2007-12-01 00:00:00 +00:00
|
|
|
/*
|
2008-07-02 12:55:16 -07:00
|
|
|
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
|
2007-12-01 00:00:00 +00:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
|
|
* have any questions.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
# include "incls/_precompiled.incl"
|
|
|
|
# include "incls/_cardTableExtension.cpp.incl"
|
|
|
|
|
|
|
|
// Checks an individual oop for missing precise marks. Mark
|
|
|
|
// may be either dirty or newgen.
|
|
|
|
class CheckForUnmarkedOops : public OopClosure {
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
private:
|
|
|
|
PSYoungGen* _young_gen;
|
2007-12-01 00:00:00 +00:00
|
|
|
CardTableExtension* _card_table;
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
HeapWord* _unmarked_addr;
|
|
|
|
jbyte* _unmarked_card;
|
2007-12-01 00:00:00 +00:00
|
|
|
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
protected:
|
|
|
|
template <class T> void do_oop_work(T* p) {
|
|
|
|
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
|
|
|
|
if (_young_gen->is_in_reserved(obj) &&
|
2007-12-01 00:00:00 +00:00
|
|
|
!_card_table->addr_is_marked_imprecise(p)) {
|
|
|
|
// Don't overwrite the first missing card mark
|
|
|
|
if (_unmarked_addr == NULL) {
|
|
|
|
_unmarked_addr = (HeapWord*)p;
|
|
|
|
_unmarked_card = _card_table->byte_for(p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
public:
|
|
|
|
CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
|
|
|
|
_young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
|
|
|
|
|
|
|
|
virtual void do_oop(oop* p) { CheckForUnmarkedOops::do_oop_work(p); }
|
|
|
|
virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
|
|
|
|
|
2007-12-01 00:00:00 +00:00
|
|
|
bool has_unmarked_oop() {
|
|
|
|
return _unmarked_addr != NULL;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Checks all objects for the existance of some type of mark,
|
|
|
|
// precise or imprecise, dirty or newgen.
|
|
|
|
class CheckForUnmarkedObjects : public ObjectClosure {
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
private:
|
|
|
|
PSYoungGen* _young_gen;
|
2007-12-01 00:00:00 +00:00
|
|
|
CardTableExtension* _card_table;
|
|
|
|
|
|
|
|
public:
|
|
|
|
CheckForUnmarkedObjects() {
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
|
|
|
|
|
|
_young_gen = heap->young_gen();
|
|
|
|
_card_table = (CardTableExtension*)heap->barrier_set();
|
|
|
|
// No point in asserting barrier set type here. Need to make CardTableExtension
|
|
|
|
// a unique barrier set type.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Card marks are not precise. The current system can leave us with
|
2009-02-27 13:27:09 -08:00
|
|
|
// a mismash of precise marks and beginning of object marks. This means
|
2007-12-01 00:00:00 +00:00
|
|
|
// we test for missing precise marks first. If any are found, we don't
|
|
|
|
// fail unless the object head is also unmarked.
|
|
|
|
virtual void do_object(oop obj) {
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
CheckForUnmarkedOops object_check(_young_gen, _card_table);
|
2007-12-01 00:00:00 +00:00
|
|
|
obj->oop_iterate(&object_check);
|
|
|
|
if (object_check.has_unmarked_oop()) {
|
|
|
|
assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Checks for precise marking of oops as newgen.
|
|
|
|
class CheckForPreciseMarks : public OopClosure {
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
private:
|
|
|
|
PSYoungGen* _young_gen;
|
2007-12-01 00:00:00 +00:00
|
|
|
CardTableExtension* _card_table;
|
|
|
|
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
protected:
|
|
|
|
template <class T> void do_oop_work(T* p) {
|
|
|
|
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
|
|
|
|
if (_young_gen->is_in_reserved(obj)) {
|
2007-12-01 00:00:00 +00:00
|
|
|
assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
|
|
|
|
_card_table->set_card_newgen(p);
|
|
|
|
}
|
|
|
|
}
|
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold
2008-04-13 17:43:42 -04:00
|
|
|
|
|
|
|
public:
|
|
|
|
CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
|
|
|
|
_young_gen(young_gen), _card_table(card_table) { }
|
|
|
|
|
|
|
|
virtual void do_oop(oop* p) { CheckForPreciseMarks::do_oop_work(p); }
|
|
|
|
virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
|
2007-12-01 00:00:00 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
// We get passed the space_top value to prevent us from traversing into
|
|
|
|
// the old_gen promotion labs, which cannot be safely parsed.
|
|
|
|
void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
|
|
|
|
MutableSpace* sp,
|
|
|
|
HeapWord* space_top,
|
|
|
|
PSPromotionManager* pm)
|
|
|
|
{
|
|
|
|
assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
|
|
|
|
assert(start_array->covered_region().contains(sp->used_region()),
|
|
|
|
"ObjectStartArray does not cover space");
|
|
|
|
bool depth_first = pm->depth_first();
|
|
|
|
|
|
|
|
if (sp->not_empty()) {
|
|
|
|
oop* sp_top = (oop*)space_top;
|
|
|
|
oop* prev_top = NULL;
|
|
|
|
jbyte* current_card = byte_for(sp->bottom());
|
|
|
|
jbyte* end_card = byte_for(sp_top - 1); // sp_top is exclusive
|
|
|
|
// scan card marking array
|
|
|
|
while (current_card <= end_card) {
|
|
|
|
jbyte value = *current_card;
|
|
|
|
// skip clean cards
|
|
|
|
if (card_is_clean(value)) {
|
|
|
|
current_card++;
|
|
|
|
} else {
|
|
|
|
// we found a non-clean card
|
|
|
|
jbyte* first_nonclean_card = current_card++;
|
|
|
|
oop* bottom = (oop*)addr_for(first_nonclean_card);
|
|
|
|
// find object starting on card
|
|
|
|
oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
|
|
|
|
// bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
|
|
|
|
assert(bottom_obj <= bottom, "just checking");
|
|
|
|
// make sure we don't scan oops we already looked at
|
|
|
|
if (bottom < prev_top) bottom = prev_top;
|
|
|
|
// figure out when to stop scanning
|
|
|
|
jbyte* first_clean_card;
|
|
|
|
oop* top;
|
|
|
|
bool restart_scanning;
|
|
|
|
do {
|
|
|
|
restart_scanning = false;
|
|
|
|
// find a clean card
|
|
|
|
while (current_card <= end_card) {
|
|
|
|
value = *current_card;
|
|
|
|
if (card_is_clean(value)) break;
|
|
|
|
current_card++;
|
|
|
|
}
|
|
|
|
// check if we reached the end, if so we are done
|
|
|
|
if (current_card >= end_card) {
|
|
|
|
first_clean_card = end_card + 1;
|
|
|
|
current_card++;
|
|
|
|
top = sp_top;
|
|
|
|
} else {
|
|
|
|
// we have a clean card, find object starting on that card
|
|
|
|
first_clean_card = current_card++;
|
|
|
|
top = (oop*)addr_for(first_clean_card);
|
|
|
|
oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
|
|
|
|
// top_obj = (oop*)start_array->object_start((HeapWord*)top);
|
|
|
|
assert(top_obj <= top, "just checking");
|
|
|
|
if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
|
|
|
|
// an arrayOop is starting on the clean card - since we do exact store
|
|
|
|
// checks for objArrays we are done
|
|
|
|
} else {
|
|
|
|
// otherwise, it is possible that the object starting on the clean card
|
|
|
|
// spans the entire card, and that the store happened on a later card.
|
|
|
|
// figure out where the object ends
|
|
|
|
top = top_obj + oop(top_obj)->size();
|
|
|
|
jbyte* top_card = CardTableModRefBS::byte_for(top - 1); // top is exclusive
|
|
|
|
if (top_card > first_clean_card) {
|
|
|
|
// object ends a different card
|
|
|
|
current_card = top_card + 1;
|
|
|
|
if (card_is_clean(*top_card)) {
|
|
|
|
// the ending card is clean, we are done
|
|
|
|
first_clean_card = top_card;
|
|
|
|
} else {
|
|
|
|
// the ending card is not clean, continue scanning at start of do-while
|
|
|
|
restart_scanning = true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// object ends on the clean card, we are done.
|
|
|
|
assert(first_clean_card == top_card, "just checking");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (restart_scanning);
|
|
|
|
// we know which cards to scan, now clear them
|
|
|
|
while (first_nonclean_card < first_clean_card) {
|
|
|
|
*first_nonclean_card++ = clean_card;
|
|
|
|
}
|
|
|
|
// scan oops in objects
|
|
|
|
// hoisted the if (depth_first) check out of the loop
|
|
|
|
if (depth_first){
|
|
|
|
do {
|
|
|
|
oop(bottom_obj)->push_contents(pm);
|
|
|
|
bottom_obj += oop(bottom_obj)->size();
|
|
|
|
assert(bottom_obj <= sp_top, "just checking");
|
|
|
|
} while (bottom_obj < top);
|
|
|
|
pm->drain_stacks_cond_depth();
|
|
|
|
} else {
|
|
|
|
do {
|
|
|
|
oop(bottom_obj)->copy_contents(pm);
|
|
|
|
bottom_obj += oop(bottom_obj)->size();
|
|
|
|
assert(bottom_obj <= sp_top, "just checking");
|
|
|
|
} while (bottom_obj < top);
|
|
|
|
}
|
|
|
|
// remember top oop* scanned
|
|
|
|
prev_top = top;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
|
|
|
|
MutableSpace* sp,
|
|
|
|
HeapWord* space_top,
|
|
|
|
PSPromotionManager* pm,
|
|
|
|
uint stripe_number) {
|
|
|
|
int ssize = 128; // Naked constant! Work unit = 64k.
|
|
|
|
int dirty_card_count = 0;
|
|
|
|
bool depth_first = pm->depth_first();
|
|
|
|
|
|
|
|
oop* sp_top = (oop*)space_top;
|
|
|
|
jbyte* start_card = byte_for(sp->bottom());
|
|
|
|
jbyte* end_card = byte_for(sp_top - 1) + 1;
|
|
|
|
oop* last_scanned = NULL; // Prevent scanning objects more than once
|
|
|
|
for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
|
|
|
|
jbyte* worker_start_card = slice + stripe_number * ssize;
|
|
|
|
if (worker_start_card >= end_card)
|
|
|
|
return; // We're done.
|
|
|
|
|
|
|
|
jbyte* worker_end_card = worker_start_card + ssize;
|
|
|
|
if (worker_end_card > end_card)
|
|
|
|
worker_end_card = end_card;
|
|
|
|
|
|
|
|
// We do not want to scan objects more than once. In order to accomplish
|
|
|
|
// this, we assert that any object with an object head inside our 'slice'
|
|
|
|
// belongs to us. We may need to extend the range of scanned cards if the
|
|
|
|
// last object continues into the next 'slice'.
|
|
|
|
//
|
|
|
|
// Note! ending cards are exclusive!
|
|
|
|
HeapWord* slice_start = addr_for(worker_start_card);
|
|
|
|
HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
|
|
|
|
|
|
|
|
// If there are not objects starting within the chunk, skip it.
|
|
|
|
if (!start_array->object_starts_in_range(slice_start, slice_end)) {
|
|
|
|
continue;
|
|
|
|
}
|
2009-02-27 13:27:09 -08:00
|
|
|
// Update our beginning addr
|
2007-12-01 00:00:00 +00:00
|
|
|
HeapWord* first_object = start_array->object_start(slice_start);
|
|
|
|
debug_only(oop* first_object_within_slice = (oop*) first_object;)
|
|
|
|
if (first_object < slice_start) {
|
|
|
|
last_scanned = (oop*)(first_object + oop(first_object)->size());
|
|
|
|
debug_only(first_object_within_slice = last_scanned;)
|
|
|
|
worker_start_card = byte_for(last_scanned);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update the ending addr
|
|
|
|
if (slice_end < (HeapWord*)sp_top) {
|
|
|
|
// The subtraction is important! An object may start precisely at slice_end.
|
|
|
|
HeapWord* last_object = start_array->object_start(slice_end - 1);
|
|
|
|
slice_end = last_object + oop(last_object)->size();
|
|
|
|
// worker_end_card is exclusive, so bump it one past the end of last_object's
|
|
|
|
// covered span.
|
|
|
|
worker_end_card = byte_for(slice_end) + 1;
|
|
|
|
|
|
|
|
if (worker_end_card > end_card)
|
|
|
|
worker_end_card = end_card;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
|
|
|
|
assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
|
|
|
|
assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
|
|
|
|
// Note that worker_start_card >= worker_end_card is legal, and happens when
|
|
|
|
// an object spans an entire slice.
|
|
|
|
assert(worker_start_card <= end_card, "worker start card beyond end card");
|
|
|
|
assert(worker_end_card <= end_card, "worker end card beyond end card");
|
|
|
|
|
|
|
|
jbyte* current_card = worker_start_card;
|
|
|
|
while (current_card < worker_end_card) {
|
|
|
|
// Find an unclean card.
|
|
|
|
while (current_card < worker_end_card && card_is_clean(*current_card)) {
|
|
|
|
current_card++;
|
|
|
|
}
|
|
|
|
jbyte* first_unclean_card = current_card;
|
|
|
|
|
|
|
|
// Find the end of a run of contiguous unclean cards
|
|
|
|
while (current_card < worker_end_card && !card_is_clean(*current_card)) {
|
|
|
|
while (current_card < worker_end_card && !card_is_clean(*current_card)) {
|
|
|
|
current_card++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (current_card < worker_end_card) {
|
|
|
|
// Some objects may be large enough to span several cards. If such
|
|
|
|
// an object has more than one dirty card, separated by a clean card,
|
|
|
|
// we will attempt to scan it twice. The test against "last_scanned"
|
|
|
|
// prevents the redundant object scan, but it does not prevent newly
|
|
|
|
// marked cards from being cleaned.
|
|
|
|
HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
|
|
|
|
size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
|
|
|
|
HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
|
|
|
|
jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
|
|
|
|
assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
|
|
|
|
if (ending_card_of_last_object > current_card) {
|
|
|
|
// This means the object spans the next complete card.
|
|
|
|
// We need to bump the current_card to ending_card_of_last_object
|
|
|
|
current_card = ending_card_of_last_object;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
jbyte* following_clean_card = current_card;
|
|
|
|
|
|
|
|
if (first_unclean_card < worker_end_card) {
|
|
|
|
oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
|
|
|
|
assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
|
|
|
|
// "p" should always be >= "last_scanned" because newly GC dirtied
|
|
|
|
// cards are no longer scanned again (see comment at end
|
|
|
|
// of loop on the increment of "current_card"). Test that
|
|
|
|
// hypothesis before removing this code.
|
|
|
|
// If this code is removed, deal with the first time through
|
|
|
|
// the loop when the last_scanned is the object starting in
|
|
|
|
// the previous slice.
|
|
|
|
assert((p >= last_scanned) ||
|
|
|
|
(last_scanned == first_object_within_slice),
|
|
|
|
"Should no longer be possible");
|
|
|
|
if (p < last_scanned) {
|
|
|
|
// Avoid scanning more than once; this can happen because
|
|
|
|
// newgen cards set by GC may a different set than the
|
|
|
|
// originally dirty set
|
|
|
|
p = last_scanned;
|
|
|
|
}
|
|
|
|
oop* to = (oop*)addr_for(following_clean_card);
|
|
|
|
|
|
|
|
// Test slice_end first!
|
|
|
|
if ((HeapWord*)to > slice_end) {
|
|
|
|
to = (oop*)slice_end;
|
|
|
|
} else if (to > sp_top) {
|
|
|
|
to = sp_top;
|
|
|
|
}
|
|
|
|
|
|
|
|
// we know which cards to scan, now clear them
|
|
|
|
if (first_unclean_card <= worker_start_card+1)
|
|
|
|
first_unclean_card = worker_start_card+1;
|
|
|
|
if (following_clean_card >= worker_end_card-1)
|
|
|
|
following_clean_card = worker_end_card-1;
|
|
|
|
|
|
|
|
while (first_unclean_card < following_clean_card) {
|
|
|
|
*first_unclean_card++ = clean_card;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int interval = PrefetchScanIntervalInBytes;
|
|
|
|
// scan all objects in the range
|
|
|
|
if (interval != 0) {
|
|
|
|
// hoisted the if (depth_first) check out of the loop
|
|
|
|
if (depth_first) {
|
|
|
|
while (p < to) {
|
|
|
|
Prefetch::write(p, interval);
|
|
|
|
oop m = oop(p);
|
|
|
|
assert(m->is_oop_or_null(), "check for header");
|
|
|
|
m->push_contents(pm);
|
|
|
|
p += m->size();
|
|
|
|
}
|
|
|
|
pm->drain_stacks_cond_depth();
|
|
|
|
} else {
|
|
|
|
while (p < to) {
|
|
|
|
Prefetch::write(p, interval);
|
|
|
|
oop m = oop(p);
|
|
|
|
assert(m->is_oop_or_null(), "check for header");
|
|
|
|
m->copy_contents(pm);
|
|
|
|
p += m->size();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// hoisted the if (depth_first) check out of the loop
|
|
|
|
if (depth_first) {
|
|
|
|
while (p < to) {
|
|
|
|
oop m = oop(p);
|
|
|
|
assert(m->is_oop_or_null(), "check for header");
|
|
|
|
m->push_contents(pm);
|
|
|
|
p += m->size();
|
|
|
|
}
|
|
|
|
pm->drain_stacks_cond_depth();
|
|
|
|
} else {
|
|
|
|
while (p < to) {
|
|
|
|
oop m = oop(p);
|
|
|
|
assert(m->is_oop_or_null(), "check for header");
|
|
|
|
m->copy_contents(pm);
|
|
|
|
p += m->size();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
last_scanned = p;
|
|
|
|
}
|
|
|
|
// "current_card" is still the "following_clean_card" or
|
|
|
|
// the current_card is >= the worker_end_card so the
|
|
|
|
// loop will not execute again.
|
|
|
|
assert((current_card == following_clean_card) ||
|
|
|
|
(current_card >= worker_end_card),
|
|
|
|
"current_card should only be incremented if it still equals "
|
|
|
|
"following_clean_card");
|
|
|
|
// Increment current_card so that it is not processed again.
|
|
|
|
// It may now be dirty because a old-to-young pointer was
|
|
|
|
// found on it an updated. If it is now dirty, it cannot be
|
|
|
|
// be safely cleaned in the next iteration.
|
|
|
|
current_card++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// This should be called before a scavenge.
|
|
|
|
void CardTableExtension::verify_all_young_refs_imprecise() {
|
|
|
|
CheckForUnmarkedObjects check;
|
|
|
|
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
|
|
|
|
|
|
PSOldGen* old_gen = heap->old_gen();
|
|
|
|
PSPermGen* perm_gen = heap->perm_gen();
|
|
|
|
|
|
|
|
old_gen->object_iterate(&check);
|
|
|
|
perm_gen->object_iterate(&check);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This should be called immediately after a scavenge, before mutators resume.
|
|
|
|
void CardTableExtension::verify_all_young_refs_precise() {
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
|
|
|
|
|
|
PSOldGen* old_gen = heap->old_gen();
|
|
|
|
PSPermGen* perm_gen = heap->perm_gen();
|
|
|
|
|
|
|
|
CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
|
|
|
|
|
|
|
|
old_gen->oop_iterate(&check);
|
|
|
|
perm_gen->oop_iterate(&check);
|
|
|
|
|
|
|
|
verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
|
|
|
|
verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
|
|
|
|
CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
|
|
|
|
// FIX ME ASSERT HERE
|
|
|
|
|
|
|
|
jbyte* bot = card_table->byte_for(mr.start());
|
|
|
|
jbyte* top = card_table->byte_for(mr.end());
|
|
|
|
while(bot <= top) {
|
|
|
|
assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
|
|
|
|
if (*bot == verify_card)
|
|
|
|
*bot = youngergen_card;
|
|
|
|
bot++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
|
|
|
|
jbyte* p = byte_for(addr);
|
|
|
|
jbyte val = *p;
|
|
|
|
|
|
|
|
if (card_is_dirty(val))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (card_is_newgen(val))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (card_is_clean(val))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
assert(false, "Found unhandled card mark type");
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Also includes verify_card
|
|
|
|
bool CardTableExtension::addr_is_marked_precise(void *addr) {
|
|
|
|
jbyte* p = byte_for(addr);
|
|
|
|
jbyte val = *p;
|
|
|
|
|
|
|
|
if (card_is_newgen(val))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (card_is_verify(val))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (card_is_clean(val))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (card_is_dirty(val))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
assert(false, "Found unhandled card mark type");
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Assumes that only the base or the end changes. This allows indentification
|
|
|
|
// of the region that is being resized. The
|
|
|
|
// CardTableModRefBS::resize_covered_region() is used for the normal case
|
|
|
|
// where the covered regions are growing or shrinking at the high end.
|
|
|
|
// The method resize_covered_region_by_end() is analogous to
|
|
|
|
// CardTableModRefBS::resize_covered_region() but
|
|
|
|
// for regions that grow or shrink at the low end.
|
|
|
|
void CardTableExtension::resize_covered_region(MemRegion new_region) {
|
|
|
|
|
|
|
|
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
|
|
if (_covered[i].start() == new_region.start()) {
|
|
|
|
// Found a covered region with the same start as the
|
|
|
|
// new region. The region is growing or shrinking
|
|
|
|
// from the start of the region.
|
|
|
|
resize_covered_region_by_start(new_region);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (_covered[i].start() > new_region.start()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int changed_region = -1;
|
|
|
|
for (int j = 0; j < _cur_covered_regions; j++) {
|
|
|
|
if (_covered[j].end() == new_region.end()) {
|
|
|
|
changed_region = j;
|
|
|
|
// This is a case where the covered region is growing or shrinking
|
|
|
|
// at the start of the region.
|
|
|
|
assert(changed_region != -1, "Don't expect to add a covered region");
|
|
|
|
assert(_covered[changed_region].byte_size() != new_region.byte_size(),
|
|
|
|
"The sizes should be different here");
|
|
|
|
resize_covered_region_by_end(changed_region, new_region);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// This should only be a new covered region (where no existing
|
|
|
|
// covered region matches at the start or the end).
|
|
|
|
assert(_cur_covered_regions < _max_covered_regions,
|
|
|
|
"An existing region should have been found");
|
|
|
|
resize_covered_region_by_start(new_region);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
|
|
|
|
CardTableModRefBS::resize_covered_region(new_region);
|
|
|
|
debug_only(verify_guard();)
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableExtension::resize_covered_region_by_end(int changed_region,
|
|
|
|
MemRegion new_region) {
|
|
|
|
assert(SafepointSynchronize::is_at_safepoint(),
|
|
|
|
"Only expect an expansion at the low end at a GC");
|
|
|
|
debug_only(verify_guard();)
|
|
|
|
#ifdef ASSERT
|
|
|
|
for (int k = 0; k < _cur_covered_regions; k++) {
|
|
|
|
if (_covered[k].end() == new_region.end()) {
|
|
|
|
assert(changed_region == k, "Changed region is incorrect");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Commit new or uncommit old pages, if necessary.
|
|
|
|
resize_commit_uncommit(changed_region, new_region);
|
|
|
|
|
|
|
|
// Update card table entries
|
|
|
|
resize_update_card_table_entries(changed_region, new_region);
|
|
|
|
|
|
|
|
// Set the new start of the committed region
|
|
|
|
resize_update_committed_table(changed_region, new_region);
|
|
|
|
|
|
|
|
// Update the covered region
|
|
|
|
resize_update_covered_table(changed_region, new_region);
|
|
|
|
|
|
|
|
if (TraceCardTableModRefBS) {
|
|
|
|
int ind = changed_region;
|
|
|
|
gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" _covered[%d].start(): " INTPTR_FORMAT
|
|
|
|
" _covered[%d].last(): " INTPTR_FORMAT,
|
|
|
|
ind, _covered[ind].start(),
|
|
|
|
ind, _covered[ind].last());
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" _committed[%d].start(): " INTPTR_FORMAT
|
|
|
|
" _committed[%d].last(): " INTPTR_FORMAT,
|
|
|
|
ind, _committed[ind].start(),
|
|
|
|
ind, _committed[ind].last());
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" byte_for(start): " INTPTR_FORMAT
|
|
|
|
" byte_for(last): " INTPTR_FORMAT,
|
|
|
|
byte_for(_covered[ind].start()),
|
|
|
|
byte_for(_covered[ind].last()));
|
|
|
|
gclog_or_tty->print_cr(" "
|
|
|
|
" addr_for(start): " INTPTR_FORMAT
|
|
|
|
" addr_for(last): " INTPTR_FORMAT,
|
|
|
|
addr_for((jbyte*) _committed[ind].start()),
|
|
|
|
addr_for((jbyte*) _committed[ind].last()));
|
|
|
|
}
|
|
|
|
debug_only(verify_guard();)
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableExtension::resize_commit_uncommit(int changed_region,
|
|
|
|
MemRegion new_region) {
|
|
|
|
// Commit new or uncommit old pages, if necessary.
|
|
|
|
MemRegion cur_committed = _committed[changed_region];
|
|
|
|
assert(_covered[changed_region].end() == new_region.end(),
|
|
|
|
"The ends of the regions are expected to match");
|
|
|
|
// Extend the start of this _committed region to
|
|
|
|
// to cover the start of any previous _committed region.
|
|
|
|
// This forms overlapping regions, but never interior regions.
|
|
|
|
HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
|
|
|
|
if (min_prev_start < cur_committed.start()) {
|
|
|
|
// Only really need to set start of "cur_committed" to
|
|
|
|
// the new start (min_prev_start) but assertion checking code
|
|
|
|
// below use cur_committed.end() so make it correct.
|
|
|
|
MemRegion new_committed =
|
|
|
|
MemRegion(min_prev_start, cur_committed.end());
|
|
|
|
cur_committed = new_committed;
|
|
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
|
|
assert(cur_committed.start() ==
|
|
|
|
(HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
|
|
|
|
os::vm_page_size()),
|
|
|
|
"Starts should have proper alignment");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
jbyte* new_start = byte_for(new_region.start());
|
|
|
|
// Round down because this is for the start address
|
|
|
|
HeapWord* new_start_aligned =
|
|
|
|
(HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
|
|
|
|
// The guard page is always committed and should not be committed over.
|
|
|
|
// This method is used in cases where the generation is growing toward
|
|
|
|
// lower addresses but the guard region is still at the end of the
|
|
|
|
// card table. That still makes sense when looking for writes
|
|
|
|
// off the end of the card table.
|
|
|
|
if (new_start_aligned < cur_committed.start()) {
|
|
|
|
// Expand the committed region
|
|
|
|
//
|
|
|
|
// Case A
|
|
|
|
// |+ guard +|
|
|
|
|
// |+ cur committed +++++++++|
|
|
|
|
// |+ new committed +++++++++++++++++|
|
|
|
|
//
|
|
|
|
// Case B
|
|
|
|
// |+ guard +|
|
|
|
|
// |+ cur committed +|
|
|
|
|
// |+ new committed +++++++|
|
|
|
|
//
|
|
|
|
// These are not expected because the calculation of the
|
|
|
|
// cur committed region and the new committed region
|
|
|
|
// share the same end for the covered region.
|
|
|
|
// Case C
|
|
|
|
// |+ guard +|
|
|
|
|
// |+ cur committed +|
|
|
|
|
// |+ new committed +++++++++++++++++|
|
|
|
|
// Case D
|
|
|
|
// |+ guard +|
|
|
|
|
// |+ cur committed +++++++++++|
|
|
|
|
// |+ new committed +++++++|
|
|
|
|
|
|
|
|
HeapWord* new_end_for_commit =
|
|
|
|
MIN2(cur_committed.end(), _guard_region.start());
|
2008-07-09 15:08:55 -07:00
|
|
|
if(new_start_aligned < new_end_for_commit) {
|
|
|
|
MemRegion new_committed =
|
|
|
|
MemRegion(new_start_aligned, new_end_for_commit);
|
2007-12-01 00:00:00 +00:00
|
|
|
if (!os::commit_memory((char*)new_committed.start(),
|
|
|
|
new_committed.byte_size())) {
|
|
|
|
vm_exit_out_of_memory(new_committed.byte_size(),
|
|
|
|
"card table expansion");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (new_start_aligned > cur_committed.start()) {
|
|
|
|
// Shrink the committed region
|
|
|
|
MemRegion uncommit_region = committed_unique_to_self(changed_region,
|
|
|
|
MemRegion(cur_committed.start(), new_start_aligned));
|
|
|
|
if (!uncommit_region.is_empty()) {
|
|
|
|
if (!os::uncommit_memory((char*)uncommit_region.start(),
|
|
|
|
uncommit_region.byte_size())) {
|
|
|
|
vm_exit_out_of_memory(uncommit_region.byte_size(),
|
|
|
|
"card table contraction");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(_committed[changed_region].end() == cur_committed.end(),
|
|
|
|
"end should not change");
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableExtension::resize_update_committed_table(int changed_region,
|
|
|
|
MemRegion new_region) {
|
|
|
|
|
|
|
|
jbyte* new_start = byte_for(new_region.start());
|
|
|
|
// Set the new start of the committed region
|
|
|
|
HeapWord* new_start_aligned =
|
|
|
|
(HeapWord*)align_size_down((uintptr_t)new_start,
|
|
|
|
os::vm_page_size());
|
|
|
|
MemRegion new_committed = MemRegion(new_start_aligned,
|
|
|
|
_committed[changed_region].end());
|
|
|
|
_committed[changed_region] = new_committed;
|
|
|
|
_committed[changed_region].set_start(new_start_aligned);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableExtension::resize_update_card_table_entries(int changed_region,
|
|
|
|
MemRegion new_region) {
|
|
|
|
debug_only(verify_guard();)
|
|
|
|
MemRegion original_covered = _covered[changed_region];
|
|
|
|
// Initialize the card entries. Only consider the
|
|
|
|
// region covered by the card table (_whole_heap)
|
|
|
|
jbyte* entry;
|
|
|
|
if (new_region.start() < _whole_heap.start()) {
|
|
|
|
entry = byte_for(_whole_heap.start());
|
|
|
|
} else {
|
|
|
|
entry = byte_for(new_region.start());
|
|
|
|
}
|
|
|
|
jbyte* end = byte_for(original_covered.start());
|
|
|
|
// If _whole_heap starts at the original covered regions start,
|
|
|
|
// this loop will not execute.
|
|
|
|
while (entry < end) { *entry++ = clean_card; }
|
|
|
|
}
|
|
|
|
|
|
|
|
void CardTableExtension::resize_update_covered_table(int changed_region,
|
|
|
|
MemRegion new_region) {
|
|
|
|
// Update the covered region
|
|
|
|
_covered[changed_region].set_start(new_region.start());
|
|
|
|
_covered[changed_region].set_word_size(new_region.word_size());
|
|
|
|
|
|
|
|
// reorder regions. There should only be at most 1 out
|
|
|
|
// of order.
|
|
|
|
for (int i = _cur_covered_regions-1 ; i > 0; i--) {
|
|
|
|
if (_covered[i].start() < _covered[i-1].start()) {
|
|
|
|
MemRegion covered_mr = _covered[i-1];
|
|
|
|
_covered[i-1] = _covered[i];
|
|
|
|
_covered[i] = covered_mr;
|
|
|
|
MemRegion committed_mr = _committed[i-1];
|
|
|
|
_committed[i-1] = _committed[i];
|
|
|
|
_committed[i] = committed_mr;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
|
|
for (int m = 0; m < _cur_covered_regions-1; m++) {
|
|
|
|
assert(_covered[m].start() <= _covered[m+1].start(),
|
|
|
|
"Covered regions out of order");
|
|
|
|
assert(_committed[m].start() <= _committed[m+1].start(),
|
|
|
|
"Committed regions out of order");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns the start of any committed region that is lower than
|
|
|
|
// the target committed region (index ind) and that intersects the
|
|
|
|
// target region. If none, return start of target region.
|
|
|
|
//
|
|
|
|
// -------------
|
|
|
|
// | |
|
|
|
|
// -------------
|
|
|
|
// ------------
|
|
|
|
// | target |
|
|
|
|
// ------------
|
|
|
|
// -------------
|
|
|
|
// | |
|
|
|
|
// -------------
|
|
|
|
// ^ returns this
|
|
|
|
//
|
|
|
|
// -------------
|
|
|
|
// | |
|
|
|
|
// -------------
|
|
|
|
// ------------
|
|
|
|
// | target |
|
|
|
|
// ------------
|
|
|
|
// -------------
|
|
|
|
// | |
|
|
|
|
// -------------
|
|
|
|
// ^ returns this
|
|
|
|
|
|
|
|
HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
|
|
|
|
assert(_cur_covered_regions >= 0, "Expecting at least on region");
|
|
|
|
HeapWord* min_start = _committed[ind].start();
|
|
|
|
for (int j = 0; j < ind; j++) {
|
|
|
|
HeapWord* this_start = _committed[j].start();
|
|
|
|
if ((this_start < min_start) &&
|
|
|
|
!(_committed[j].intersection(_committed[ind])).is_empty()) {
|
|
|
|
min_start = this_start;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return min_start;
|
|
|
|
}
|