend.
|
|
|
|
int old_errno = errno;
|
|
|
|
|
|
|
|
Thread* thread = Thread::current();
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
|
|
assert(thread->is_VM_thread(), "Must be VMThread");
|
|
|
|
// read current suspend action
|
|
|
|
int action = osthread->sr.suspend_action();
|
|
|
|
if (action == SR_SUSPEND) {
|
|
|
|
suspend_save_context(osthread, siginfo, context);
|
|
|
|
|
|
|
|
// Notify the suspend action is about to be completed. do_suspend()
|
|
|
|
// waits until SR_SUSPENDED is set and then returns. We will wait
|
|
|
|
// here for a resume signal and that completes the suspend-other
|
|
|
|
// action. do_suspend/do_resume is always called as a pair from
|
|
|
|
// the same thread - so there are no races
|
|
|
|
|
|
|
|
// notify the caller
|
|
|
|
osthread->sr.set_suspended();
|
|
|
|
|
|
|
|
sigset_t suspend_set; // signals for sigsuspend()
|
|
|
|
|
|
|
|
// get current set of blocked signals and unblock resume signal
|
|
|
|
pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
|
|
|
|
sigdelset(&suspend_set, SR_signum);
|
|
|
|
|
|
|
|
// wait here until we are resumed
|
|
|
|
do {
|
|
|
|
sigsuspend(&suspend_set);
|
|
|
|
// ignore all returns until we get a resume signal
|
|
|
|
} while (osthread->sr.suspend_action() != SR_CONTINUE);
|
|
|
|
|
|
|
|
resume_clear_context(osthread);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
assert(action == SR_CONTINUE, "unexpected sr action");
|
|
|
|
// nothing special to do - just leave the handler
|
|
|
|
}
|
|
|
|
|
|
|
|
errno = old_errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int SR_initialize() {
|
|
|
|
struct sigaction act;
|
|
|
|
char *s;
|
|
|
|
/* Get signal number to use for suspend/resume */
|
|
|
|
if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
|
|
|
|
int sig = ::strtol(s, 0, 10);
|
|
|
|
if (sig > 0 || sig < _NSIG) {
|
|
|
|
SR_signum = sig;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
|
|
|
|
"SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
|
|
|
|
|
|
|
|
sigemptyset(&SR_sigset);
|
|
|
|
sigaddset(&SR_sigset, SR_signum);
|
|
|
|
|
|
|
|
/* Set up signal handler for suspend/resume */
|
|
|
|
act.sa_flags = SA_RESTART|SA_SIGINFO;
|
|
|
|
act.sa_handler = (void (*)(int)) SR_handler;
|
|
|
|
|
|
|
|
// SR_signum is blocked by default.
|
|
|
|
// 4528190 - We also need to block pthread restart signal (32 on all
|
|
|
|
// supported Linux platforms). Note that LinuxThreads need to block
|
|
|
|
// this signal for all threads to work properly. So we don't have
|
|
|
|
// to use hard-coded signal number when setting up the mask.
|
|
|
|
pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
|
|
|
|
|
|
|
|
if (sigaction(SR_signum, &act, 0) == -1) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Save signal flag
|
|
|
|
os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int SR_finalize() {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// returns true on success and false on error - really an error is fatal
|
|
|
|
// but this seems the normal response to library errors
|
|
|
|
static bool do_suspend(OSThread* osthread) {
|
|
|
|
// mark as suspended and send signal
|
|
|
|
osthread->sr.set_suspend_action(SR_SUSPEND);
|
|
|
|
int status = pthread_kill(osthread->pthread_id(), SR_signum);
|
|
|
|
assert_status(status == 0, status, "pthread_kill");
|
|
|
|
|
|
|
|
// check status and wait until notified of suspension
|
|
|
|
if (status == 0) {
|
|
|
|
for (int i = 0; !osthread->sr.is_suspended(); i++) {
|
|
|
|
os::yield_all(i);
|
|
|
|
}
|
|
|
|
osthread->sr.set_suspend_action(SR_NONE);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
osthread->sr.set_suspend_action(SR_NONE);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void do_resume(OSThread* osthread) {
|
|
|
|
assert(osthread->sr.is_suspended(), "thread should be suspended");
|
|
|
|
osthread->sr.set_suspend_action(SR_CONTINUE);
|
|
|
|
|
|
|
|
int status = pthread_kill(osthread->pthread_id(), SR_signum);
|
|
|
|
assert_status(status == 0, status, "pthread_kill");
|
|
|
|
// check status and wait unit notified of resumption
|
|
|
|
if (status == 0) {
|
|
|
|
for (int i = 0; osthread->sr.is_suspended(); i++) {
|
|
|
|
os::yield_all(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
osthread->sr.set_suspend_action(SR_NONE);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// interrupt support
|
|
|
|
|
|
|
|
void os::interrupt(Thread* thread) {
|
|
|
|
assert(Thread::current() == thread || Threads_lock->owned_by_self(),
|
|
|
|
"possibility of dangling Thread pointer");
|
|
|
|
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
|
|
|
|
|
|
if (!osthread->interrupted()) {
|
|
|
|
osthread->set_interrupted(true);
|
|
|
|
// More than one thread can get here with the same value of osthread,
|
|
|
|
// resulting in multiple notifications. We do, however, want the store
|
|
|
|
// to interrupted() to be visible to other threads before we execute unpark().
|
|
|
|
OrderAccess::fence();
|
|
|
|
ParkEvent * const slp = thread->_SleepEvent ;
|
|
|
|
if (slp != NULL) slp->unpark() ;
|
|
|
|
}
|
|
|
|
|
|
|
|
// For JSR166. Unpark even if interrupt status already was set
|
|
|
|
if (thread->is_Java_thread())
|
|
|
|
((JavaThread*)thread)->parker()->unpark();
|
|
|
|
|
|
|
|
ParkEvent * ev = thread->_ParkEvent ;
|
|
|
|
if (ev != NULL) ev->unpark() ;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
|
|
|
|
assert(Thread::current() == thread || Threads_lock->owned_by_self(),
|
|
|
|
"possibility of dangling Thread pointer");
|
|
|
|
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
|
|
|
|
|
|
bool interrupted = osthread->interrupted();
|
|
|
|
|
|
|
|
if (interrupted && clear_interrupted) {
|
|
|
|
osthread->set_interrupted(false);
|
|
|
|
// consider thread->_SleepEvent->reset() ... optional optimization
|
|
|
|
}
|
|
|
|
|
|
|
|
return interrupted;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// signal handling (except suspend/resume)
|
|
|
|
|
|
|
|
// This routine may be used by user applications as a "hook" to catch signals.
|
|
|
|
// The user-defined signal handler must pass unrecognized signals to this
|
|
|
|
// routine, and if it returns true (non-zero), then the signal handler must
|
|
|
|
// return immediately. If the flag "abort_if_unrecognized" is true, then this
|
|
|
|
// routine will never retun false (zero), but instead will execute a VM panic
|
|
|
|
// routine kill the process.
|
|
|
|
//
|
|
|
|
// If this routine returns false, it is OK to call it again. This allows
|
|
|
|
// the user-defined signal handler to perform checks either before or after
|
|
|
|
// the VM performs its own checks. Naturally, the user code would be making
|
|
|
|
// a serious error if it tried to handle an exception (such as a null check
|
|
|
|
// or breakpoint) that the VM was generating for its own correct operation.
|
|
|
|
//
|
|
|
|
// This routine may recognize any of the following kinds of signals:
|
|
|
|
// SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
|
|
|
|
// It should be consulted by handlers for any of those signals.
|
|
|
|
//
|
|
|
|
// The caller of this routine must pass in the three arguments supplied
|
|
|
|
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
|
|
|
|
// field of the structure passed to sigaction(). This routine assumes that
|
|
|
|
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
|
|
|
|
//
|
|
|
|
// Note that the VM will print warnings if it detects conflicting signal
|
|
|
|
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
|
|
|
|
//
|
|
|
|
extern "C" int
|
|
|
|
JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
|
|
|
|
void* ucontext, int abort_if_unrecognized);
|
|
|
|
|
|
|
|
void signalHandler(int sig, siginfo_t* info, void* uc) {
|
|
|
|
assert(info != NULL && uc != NULL, "it must be old kernel");
|
|
|
|
JVM_handle_linux_signal(sig, info, uc, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This boolean allows users to forward their own non-matching signals
|
|
|
|
// to JVM_handle_linux_signal, harmlessly.
|
|
|
|
bool os::Linux::signal_handlers_are_installed = false;
|
|
|
|
|
|
|
|
// For signal-chaining
|
|
|
|
struct sigaction os::Linux::sigact[MAXSIGNUM];
|
|
|
|
unsigned int os::Linux::sigs = 0;
|
|
|
|
bool os::Linux::libjsig_is_loaded = false;
|
|
|
|
typedef struct sigaction *(*get_signal_t)(int);
|
|
|
|
get_signal_t os::Linux::get_signal_action = NULL;
|
|
|
|
|
|
|
|
struct sigaction* os::Linux::get_chained_signal_action(int sig) {
|
|
|
|
struct sigaction *actp = NULL;
|
|
|
|
|
|
|
|
if (libjsig_is_loaded) {
|
|
|
|
// Retrieve the old signal handler from libjsig
|
|
|
|
actp = (*get_signal_action)(sig);
|
|
|
|
}
|
|
|
|
if (actp == NULL) {
|
|
|
|
// Retrieve the preinstalled signal handler from jvm
|
|
|
|
actp = get_preinstalled_handler(sig);
|
|
|
|
}
|
|
|
|
|
|
|
|
return actp;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool call_chained_handler(struct sigaction *actp, int sig,
|
|
|
|
siginfo_t *siginfo, void *context) {
|
|
|
|
// Call the old signal handler
|
|
|
|
if (actp->sa_handler == SIG_DFL) {
|
|
|
|
// It's more reasonable to let jvm treat it as an unexpected exception
|
|
|
|
// instead of taking the default action.
|
|
|
|
return false;
|
|
|
|
} else if (actp->sa_handler != SIG_IGN) {
|
|
|
|
if ((actp->sa_flags & SA_NODEFER) == 0) {
|
|
|
|
// automaticlly block the signal
|
|
|
|
sigaddset(&(actp->sa_mask), sig);
|
|
|
|
}
|
|
|
|
|
|
|
|
sa_handler_t hand;
|
|
|
|
sa_sigaction_t sa;
|
|
|
|
bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
|
|
|
|
// retrieve the chained handler
|
|
|
|
if (siginfo_flag_set) {
|
|
|
|
sa = actp->sa_sigaction;
|
|
|
|
} else {
|
|
|
|
hand = actp->sa_handler;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((actp->sa_flags & SA_RESETHAND) != 0) {
|
|
|
|
actp->sa_handler = SIG_DFL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// try to honor the signal mask
|
|
|
|
sigset_t oset;
|
|
|
|
pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
|
|
|
|
|
|
|
|
// call into the chained handler
|
|
|
|
if (siginfo_flag_set) {
|
|
|
|
(*sa)(sig, siginfo, context);
|
|
|
|
} else {
|
|
|
|
(*hand)(sig);
|
|
|
|
}
|
|
|
|
|
|
|
|
// restore the signal mask
|
|
|
|
pthread_sigmask(SIG_SETMASK, &oset, 0);
|
|
|
|
}
|
|
|
|
// Tell jvm's signal handler the signal is taken care of.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
|
|
|
|
bool chained = false;
|
|
|
|
// signal-chaining
|
|
|
|
if (UseSignalChaining) {
|
|
|
|
struct sigaction *actp = get_chained_signal_action(sig);
|
|
|
|
if (actp != NULL) {
|
|
|
|
chained = call_chained_handler(actp, sig, siginfo, context);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return chained;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
|
|
|
|
if ((( (unsigned int)1 << sig ) & sigs) != 0) {
|
|
|
|
return &sigact[sig];
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
|
|
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
|
|
sigact[sig] = oldAct;
|
|
|
|
sigs |= (unsigned int)1 << sig;
|
|
|
|
}
|
|
|
|
|
|
|
|
// for diagnostic
|
|
|
|
int os::Linux::sigflags[MAXSIGNUM];
|
|
|
|
|
|
|
|
int os::Linux::get_our_sigflags(int sig) {
|
|
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
|
|
return sigflags[sig];
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::Linux::set_our_sigflags(int sig, int flags) {
|
|
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
|
|
sigflags[sig] = flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::Linux::set_signal_handler(int sig, bool set_installed) {
|
|
|
|
// Check for overwrite.
|
|
|
|
struct sigaction oldAct;
|
|
|
|
sigaction(sig, (struct sigaction*)NULL, &oldAct);
|
|
|
|
|
|
|
|
void* oldhand = oldAct.sa_sigaction
|
|
|
|
? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
|
|
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
|
|
if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
|
|
|
|
oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
|
|
|
|
oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
|
|
|
|
if (AllowUserSignalHandlers || !set_installed) {
|
|
|
|
// Do not overwrite; user takes responsibility to forward to us.
|
|
|
|
return;
|
|
|
|
} else if (UseSignalChaining) {
|
|
|
|
// save the old handler in jvm
|
|
|
|
save_preinstalled_handler(sig, oldAct);
|
|
|
|
// libjsig also interposes the sigaction() call below and saves the
|
|
|
|
// old sigaction on it own.
|
|
|
|
} else {
|
|
|
|
fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct sigaction sigAct;
|
|
|
|
sigfillset(&(sigAct.sa_mask));
|
|
|
|
sigAct.sa_handler = SIG_DFL;
|
|
|
|
if (!set_installed) {
|
|
|
|
sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
|
|
|
|
} else {
|
|
|
|
sigAct.sa_sigaction = signalHandler;
|
|
|
|
sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
|
|
|
|
}
|
|
|
|
// Save flags, which are set by ours
|
|
|
|
assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
|
|
|
|
sigflags[sig] = sigAct.sa_flags;
|
|
|
|
|
|
|
|
int ret = sigaction(sig, &sigAct, &oldAct);
|
|
|
|
assert(ret == 0, "check");
|
|
|
|
|
|
|
|
void* oldhand2 = oldAct.sa_sigaction
|
|
|
|
? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
|
|
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
|
|
assert(oldhand2 == oldhand, "no concurrent signal handler installation");
|
|
|
|
}
|
|
|
|
|
|
|
|
// install signal handlers for signals that HotSpot needs to
|
|
|
|
// handle in order to support Java-level exception handling.
|
|
|
|
|
|
|
|
void os::Linux::install_signal_handlers() {
|
|
|
|
if (!signal_handlers_are_installed) {
|
|
|
|
signal_handlers_are_installed = true;
|
|
|
|
|
|
|
|
// signal-chaining
|
|
|
|
typedef void (*signal_setting_t)();
|
|
|
|
signal_setting_t begin_signal_setting = NULL;
|
|
|
|
signal_setting_t end_signal_setting = NULL;
|
|
|
|
begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
|
|
|
|
dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
|
|
|
|
if (begin_signal_setting != NULL) {
|
|
|
|
end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
|
|
|
|
dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
|
|
|
|
get_signal_action = CAST_TO_FN_PTR(get_signal_t,
|
|
|
|
dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
|
|
|
|
libjsig_is_loaded = true;
|
|
|
|
assert(UseSignalChaining, "should enable signal-chaining");
|
|
|
|
}
|
|
|
|
if (libjsig_is_loaded) {
|
|
|
|
// Tell libjsig jvm is setting signal handlers
|
|
|
|
(*begin_signal_setting)();
|
|
|
|
}
|
|
|
|
|
|
|
|
set_signal_handler(SIGSEGV, true);
|
|
|
|
set_signal_handler(SIGPIPE, true);
|
|
|
|
set_signal_handler(SIGBUS, true);
|
|
|
|
set_signal_handler(SIGILL, true);
|
|
|
|
set_signal_handler(SIGFPE, true);
|
|
|
|
set_signal_handler(SIGXFSZ, true);
|
|
|
|
|
|
|
|
if (libjsig_is_loaded) {
|
|
|
|
// Tell libjsig jvm finishes setting signal handlers
|
|
|
|
(*end_signal_setting)();
|
|
|
|
}
|
|
|
|
|
|
|
|
// We don't activate signal checker if libjsig is in place, we trust ourselves
|
|
|
|
// and if UserSignalHandler is installed all bets are off
|
|
|
|
if (CheckJNICalls) {
|
|
|
|
if (libjsig_is_loaded) {
|
|
|
|
tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
|
|
|
|
check_signals = false;
|
|
|
|
}
|
|
|
|
if (AllowUserSignalHandlers) {
|
|
|
|
tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
|
|
|
|
check_signals = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is the fastest way to get thread cpu time on Linux.
|
|
|
|
// Returns cpu time (user+sys) for any thread, not only for current.
|
|
|
|
// POSIX compliant clocks are implemented in the kernels 2.6.16+.
|
|
|
|
// It might work on 2.6.10+ with a special kernel/glibc patch.
|
|
|
|
// For reference, please, see IEEE Std 1003.1-2004:
|
|
|
|
// http://www.unix.org/single_unix_specification
|
|
|
|
|
|
|
|
jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
|
|
|
|
struct timespec tp;
|
|
|
|
int rc = os::Linux::clock_gettime(clockid, &tp);
|
|
|
|
assert(rc == 0, "clock_gettime is expected to return 0 code");
|
|
|
|
|
|
|
|
return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
|
|
|
|
}
|
|
|
|
|
|
|
|
/////
|
|
|
|
// glibc on Linux platform uses non-documented flag
|
|
|
|
// to indicate, that some special sort of signal
|
|
|
|
// trampoline is used.
|
|
|
|
// We will never set this flag, and we should
|
|
|
|
// ignore this flag in our diagnostic
|
|
|
|
#ifdef SIGNIFICANT_SIGNAL_MASK
|
|
|
|
#undef SIGNIFICANT_SIGNAL_MASK
|
|
|
|
#endif
|
|
|
|
#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
|
|
|
|
|
|
|
|
static const char* get_signal_handler_name(address handler,
|
|
|
|
char* buf, int buflen) {
|
|
|
|
int offset;
|
|
|
|
bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
|
|
|
|
if (found) {
|
|
|
|
// skip directory names
|
|
|
|
const char *p1, *p2;
|
|
|
|
p1 = buf;
|
|
|
|
size_t len = strlen(os::file_separator());
|
|
|
|
while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
|
|
|
|
jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
|
|
|
|
} else {
|
|
|
|
jio_snprintf(buf, buflen, PTR_FORMAT, handler);
|
|
|
|
}
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void print_signal_handler(outputStream* st, int sig,
|
|
|
|
char* buf, size_t buflen) {
|
|
|
|
struct sigaction sa;
|
|
|
|
|
|
|
|
sigaction(sig, NULL, &sa);
|
|
|
|
|
|
|
|
// See comment for SIGNIFICANT_SIGNAL_MASK define
|
|
|
|
sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
|
|
|
|
|
|
|
|
st->print("%s: ", os::exception_name(sig, buf, buflen));
|
|
|
|
|
|
|
|
address handler = (sa.sa_flags & SA_SIGINFO)
|
|
|
|
? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
|
|
|
|
: CAST_FROM_FN_PTR(address, sa.sa_handler);
|
|
|
|
|
|
|
|
if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
|
|
|
|
st->print("SIG_DFL");
|
|
|
|
} else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
|
|
|
|
st->print("SIG_IGN");
|
|
|
|
} else {
|
|
|
|
st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
|
|
|
|
}
|
|
|
|
|
|
|
|
st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
|
|
|
|
|
|
|
|
address rh = VMError::get_resetted_sighandler(sig);
|
|
|
|
// May be, handler was resetted by VMError?
|
|
|
|
if(rh != NULL) {
|
|
|
|
handler = rh;
|
|
|
|
sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
|
|
|
|
|
|
|
|
// Check: is it our handler?
|
|
|
|
if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
|
|
|
|
handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
|
|
|
|
// It is our signal handler
|
|
|
|
// check for flags, reset system-used one!
|
|
|
|
if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
|
|
|
|
st->print(
|
|
|
|
", flags was changed from " PTR32_FORMAT ", consider using jsig library",
|
|
|
|
os::Linux::get_our_sigflags(sig));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
st->cr();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define DO_SIGNAL_CHECK(sig) \
|
|
|
|
if (!sigismember(&check_signal_done, sig)) \
|
|
|
|
os::Linux::check_signal_handler(sig)
|
|
|
|
|
|
|
|
// This method is a periodic task to check for misbehaving JNI applications
|
|
|
|
// under CheckJNI, we can add any periodic checks here
|
|
|
|
|
|
|
|
void os::run_periodic_checks() {
|
|
|
|
|
|
|
|
if (check_signals == false) return;
|
|
|
|
|
|
|
|
// SEGV and BUS if overridden could potentially prevent
|
|
|
|
// generation of hs*.log in the event of a crash, debugging
|
|
|
|
// such a case can be very challenging, so we absolutely
|
|
|
|
// check the following for a good measure:
|
|
|
|
DO_SIGNAL_CHECK(SIGSEGV);
|
|
|
|
DO_SIGNAL_CHECK(SIGILL);
|
|
|
|
DO_SIGNAL_CHECK(SIGFPE);
|
|
|
|
DO_SIGNAL_CHECK(SIGBUS);
|
|
|
|
DO_SIGNAL_CHECK(SIGPIPE);
|
|
|
|
DO_SIGNAL_CHECK(SIGXFSZ);
|
|
|
|
|
|
|
|
|
|
|
|
// ReduceSignalUsage allows the user to override these handlers
|
|
|
|
// see comments at the very top and jvm_solaris.h
|
|
|
|
if (!ReduceSignalUsage) {
|
|
|
|
DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
|
|
|
|
DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
|
|
|
|
DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
|
|
|
|
DO_SIGNAL_CHECK(BREAK_SIGNAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
DO_SIGNAL_CHECK(SR_signum);
|
|
|
|
DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
|
|
|
|
|
|
|
|
static os_sigaction_t os_sigaction = NULL;
|
|
|
|
|
|
|
|
void os::Linux::check_signal_handler(int sig) {
|
|
|
|
char buf[O_BUFLEN];
|
|
|
|
address jvmHandler = NULL;
|
|
|
|
|
|
|
|
|
|
|
|
struct sigaction act;
|
|
|
|
if (os_sigaction == NULL) {
|
|
|
|
// only trust the default sigaction, in case it has been interposed
|
|
|
|
os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
|
|
|
|
if (os_sigaction == NULL) return;
|
|
|
|
}
|
|
|
|
|
|
|
|
os_sigaction(sig, (struct sigaction*)NULL, &act);
|
|
|
|
|
|
|
|
|
|
|
|
act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
|
|
|
|
|
|
|
|
address thisHandler = (act.sa_flags & SA_SIGINFO)
|
|
|
|
? CAST_FROM_FN_PTR(address, act.sa_sigaction)
|
|
|
|
: CAST_FROM_FN_PTR(address, act.sa_handler) ;
|
|
|
|
|
|
|
|
|
|
|
|
switch(sig) {
|
|
|
|
case SIGSEGV:
|
|
|
|
case SIGBUS:
|
|
|
|
case SIGFPE:
|
|
|
|
case SIGPIPE:
|
|
|
|
case SIGILL:
|
|
|
|
case SIGXFSZ:
|
|
|
|
jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SHUTDOWN1_SIGNAL:
|
|
|
|
case SHUTDOWN2_SIGNAL:
|
|
|
|
case SHUTDOWN3_SIGNAL:
|
|
|
|
case BREAK_SIGNAL:
|
|
|
|
jvmHandler = (address)user_handler();
|
|
|
|
break;
|
|
|
|
|
|
|
|
case INTERRUPT_SIGNAL:
|
|
|
|
jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
if (sig == SR_signum) {
|
|
|
|
jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
|
|
|
|
} else {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (thisHandler != jvmHandler) {
|
|
|
|
tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
|
|
|
|
tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
|
|
|
|
tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
|
|
|
|
// No need to check this sig any longer
|
|
|
|
sigaddset(&check_signal_done, sig);
|
|
|
|
} else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
|
|
|
|
tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
|
|
|
|
tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
|
|
|
|
tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
|
|
|
|
// No need to check this sig any longer
|
|
|
|
sigaddset(&check_signal_done, sig);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Dump all the signal
|
|
|
|
if (sigismember(&check_signal_done, sig)) {
|
|
|
|
print_signal_handlers(tty, buf, O_BUFLEN);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
|
|
|
|
|
|
|
|
extern bool signal_name(int signo, char* buf, size_t len);
|
|
|
|
|
|
|
|
const char* os::exception_name(int exception_code, char* buf, size_t size) {
|
|
|
|
if (0 < exception_code && exception_code <= SIGRTMAX) {
|
|
|
|
// signal
|
|
|
|
if (!signal_name(exception_code, buf, size)) {
|
|
|
|
jio_snprintf(buf, size, "SIG%d", exception_code);
|
|
|
|
}
|
|
|
|
return buf;
|
|
|
|
} else {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// this is called _before_ the most of global arguments have been parsed
|
|
|
|
void os::init(void) {
|
|
|
|
char dummy; /* used to get a guess on initial stack address */
|
|
|
|
// first_hrtime = gethrtime();
|
|
|
|
|
|
|
|
// With LinuxThreads the JavaMain thread pid (primordial thread)
|
|
|
|
// is different than the pid of the java launcher thread.
|
|
|
|
// So, on Linux, the launcher thread pid is passed to the VM
|
|
|
|
// via the sun.java.launcher.pid property.
|
|
|
|
// Use this property instead of getpid() if it was correctly passed.
|
|
|
|
// See bug 6351349.
|
|
|
|
pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
|
|
|
|
|
|
|
|
_initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
|
|
|
|
|
|
|
|
clock_tics_per_sec = sysconf(_SC_CLK_TCK);
|
|
|
|
|
|
|
|
init_random(1234567);
|
|
|
|
|
|
|
|
ThreadCritical::initialize();
|
|
|
|
|
|
|
|
Linux::set_page_size(sysconf(_SC_PAGESIZE));
|
|
|
|
if (Linux::page_size() == -1) {
|
|
|
|
fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
|
|
|
|
}
|
|
|
|
init_page_sizes((size_t) Linux::page_size());
|
|
|
|
|
|
|
|
Linux::initialize_system_info();
|
|
|
|
|
|
|
|
// main_thread points to the aboriginal thread
|
|
|
|
Linux::_main_thread = pthread_self();
|
|
|
|
|
|
|
|
Linux::clock_init();
|
|
|
|
initial_time_count = os::elapsed_counter();
|
2008-07-28 14:07:44 -04:00
|
|
|
pthread_mutex_init(&dl_mutex, NULL);
|
2007-12-01 00:00:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// To install functions for atexit system call
|
|
|
|
extern "C" {
|
|
|
|
static void perfMemory_exit_helper() {
|
|
|
|
perfMemory_exit();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// this is called _after_ the global arguments have been parsed
|
|
|
|
jint os::init_2(void)
|
|
|
|
{
|
|
|
|
Linux::fast_thread_clock_init();
|
|
|
|
|
|
|
|
// Allocate a single page and mark it as readable for safepoint polling
|
|
|
|
address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
|
|
guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
|
|
|
|
|
|
|
|
os::set_polling_page( polling_page );
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if(Verbose && PrintMiscellaneous)
|
|
|
|
tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (!UseMembar) {
|
|
|
|
address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
|
|
guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
|
|
|
|
os::set_memory_serialize_page( mem_serialize_page );
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
if(Verbose && PrintMiscellaneous)
|
|
|
|
tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
|
|
|
|
|
|
|
|
// initialize suspend/resume support - must do this before signal_sets_init()
|
|
|
|
if (SR_initialize() != 0) {
|
|
|
|
perror("SR_initialize failed");
|
|
|
|
return JNI_ERR;
|
|
|
|
}
|
|
|
|
|
|
|
|
Linux::signal_sets_init();
|
|
|
|
Linux::install_signal_handlers();
|
|
|
|
|
|
|
|
size_t threadStackSizeInBytes = ThreadStackSize * K;
|
|
|
|
if (threadStackSizeInBytes != 0 &&
|
|
|
|
threadStackSizeInBytes < Linux::min_stack_allowed) {
|
|
|
|
tty->print_cr("\nThe stack size specified is too small, "
|
|
|
|
"Specify at least %dk",
|
|
|
|
Linux::min_stack_allowed / K);
|
|
|
|
return JNI_ERR;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make the stack size a multiple of the page size so that
|
|
|
|
// the yellow/red zones can be guarded.
|
|
|
|
JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
|
|
|
|
vm_page_size()));
|
|
|
|
|
|
|
|
Linux::capture_initial_stack(JavaThread::stack_size_at_create());
|
|
|
|
|
|
|
|
Linux::libpthread_init();
|
|
|
|
if (PrintMiscellaneous && (Verbose || WizardMode)) {
|
|
|
|
tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
|
|
|
|
Linux::glibc_version(), Linux::libpthread_version(),
|
|
|
|
Linux::is_floating_stack() ? "floating stack" : "fixed stack");
|
|
|
|
}
|
|
|
|
|
2008-04-29 13:51:26 +04:00
|
|
|
if (UseNUMA) {
|
|
|
|
Linux::libnuma_init();
|
|
|
|
}
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
if (MaxFDLimit) {
|
|
|
|
// set the number of file descriptors to max. print out error
|
|
|
|
// if getrlimit/setrlimit fails but continue regardless.
|
|
|
|
struct rlimit nbr_files;
|
|
|
|
int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
|
|
if (status != 0) {
|
|
|
|
if (PrintMiscellaneous && (Verbose || WizardMode))
|
|
|
|
perror("os::init_2 getrlimit failed");
|
|
|
|
} else {
|
|
|
|
nbr_files.rlim_cur = nbr_files.rlim_max;
|
|
|
|
status = setrlimit(RLIMIT_NOFILE, &nbr_files);
|
|
|
|
if (status != 0) {
|
|
|
|
if (PrintMiscellaneous && (Verbose || WizardMode))
|
|
|
|
perror("os::init_2 setrlimit failed");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Initialize lock used to serialize thread creation (see os::create_thread)
|
|
|
|
Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
|
|
|
|
|
|
|
|
// Initialize HPI.
|
|
|
|
jint hpi_result = hpi::initialize();
|
|
|
|
if (hpi_result != JNI_OK) {
|
|
|
|
tty->print_cr("There was an error trying to initialize the HPI library.");
|
|
|
|
return hpi_result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// at-exit methods are called in the reverse order of their registration.
|
|
|
|
// atexit functions are called on return from main or as a result of a
|
|
|
|
// call to exit(3C). There can be only 32 of these functions registered
|
|
|
|
// and atexit() does not set errno.
|
|
|
|
|
|
|
|
if (PerfAllowAtExitRegistration) {
|
|
|
|
// only register atexit functions if PerfAllowAtExitRegistration is set.
|
|
|
|
// atexit functions can be delayed until process exit time, which
|
|
|
|
// can be problematic for embedded VM situations. Embedded VMs should
|
|
|
|
// call DestroyJavaVM() to assure that VM resources are released.
|
|
|
|
|
|
|
|
// note: perfMemory_exit_helper atexit function may be removed in
|
|
|
|
// the future if the appropriate cleanup code can be added to the
|
|
|
|
// VM_Exit VMOperation's doit method.
|
|
|
|
if (atexit(perfMemory_exit_helper) != 0) {
|
|
|
|
warning("os::init2 atexit(perfMemory_exit_helper) failed");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// initialize thread priority policy
|
|
|
|
prio_init();
|
|
|
|
|
|
|
|
return JNI_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mark the polling page as unreadable
|
|
|
|
void os::make_polling_page_unreadable(void) {
|
|
|
|
if( !guard_memory((char*)_polling_page, Linux::page_size()) )
|
|
|
|
fatal("Could not disable polling page");
|
|
|
|
};
|
|
|
|
|
|
|
|
// Mark the polling page as readable
|
|
|
|
void os::make_polling_page_readable(void) {
|
2008-07-19 17:38:22 -04:00
|
|
|
if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
|
2007-12-01 00:00:00 +00:00
|
|
|
fatal("Could not enable polling page");
|
2008-07-19 17:38:22 -04:00
|
|
|
}
|
2007-12-01 00:00:00 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
int os::active_processor_count() {
|
|
|
|
// Linux doesn't yet have a (official) notion of processor sets,
|
|
|
|
// so just return the number of online processors.
|
|
|
|
int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
|
|
|
|
assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
|
|
|
|
return online_cpus;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::distribute_processes(uint length, uint* distribution) {
|
|
|
|
// Not yet implemented.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::bind_to_processor(uint processor_id) {
|
|
|
|
// Not yet implemented.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
///
|
|
|
|
|
|
|
|
// Suspends the target using the signal mechanism and then grabs the PC before
|
|
|
|
// resuming the target. Used by the flat-profiler only
|
|
|
|
ExtendedPC os::get_thread_pc(Thread* thread) {
|
|
|
|
// Make sure that it is called by the watcher for the VMThread
|
|
|
|
assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
|
|
|
|
assert(thread->is_VM_thread(), "Can only be called for VMThread");
|
|
|
|
|
|
|
|
ExtendedPC epc;
|
|
|
|
|
|
|
|
OSThread* osthread = thread->osthread();
|
|
|
|
if (do_suspend(osthread)) {
|
|
|
|
if (osthread->ucontext() != NULL) {
|
|
|
|
epc = os::Linux::ucontext_get_pc(osthread->ucontext());
|
|
|
|
} else {
|
|
|
|
// NULL context is unexpected, double-check this is the VMThread
|
|
|
|
guarantee(thread->is_VM_thread(), "can only be called for VMThread");
|
|
|
|
}
|
|
|
|
do_resume(osthread);
|
|
|
|
}
|
|
|
|
// failure means pthread_kill failed for some reason - arguably this is
|
|
|
|
// a fatal problem, but such problems are ignored elsewhere
|
|
|
|
|
|
|
|
return epc;
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
|
|
|
|
{
|
|
|
|
if (is_NPTL()) {
|
|
|
|
return pthread_cond_timedwait(_cond, _mutex, _abstime);
|
|
|
|
} else {
|
|
|
|
#ifndef IA64
|
|
|
|
// 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
|
|
|
|
// word back to default 64bit precision if condvar is signaled. Java
|
|
|
|
// wants 53bit precision. Save and restore current value.
|
|
|
|
int fpu = get_fpu_control_word();
|
|
|
|
#endif // IA64
|
|
|
|
int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
|
|
|
|
#ifndef IA64
|
|
|
|
set_fpu_control_word(fpu);
|
|
|
|
#endif // IA64
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// debug support
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
static address same_page(address x, address y) {
|
|
|
|
int page_bits = -os::vm_page_size();
|
|
|
|
if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
|
|
|
|
return x;
|
|
|
|
else if (x > y)
|
|
|
|
return (address)(intptr_t(y) | ~page_bits) + 1;
|
|
|
|
else
|
|
|
|
return (address)(intptr_t(y) & page_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::find(address addr) {
|
|
|
|
Dl_info dlinfo;
|
|
|
|
memset(&dlinfo, 0, sizeof(dlinfo));
|
|
|
|
if (dladdr(addr, &dlinfo)) {
|
|
|
|
tty->print(PTR_FORMAT ": ", addr);
|
|
|
|
if (dlinfo.dli_sname != NULL) {
|
|
|
|
tty->print("%s+%#x", dlinfo.dli_sname,
|
|
|
|
addr - (intptr_t)dlinfo.dli_saddr);
|
|
|
|
} else if (dlinfo.dli_fname) {
|
|
|
|
tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
|
|
|
|
} else {
|
|
|
|
tty->print("<absolute address>");
|
|
|
|
}
|
|
|
|
if (dlinfo.dli_fname) {
|
|
|
|
tty->print(" in %s", dlinfo.dli_fname);
|
|
|
|
}
|
|
|
|
if (dlinfo.dli_fbase) {
|
|
|
|
tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
|
|
|
|
}
|
|
|
|
tty->cr();
|
|
|
|
|
|
|
|
if (Verbose) {
|
|
|
|
// decode some bytes around the PC
|
|
|
|
address begin = same_page(addr-40, addr);
|
|
|
|
address end = same_page(addr+40, addr);
|
|
|
|
address lowest = (address) dlinfo.dli_sname;
|
|
|
|
if (!lowest) lowest = (address) dlinfo.dli_fbase;
|
|
|
|
if (begin < lowest) begin = lowest;
|
|
|
|
Dl_info dlinfo2;
|
|
|
|
if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
|
|
|
|
&& end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
|
|
|
|
end = (address) dlinfo2.dli_saddr;
|
|
|
|
Disassembler::decode(begin, end);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// misc
|
|
|
|
|
|
|
|
// This does not do anything on Linux. This is basically a hook for being
|
|
|
|
// able to use structured exception handling (thread-local exception filters)
|
|
|
|
// on, e.g., Win32.
|
|
|
|
void
|
|
|
|
os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
|
|
|
|
JavaCallArguments* args, Thread* thread) {
|
|
|
|
f(value, method, args, thread);
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::print_statistics() {
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::message_box(const char* title, const char* message) {
|
|
|
|
int i;
|
|
|
|
fdStream err(defaultStream::error_fd());
|
|
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
|
|
err.cr();
|
|
|
|
err.print_raw_cr(title);
|
|
|
|
for (i = 0; i < 78; i++) err.print_raw("-");
|
|
|
|
err.cr();
|
|
|
|
err.print_raw_cr(message);
|
|
|
|
for (i = 0; i < 78; i++) err.print_raw("=");
|
|
|
|
err.cr();
|
|
|
|
|
|
|
|
char buf[16];
|
|
|
|
// Prevent process from exiting upon "read error" without consuming all CPU
|
|
|
|
while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
|
|
|
|
|
|
|
|
return buf[0] == 'y' || buf[0] == 'Y';
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::stat(const char *path, struct stat *sbuf) {
|
|
|
|
char pathbuf[MAX_PATH];
|
|
|
|
if (strlen(path) > MAX_PATH - 1) {
|
|
|
|
errno = ENAMETOOLONG;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
hpi::native_path(strcpy(pathbuf, path));
|
|
|
|
return ::stat(pathbuf, sbuf);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::check_heap(bool force) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
|
|
|
|
return ::vsnprintf(buf, count, format, args);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Is a (classpath) directory empty?
|
|
|
|
bool os::dir_is_empty(const char* path) {
|
|
|
|
DIR *dir = NULL;
|
|
|
|
struct dirent *ptr;
|
|
|
|
|
|
|
|
dir = opendir(path);
|
|
|
|
if (dir == NULL) return true;
|
|
|
|
|
|
|
|
/* Scan the directory */
|
|
|
|
bool result = true;
|
|
|
|
char buf[sizeof(struct dirent) + MAX_PATH];
|
|
|
|
while (result && (ptr = ::readdir(dir)) != NULL) {
|
|
|
|
if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
|
|
|
|
result = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
closedir(dir);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// create binary file, rewriting existing file if required
|
|
|
|
int os::create_binary_file(const char* path, bool rewrite_existing) {
|
|
|
|
int oflags = O_WRONLY | O_CREAT;
|
|
|
|
if (!rewrite_existing) {
|
|
|
|
oflags |= O_EXCL;
|
|
|
|
}
|
|
|
|
return ::open64(path, oflags, S_IREAD | S_IWRITE);
|
|
|
|
}
|
|
|
|
|
|
|
|
// return current position of file pointer
|
|
|
|
jlong os::current_file_offset(int fd) {
|
|
|
|
return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
|
|
|
|
}
|
|
|
|
|
|
|
|
// move file pointer to the specified offset
|
|
|
|
jlong os::seek_to_file_offset(int fd, jlong offset) {
|
|
|
|
return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Map a block of memory.
|
|
|
|
char* os::map_memory(int fd, const char* file_name, size_t file_offset,
|
|
|
|
char *addr, size_t bytes, bool read_only,
|
|
|
|
bool allow_exec) {
|
|
|
|
int prot;
|
|
|
|
int flags;
|
|
|
|
|
|
|
|
if (read_only) {
|
|
|
|
prot = PROT_READ;
|
|
|
|
flags = MAP_SHARED;
|
|
|
|
} else {
|
|
|
|
prot = PROT_READ | PROT_WRITE;
|
|
|
|
flags = MAP_PRIVATE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (allow_exec) {
|
|
|
|
prot |= PROT_EXEC;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (addr != NULL) {
|
|
|
|
flags |= MAP_FIXED;
|
|
|
|
}
|
|
|
|
|
|
|
|
char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
|
|
|
|
fd, file_offset);
|
|
|
|
if (mapped_address == MAP_FAILED) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return mapped_address;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Remap a block of memory.
|
|
|
|
char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
|
|
|
|
char *addr, size_t bytes, bool read_only,
|
|
|
|
bool allow_exec) {
|
|
|
|
// same as map_memory() on this OS
|
|
|
|
return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
|
|
|
|
allow_exec);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Unmap a block of memory.
|
|
|
|
bool os::unmap_memory(char* addr, size_t bytes) {
|
|
|
|
return munmap(addr, bytes) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
|
|
|
|
|
|
|
|
static clockid_t thread_cpu_clockid(Thread* thread) {
|
|
|
|
pthread_t tid = thread->osthread()->pthread_id();
|
|
|
|
clockid_t clockid;
|
|
|
|
|
|
|
|
// Get thread clockid
|
|
|
|
int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
|
|
|
|
assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
|
|
|
|
return clockid;
|
|
|
|
}
|
|
|
|
|
|
|
|
// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
|
|
|
|
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
|
|
|
|
// of a thread.
|
|
|
|
//
|
|
|
|
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
|
|
|
|
// the fast estimate available on the platform.
|
|
|
|
|
|
|
|
jlong os::current_thread_cpu_time() {
|
|
|
|
if (os::Linux::supports_fast_thread_cpu_time()) {
|
|
|
|
return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
|
|
|
|
} else {
|
|
|
|
// return user + sys since the cost is the same
|
|
|
|
return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
jlong os::thread_cpu_time(Thread* thread) {
|
|
|
|
// consistent with what current_thread_cpu_time() returns
|
|
|
|
if (os::Linux::supports_fast_thread_cpu_time()) {
|
|
|
|
return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
|
|
|
|
} else {
|
|
|
|
return slow_thread_cpu_time(thread, true /* user + sys */);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
|
|
|
|
if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
|
|
|
|
return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
|
|
|
|
} else {
|
|
|
|
return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
|
|
|
|
if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
|
|
|
|
return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
|
|
|
|
} else {
|
|
|
|
return slow_thread_cpu_time(thread, user_sys_cpu_time);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// -1 on error.
|
|
|
|
//
|
|
|
|
|
|
|
|
static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
|
|
|
|
static bool proc_pid_cpu_avail = true;
|
|
|
|
static bool proc_task_unchecked = true;
|
|
|
|
static const char *proc_stat_path = "/proc/%d/stat";
|
|
|
|
pid_t tid = thread->osthread()->thread_id();
|
|
|
|
int i;
|
|
|
|
char *s;
|
|
|
|
char stat[2048];
|
|
|
|
int statlen;
|
|
|
|
char proc_name[64];
|
|
|
|
int count;
|
|
|
|
long sys_time, user_time;
|
|
|
|
char string[64];
|
|
|
|
int idummy;
|
|
|
|
long ldummy;
|
|
|
|
FILE *fp;
|
|
|
|
|
|
|
|
// We first try accessing /proc/<pid>/cpu since this is faster to
|
|
|
|
// process. If this file is not present (linux kernels 2.5 and above)
|
|
|
|
// then we open /proc/<pid>/stat.
|
|
|
|
if ( proc_pid_cpu_avail ) {
|
|
|
|
sprintf(proc_name, "/proc/%d/cpu", tid);
|
|
|
|
fp = fopen(proc_name, "r");
|
|
|
|
if ( fp != NULL ) {
|
|
|
|
count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
|
|
|
|
fclose(fp);
|
|
|
|
if ( count != 3 ) return -1;
|
|
|
|
|
|
|
|
if (user_sys_cpu_time) {
|
|
|
|
return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
|
|
|
|
} else {
|
|
|
|
return (jlong)user_time * (1000000000 / clock_tics_per_sec);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else proc_pid_cpu_avail = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The /proc/<tid>/stat aggregates per-process usage on
|
|
|
|
// new Linux kernels 2.6+ where NPTL is supported.
|
|
|
|
// The /proc/self/task/<tid>/stat still has the per-thread usage.
|
|
|
|
// See bug 6328462.
|
|
|
|
// There can be no directory /proc/self/task on kernels 2.4 with NPTL
|
|
|
|
// and possibly in some other cases, so we check its availability.
|
|
|
|
if (proc_task_unchecked && os::Linux::is_NPTL()) {
|
|
|
|
// This is executed only once
|
|
|
|
proc_task_unchecked = false;
|
|
|
|
fp = fopen("/proc/self/task", "r");
|
|
|
|
if (fp != NULL) {
|
|
|
|
proc_stat_path = "/proc/self/task/%d/stat";
|
|
|
|
fclose(fp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sprintf(proc_name, proc_stat_path, tid);
|
|
|
|
fp = fopen(proc_name, "r");
|
|
|
|
if ( fp == NULL ) return -1;
|
|
|
|
statlen = fread(stat, 1, 2047, fp);
|
|
|
|
stat[statlen] = '\0';
|
|
|
|
fclose(fp);
|
|
|
|
|
|
|
|
// Skip pid and the command string. Note that we could be dealing with
|
|
|
|
// weird command names, e.g. user could decide to rename java launcher
|
|
|
|
// to "java 1.4.2 :)", then the stat file would look like
|
|
|
|
// 1234 (java 1.4.2 :)) R ... ...
|
|
|
|
// We don't really need to know the command string, just find the last
|
|
|
|
// occurrence of ")" and then start parsing from there. See bug 4726580.
|
|
|
|
s = strrchr(stat, ')');
|
|
|
|
i = 0;
|
|
|
|
if (s == NULL ) return -1;
|
|
|
|
|
|
|
|
// Skip blank chars
|
|
|
|
do s++; while (isspace(*s));
|
|
|
|
|
|
|
|
count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
|
|
|
|
&idummy, &idummy, &idummy, &idummy, &idummy, &idummy,
|
|
|
|
&ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
|
|
|
|
&user_time, &sys_time);
|
|
|
|
if ( count != 13 ) return -1;
|
|
|
|
if (user_sys_cpu_time) {
|
|
|
|
return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
|
|
|
|
} else {
|
|
|
|
return (jlong)user_time * (1000000000 / clock_tics_per_sec);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
|
|
|
|
info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
|
|
|
|
info_ptr->may_skip_backward = false; // elapsed time not wall time
|
|
|
|
info_ptr->may_skip_forward = false; // elapsed time not wall time
|
|
|
|
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
|
|
|
|
}
|
|
|
|
|
|
|
|
bool os::is_thread_cpu_time_supported() {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// System loadavg support. Returns -1 if load average cannot be obtained.
|
|
|
|
// Linux doesn't yet have a (official) notion of processor sets,
|
|
|
|
// so just return the system wide load average.
|
|
|
|
int os::loadavg(double loadavg[], int nelem) {
|
|
|
|
return ::getloadavg(loadavg, nelem);
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::pause() {
|
|
|
|
char filename[MAX_PATH];
|
|
|
|
if (PauseAtStartupFile && PauseAtStartupFile[0]) {
|
|
|
|
jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
|
|
|
|
} else {
|
|
|
|
jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
|
|
|
|
}
|
|
|
|
|
|
|
|
int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
|
|
|
|
if (fd != -1) {
|
|
|
|
struct stat buf;
|
|
|
|
close(fd);
|
|
|
|
while (::stat(filename, &buf) == 0) {
|
|
|
|
(void)::poll(NULL, 0, 100);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
jio_fprintf(stderr,
|
|
|
|
"Could not open pause file '%s', continuing immediately.\n", filename);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" {
|
|
|
|
|
|
|
|
/**
|
|
|
|
* NOTE: the following code is to keep the green threads code
|
|
|
|
* in the libjava.so happy. Once the green threads is removed,
|
|
|
|
* these code will no longer be needed.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
jdk_waitpid(pid_t pid, int* status, int options) {
|
|
|
|
return waitpid(pid, status, options);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
fork1() {
|
|
|
|
return fork();
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
|
|
|
|
return sem_init(sem, pshared, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
jdk_sem_post(sem_t *sem) {
|
|
|
|
return sem_post(sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
jdk_sem_wait(sem_t *sem) {
|
|
|
|
return sem_wait(sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
|
|
|
|
return pthread_sigmask(how , newmask, oldmask);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// Refer to the comments in os_solaris.cpp park-unpark.
|
|
|
|
//
|
|
|
|
// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
|
|
|
|
// hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
|
|
|
|
// For specifics regarding the bug see GLIBC BUGID 261237 :
|
|
|
|
// http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
|
|
|
|
// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
|
|
|
|
// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
|
|
|
|
// is used. (The simple C test-case provided in the GLIBC bug report manifests the
|
|
|
|
// hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
|
|
|
|
// and monitorenter when we're using 1-0 locking. All those operations may result in
|
|
|
|
// calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
|
|
|
|
// of libpthread avoids the problem, but isn't practical.
|
|
|
|
//
|
|
|
|
// Possible remedies:
|
|
|
|
//
|
|
|
|
// 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
|
|
|
|
// This is palliative and probabilistic, however. If the thread is preempted
|
|
|
|
// between the call to compute_abstime() and pthread_cond_timedwait(), more
|
|
|
|
// than the minimum period may have passed, and the abstime may be stale (in the
|
|
|
|
// past) resultin in a hang. Using this technique reduces the odds of a hang
|
|
|
|
// but the JVM is still vulnerable, particularly on heavily loaded systems.
|
|
|
|
//
|
|
|
|
// 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
|
|
|
|
// of the usual flag-condvar-mutex idiom. The write side of the pipe is set
|
|
|
|
// NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
|
|
|
|
// reduces to poll()+read(). This works well, but consumes 2 FDs per extant
|
|
|
|
// thread.
|
|
|
|
//
|
|
|
|
// 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
|
|
|
|
// that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
|
|
|
|
// a timeout request to the chron thread and then blocking via pthread_cond_wait().
|
|
|
|
// This also works well. In fact it avoids kernel-level scalability impediments
|
|
|
|
// on certain platforms that don't handle lots of active pthread_cond_timedwait()
|
|
|
|
// timers in a graceful fashion.
|
|
|
|
//
|
|
|
|
// 4. When the abstime value is in the past it appears that control returns
|
|
|
|
// correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
|
|
|
|
// Subsequent timedwait/wait calls may hang indefinitely. Given that, we
|
|
|
|
// can avoid the problem by reinitializing the condvar -- by cond_destroy()
|
|
|
|
// followed by cond_init() -- after all calls to pthread_cond_timedwait().
|
|
|
|
// It may be possible to avoid reinitialization by checking the return
|
|
|
|
// value from pthread_cond_timedwait(). In addition to reinitializing the
|
|
|
|
// condvar we must establish the invariant that cond_signal() is only called
|
|
|
|
// within critical sections protected by the adjunct mutex. This prevents
|
|
|
|
// cond_signal() from "seeing" a condvar that's in the midst of being
|
|
|
|
// reinitialized or that is corrupt. Sadly, this invariant obviates the
|
|
|
|
// desirable signal-after-unlock optimization that avoids futile context switching.
|
|
|
|
//
|
|
|
|
// I'm also concerned that some versions of NTPL might allocate an auxilliary
|
|
|
|
// structure when a condvar is used or initialized. cond_destroy() would
|
|
|
|
// release the helper structure. Our reinitialize-after-timedwait fix
|
|
|
|
// put excessive stress on malloc/free and locks protecting the c-heap.
|
|
|
|
//
|
|
|
|
// We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
|
|
|
|
// It may be possible to refine (4) by checking the kernel and NTPL verisons
|
|
|
|
// and only enabling the work-around for vulnerable environments.
|
|
|
|
|
|
|
|
// utility to compute the abstime argument to timedwait:
|
|
|
|
// millis is the relative timeout time
|
|
|
|
// abstime will be the absolute timeout time
|
|
|
|
// TODO: replace compute_abstime() with unpackTime()
|
|
|
|
|
|
|
|
static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
|
|
|
|
if (millis < 0) millis = 0;
|
|
|
|
struct timeval now;
|
|
|
|
int status = gettimeofday(&now, NULL);
|
|
|
|
assert(status == 0, "gettimeofday");
|
|
|
|
jlong seconds = millis / 1000;
|
|
|
|
millis %= 1000;
|
|
|
|
if (seconds > 50000000) { // see man cond_timedwait(3T)
|
|
|
|
seconds = 50000000;
|
|
|
|
}
|
|
|
|
abstime->tv_sec = now.tv_sec + seconds;
|
|
|
|
long usec = now.tv_usec + millis * 1000;
|
|
|
|
if (usec >= 1000000) {
|
|
|
|
abstime->tv_sec += 1;
|
|
|
|
usec -= 1000000;
|
|
|
|
}
|
|
|
|
abstime->tv_nsec = usec * 1000;
|
|
|
|
return abstime;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
|
|
|
|
// Conceptually TryPark() should be equivalent to park(0).
|
|
|
|
|
|
|
|
int os::PlatformEvent::TryPark() {
|
|
|
|
for (;;) {
|
|
|
|
const int v = _Event ;
|
|
|
|
guarantee ((v == 0) || (v == 1), "invariant") ;
|
|
|
|
if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::PlatformEvent::park() { // AKA "down()"
|
|
|
|
// Invariant: Only the thread associated with the Event/PlatformEvent
|
|
|
|
// may call park().
|
|
|
|
// TODO: assert that _Assoc != NULL or _Assoc == Self
|
|
|
|
int v ;
|
|
|
|
for (;;) {
|
|
|
|
v = _Event ;
|
|
|
|
if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
|
|
|
|
}
|
|
|
|
guarantee (v >= 0, "invariant") ;
|
|
|
|
if (v == 0) {
|
|
|
|
// Do this the hard way by blocking ...
|
|
|
|
int status = pthread_mutex_lock(_mutex);
|
|
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
|
|
guarantee (_nParked == 0, "invariant") ;
|
|
|
|
++ _nParked ;
|
|
|
|
while (_Event < 0) {
|
|
|
|
status = pthread_cond_wait(_cond, _mutex);
|
|
|
|
// for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
|
|
|
|
// Treat this the same as if the wait was interrupted
|
|
|
|
if (status == ETIME) { status = EINTR; }
|
|
|
|
assert_status(status == 0 || status == EINTR, status, "cond_wait");
|
|
|
|
}
|
|
|
|
-- _nParked ;
|
|
|
|
|
|
|
|
// In theory we could move the ST of 0 into _Event past the unlock(),
|
|
|
|
// but then we'd need a MEMBAR after the ST.
|
|
|
|
_Event = 0 ;
|
|
|
|
status = pthread_mutex_unlock(_mutex);
|
|
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
|
|
}
|
|
|
|
guarantee (_Event >= 0, "invariant") ;
|
|
|
|
}
|
|
|
|
|
|
|
|
int os::PlatformEvent::park(jlong millis) {
|
|
|
|
guarantee (_nParked == 0, "invariant") ;
|
|
|
|
|
|
|
|
int v ;
|
|
|
|
for (;;) {
|
|
|
|
v = _Event ;
|
|
|
|
if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
|
|
|
|
}
|
|
|
|
guarantee (v >= 0, "invariant") ;
|
|
|
|
if (v != 0) return OS_OK ;
|
|
|
|
|
|
|
|
// We do this the hard way, by blocking the thread.
|
|
|
|
// Consider enforcing a minimum timeout value.
|
|
|
|
struct timespec abst;
|
|
|
|
compute_abstime(&abst, millis);
|
|
|
|
|
|
|
|
int ret = OS_TIMEOUT;
|
|
|
|
int status = pthread_mutex_lock(_mutex);
|
|
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
|
|
guarantee (_nParked == 0, "invariant") ;
|
|
|
|
++_nParked ;
|
|
|
|
|
|
|
|
// Object.wait(timo) will return because of
|
|
|
|
// (a) notification
|
|
|
|
// (b) timeout
|
|
|
|
// (c) thread.interrupt
|
|
|
|
//
|
|
|
|
// Thread.interrupt and object.notify{All} both call Event::set.
|
|
|
|
// That is, we treat thread.interrupt as a special case of notification.
|
|
|
|
// The underlying Solaris implementation, cond_timedwait, admits
|
|
|
|
// spurious/premature wakeups, but the JLS/JVM spec prevents the
|
|
|
|
// JVM from making those visible to Java code. As such, we must
|
|
|
|
// filter out spurious wakeups. We assume all ETIME returns are valid.
|
|
|
|
//
|
|
|
|
// TODO: properly differentiate simultaneous notify+interrupt.
|
|
|
|
// In that case, we should propagate the notify to another waiter.
|
|
|
|
|
|
|
|
while (_Event < 0) {
|
|
|
|
status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
|
|
|
|
if (status != 0 && WorkAroundNPTLTimedWaitHang) {
|
|
|
|
pthread_cond_destroy (_cond);
|
|
|
|
pthread_cond_init (_cond, NULL) ;
|
|
|
|
}
|
|
|
|
assert_status(status == 0 || status == EINTR ||
|
|
|
|
status == ETIME || status == ETIMEDOUT,
|
|
|
|
status, "cond_timedwait");
|
|
|
|
if (!FilterSpuriousWakeups) break ; // previous semantics
|
|
|
|
if (status == ETIME || status == ETIMEDOUT) break ;
|
|
|
|
// We consume and ignore EINTR and spurious wakeups.
|
|
|
|
}
|
|
|
|
--_nParked ;
|
|
|
|
if (_Event >= 0) {
|
|
|
|
ret = OS_OK;
|
|
|
|
}
|
|
|
|
_Event = 0 ;
|
|
|
|
status = pthread_mutex_unlock(_mutex);
|
|
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
|
|
assert (_nParked == 0, "invariant") ;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void os::PlatformEvent::unpark() {
|
|
|
|
int v, AnyWaiters ;
|
|
|
|
for (;;) {
|
|
|
|
v = _Event ;
|
|
|
|
if (v > 0) {
|
|
|
|
// The LD of _Event could have reordered or be satisfied
|
|
|
|
// by a read-aside from this processor's write buffer.
|
|
|
|
// To avoid problems execute a barrier and then
|
|
|
|
// ratify the value.
|
|
|
|
OrderAccess::fence() ;
|
|
|
|
if (_Event == v) return ;
|
|
|
|
continue ;
|
|
|
|
}
|
|
|
|
if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
|
|
|
|
}
|
|
|
|
if (v < 0) {
|
|
|
|
// Wait for the thread associated with the event to vacate
|
|
|
|
int status = pthread_mutex_lock(_mutex);
|
|
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
|
|
AnyWaiters = _nParked ;
|
|
|
|
assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
|
|
|
|
if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
|
|
|
|
AnyWaiters = 0 ;
|
|
|
|
pthread_cond_signal (_cond);
|
|
|
|
}
|
|
|
|
status = pthread_mutex_unlock(_mutex);
|
|
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
|
|
if (AnyWaiters != 0) {
|
|
|
|
status = pthread_cond_signal(_cond);
|
|
|
|
assert_status(status == 0, status, "cond_signal");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note that we signal() _after dropping the lock for "immortal" Events.
|
|
|
|
// This is safe and avoids a common class of futile wakeups. In rare
|
|
|
|
// circumstances this can cause a thread to return prematurely from
|
|
|
|
// cond_{timed}wait() but the spurious wakeup is benign and the victim will
|
|
|
|
// simply re-test the condition and re-park itself.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// JSR166
|
|
|
|
// -------------------------------------------------------
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The solaris and linux implementations of park/unpark are fairly
|
|
|
|
* conservative for now, but can be improved. They currently use a
|
|
|
|
* mutex/condvar pair, plus a a count.
|
|
|
|
* Park decrements count if > 0, else does a condvar wait. Unpark
|
|
|
|
* sets count to 1 and signals condvar. Only one thread ever waits
|
|
|
|
* on the condvar. Contention seen when trying to park implies that someone
|
|
|
|
* is unparking you, so don't wait. And spurious returns are fine, so there
|
|
|
|
* is no need to track notifications.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#define NANOSECS_PER_SEC 1000000000
|
|
|
|
#define NANOSECS_PER_MILLISEC 1000000
|
|
|
|
#define MAX_SECS 100000000
|
|
|
|
/*
|
|
|
|
* This code is common to linux and solaris and will be moved to a
|
|
|
|
* common place in dolphin.
|
|
|
|
*
|
|
|
|
* The passed in time value is either a relative time in nanoseconds
|
|
|
|
* or an absolute time in milliseconds. Either way it has to be unpacked
|
|
|
|
* into suitable seconds and nanoseconds components and stored in the
|
|
|
|
* given timespec structure.
|
|
|
|
* Given time is a 64-bit value and the time_t used in the timespec is only
|
|
|
|
* a signed-32-bit value (except on 64-bit Linux) we have to watch for
|
|
|
|
* overflow if times way in the future are given. Further on Solaris versions
|
|
|
|
* prior to 10 there is a restriction (see cond_timedwait) that the specified
|
|
|
|
* number of seconds, in abstime, is less than current_time + 100,000,000.
|
|
|
|
* As it will be 28 years before "now + 100000000" will overflow we can
|
|
|
|
* ignore overflow and just impose a hard-limit on seconds using the value
|
|
|
|
* of "now + 100,000,000". This places a limit on the timeout of about 3.17
|
|
|
|
* years from "now".
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
|
|
|
|
assert (time > 0, "convertTime");
|
|
|
|
|
|
|
|
struct timeval now;
|
|
|
|
int status = gettimeofday(&now, NULL);
|
|
|
|
assert(status == 0, "gettimeofday");
|
|
|
|
|
|
|
|
time_t max_secs = now.tv_sec + MAX_SECS;
|
|
|
|
|
|
|
|
if (isAbsolute) {
|
|
|
|
jlong secs = time / 1000;
|
|
|
|
if (secs > max_secs) {
|
|
|
|
absTime->tv_sec = max_secs;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
absTime->tv_sec = secs;
|
|
|
|
}
|
|
|
|
absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
jlong secs = time / NANOSECS_PER_SEC;
|
|
|
|
if (secs >= MAX_SECS) {
|
|
|
|
absTime->tv_sec = max_secs;
|
|
|
|
absTime->tv_nsec = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
absTime->tv_sec = now.tv_sec + secs;
|
|
|
|
absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
|
|
|
|
if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
|
|
|
|
absTime->tv_nsec -= NANOSECS_PER_SEC;
|
|
|
|
++absTime->tv_sec; // note: this must be <= max_secs
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(absTime->tv_sec >= 0, "tv_sec < 0");
|
|
|
|
assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
|
|
|
|
assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
|
|
|
|
assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
|
|
|
|
}
|
|
|
|
|
|
|
|
void Parker::park(bool isAbsolute, jlong time) {
|
|
|
|
// Optional fast-path check:
|
|
|
|
// Return immediately if a permit is available.
|
|
|
|
if (_counter > 0) {
|
|
|
|
_counter = 0 ;
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
|
|
|
|
Thread* thread = Thread::current();
|
|
|
|
assert(thread->is_Java_thread(), "Must be JavaThread");
|
|
|
|
JavaThread *jt = (JavaThread *)thread;
|
|
|
|
|
|
|
|
// Optional optimization -- avoid state transitions if there's an interrupt pending.
|
|
|
|
// Check interrupt before trying to wait
|
|
|
|
if (Thread::is_interrupted(thread, false)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Next, demultiplex/decode time arguments
|
|
|
|
timespec absTime;
|
|
|
|
if (time < 0) { // don't wait at all
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (time > 0) {
|
|
|
|
unpackTime(&absTime, isAbsolute, time);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Enter safepoint region
|
|
|
|
// Beware of deadlocks such as 6317397.
|
|
|
|
// The per-thread Parker:: mutex is a classic leaf-lock.
|
|
|
|
// In particular a thread must never block on the Threads_lock while
|
|
|
|
// holding the Parker:: mutex. If safepoints are pending both the
|
|
|
|
// the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
|
|
|
|
ThreadBlockInVM tbivm(jt);
|
|
|
|
|
|
|
|
// Don't wait if cannot get lock since interference arises from
|
|
|
|
// unblocking. Also. check interrupt before trying wait
|
|
|
|
if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int status ;
|
|
|
|
if (_counter > 0) { // no wait needed
|
|
|
|
_counter = 0;
|
|
|
|
status = pthread_mutex_unlock(_mutex);
|
|
|
|
assert (status == 0, "invariant") ;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
// Don't catch signals while blocked; let the running threads have the signals.
|
|
|
|
// (This allows a debugger to break into the running thread.)
|
|
|
|
sigset_t oldsigs;
|
|
|
|
sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
|
|
|
|
pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
|
|
|
|
jt->set_suspend_equivalent();
|
|
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
|
|
|
|
|
|
if (time == 0) {
|
|
|
|
status = pthread_cond_wait (_cond, _mutex) ;
|
|
|
|
} else {
|
|
|
|
status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
|
|
|
|
if (status != 0 && WorkAroundNPTLTimedWaitHang) {
|
|
|
|
pthread_cond_destroy (_cond) ;
|
|
|
|
pthread_cond_init (_cond, NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert_status(status == 0 || status == EINTR ||
|
|
|
|
status == ETIME || status == ETIMEDOUT,
|
|
|
|
status, "cond_timedwait");
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
|
|
pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
_counter = 0 ;
|
|
|
|
status = pthread_mutex_unlock(_mutex) ;
|
|
|
|
assert_status(status == 0, status, "invariant") ;
|
|
|
|
// If externally suspended while waiting, re-suspend
|
|
|
|
if (jt->handle_special_suspend_equivalent_condition()) {
|
|
|
|
jt->java_suspend_self();
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void Parker::unpark() {
|
|
|
|
int s, status ;
|
|
|
|
status = pthread_mutex_lock(_mutex);
|
|
|
|
assert (status == 0, "invariant") ;
|
|
|
|
s = _counter;
|
|
|
|
_counter = 1;
|
|
|
|
if (s < 1) {
|
|
|
|
if (WorkAroundNPTLTimedWaitHang) {
|
|
|
|
status = pthread_cond_signal (_cond) ;
|
|
|
|
assert (status == 0, "invariant") ;
|
|
|
|
status = pthread_mutex_unlock(_mutex);
|
|
|
|
assert (status == 0, "invariant") ;
|
|
|
|
} else {
|
|
|
|
status = pthread_mutex_unlock(_mutex);
|
|
|
|
assert (status == 0, "invariant") ;
|
|
|
|
status = pthread_cond_signal (_cond) ;
|
|
|
|
assert (status == 0, "invariant") ;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
pthread_mutex_unlock(_mutex);
|
|
|
|
assert (status == 0, "invariant") ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern char** environ;
|
|
|
|
|
|
|
|
#ifndef __NR_fork
|
|
|
|
#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __NR_execve
|
|
|
|
#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Run the specified command in a separate process. Return its exit value,
|
|
|
|
// or -1 on failure (e.g. can't fork a new process).
|
|
|
|
// Unlike system(), this function can be called from signal handler. It
|
|
|
|
// doesn't block SIGINT et al.
|
|
|
|
int os::fork_and_exec(char* cmd) {
|
2008-06-17 09:59:59 -07:00
|
|
|
const char * argv[4] = {"sh", "-c", cmd, NULL};
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
// fork() in LinuxThreads/NPTL is not async-safe. It needs to run
|
|
|
|
// pthread_atfork handlers and reset pthread library. All we need is a
|
|
|
|
// separate process to execve. Make a direct syscall to fork process.
|
|
|
|
// On IA64 there's no fork syscall, we have to use fork() and hope for
|
|
|
|
// the best...
|
|
|
|
pid_t pid = NOT_IA64(syscall(__NR_fork);)
|
|
|
|
IA64_ONLY(fork();)
|
|
|
|
|
|
|
|
if (pid < 0) {
|
|
|
|
// fork failed
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
} else if (pid == 0) {
|
|
|
|
// child process
|
|
|
|
|
|
|
|
// execve() in LinuxThreads will call pthread_kill_other_threads_np()
|
|
|
|
// first to kill every thread on the thread list. Because this list is
|
|
|
|
// not reset by fork() (see notes above), execve() will instead kill
|
|
|
|
// every thread in the parent process. We know this is the only thread
|
|
|
|
// in the new process, so make a system call directly.
|
|
|
|
// IA64 should use normal execve() from glibc to match the glibc fork()
|
|
|
|
// above.
|
|
|
|
NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
|
2008-06-17 09:59:59 -07:00
|
|
|
IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
|
2007-12-01 00:00:00 +00:00
|
|
|
|
|
|
|
// execve failed
|
|
|
|
_exit(-1);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
|
|
|
|
// care about the actual exit code, for now.
|
|
|
|
|
|
|
|
int status;
|
|
|
|
|
|
|
|
// Wait for the child process to exit. This returns immediately if
|
|
|
|
// the child has already exited. */
|
|
|
|
while (waitpid(pid, &status, 0) < 0) {
|
|
|
|
switch (errno) {
|
|
|
|
case ECHILD: return 0;
|
|
|
|
case EINTR: break;
|
|
|
|
default: return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (WIFEXITED(status)) {
|
|
|
|
// The child exited normally; get its exit code.
|
|
|
|
return WEXITSTATUS(status);
|
|
|
|
} else if (WIFSIGNALED(status)) {
|
|
|
|
// The child exited because of a signal
|
|
|
|
// The best value to return is 0x80 + signal number,
|
|
|
|
// because that is what all Unix shells do, and because
|
|
|
|
// it allows callers to distinguish between process exit and
|
|
|
|
// process death by signal.
|
|
|
|
return 0x80 + WTERMSIG(status);
|
|
|
|
} else {
|
|
|
|
// Unknown exit code; pass it through
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|