520 lines
26 KiB
C++
520 lines
26 KiB
C++
|
/*
|
||
|
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||
|
* or visit www.oracle.com if you need additional information or have any
|
||
|
* questions.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#ifndef SHARE_VM_RUNTIME_ACCESS_HPP
|
||
|
#define SHARE_VM_RUNTIME_ACCESS_HPP
|
||
|
|
||
|
#include "memory/allocation.hpp"
|
||
|
#include "metaprogramming/decay.hpp"
|
||
|
#include "metaprogramming/integralConstant.hpp"
|
||
|
#include "oops/oopsHierarchy.hpp"
|
||
|
#include "utilities/debug.hpp"
|
||
|
#include "utilities/globalDefinitions.hpp"
|
||
|
|
||
|
// = GENERAL =
|
||
|
// Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
|
||
|
// A decorator is an attribute or property that affects the way a memory access is performed in some way.
|
||
|
// There are different groups of decorators. Some have to do with memory ordering, others to do with,
|
||
|
// e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
|
||
|
// Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
|
||
|
// at callsites such as whether an access is in the heap or not, and others are resolved at runtime
|
||
|
// such as GC-specific barriers and encoding/decoding compressed oops.
|
||
|
// By pipelining handling of these decorators, the design of the Access API allows separation of concern
|
||
|
// over the different orthogonal concerns of decorators, while providing a powerful way of
|
||
|
// expressing these orthogonal semantic properties in a unified way.
|
||
|
|
||
|
// == OPERATIONS ==
|
||
|
// * load: Load a value from an address.
|
||
|
// * load_at: Load a value from an internal pointer relative to a base object.
|
||
|
// * store: Store a value at an address.
|
||
|
// * store_at: Store a value in an internal pointer relative to a base object.
|
||
|
// * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
|
||
|
// * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
|
||
|
// * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
|
||
|
// * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
|
||
|
// * arraycopy: Copy data from one heap array to another heap array.
|
||
|
// * clone: Clone the contents of an object to a newly allocated object.
|
||
|
|
||
|
typedef uint64_t DecoratorSet;
|
||
|
|
||
|
// == Internal Decorators - do not use ==
|
||
|
// * INTERNAL_EMPTY: This is the name for the empty decorator set (in absence of other decorators).
|
||
|
// * INTERNAL_CONVERT_COMPRESSED_OOPS: This is an oop access that will require converting an oop
|
||
|
// to a narrowOop or vice versa, if UseCompressedOops is known to be set.
|
||
|
// * INTERNAL_VALUE_IS_OOP: Remember that the involved access is on oop rather than primitive.
|
||
|
const DecoratorSet INTERNAL_EMPTY = UCONST64(0);
|
||
|
const DecoratorSet INTERNAL_CONVERT_COMPRESSED_OOP = UCONST64(1) << 1;
|
||
|
const DecoratorSet INTERNAL_VALUE_IS_OOP = UCONST64(1) << 2;
|
||
|
|
||
|
// == Internal build-time Decorators ==
|
||
|
// * INTERNAL_BT_BARRIER_ON_PRIMITIVES: This is set in the barrierSetConfig.hpp file.
|
||
|
const DecoratorSet INTERNAL_BT_BARRIER_ON_PRIMITIVES = UCONST64(1) << 3;
|
||
|
|
||
|
// == Internal run-time Decorators ==
|
||
|
// * INTERNAL_RT_USE_COMPRESSED_OOPS: This decorator will be set in runtime resolved
|
||
|
// access backends iff UseCompressedOops is true.
|
||
|
const DecoratorSet INTERNAL_RT_USE_COMPRESSED_OOPS = UCONST64(1) << 4;
|
||
|
|
||
|
const DecoratorSet INTERNAL_DECORATOR_MASK = INTERNAL_CONVERT_COMPRESSED_OOP | INTERNAL_VALUE_IS_OOP |
|
||
|
INTERNAL_BT_BARRIER_ON_PRIMITIVES | INTERNAL_RT_USE_COMPRESSED_OOPS;
|
||
|
|
||
|
// == Memory Ordering Decorators ==
|
||
|
// The memory ordering decorators can be described in the following way:
|
||
|
// === Decorator Rules ===
|
||
|
// The different types of memory ordering guarantees have a strict order of strength.
|
||
|
// Explicitly specifying the stronger ordering implies that the guarantees of the weaker
|
||
|
// property holds too. The names come from the C++11 atomic operations, and typically
|
||
|
// have a JMM equivalent property.
|
||
|
// The equivalence may be viewed like this:
|
||
|
// MO_UNORDERED is equivalent to JMM plain.
|
||
|
// MO_VOLATILE has no equivalence in JMM, because it's a C++ thing.
|
||
|
// MO_RELAXED is equivalent to JMM opaque.
|
||
|
// MO_ACQUIRE is equivalent to JMM acquire.
|
||
|
// MO_RELEASE is equivalent to JMM release.
|
||
|
// MO_SEQ_CST is equivalent to JMM volatile.
|
||
|
//
|
||
|
// === Stores ===
|
||
|
// * MO_UNORDERED (Default): No guarantees.
|
||
|
// - The compiler and hardware are free to reorder aggressively. And they will.
|
||
|
// * MO_VOLATILE: Volatile stores (in the C++ sense).
|
||
|
// - The stores are not reordered by the compiler (but possibly the HW) w.r.t. other
|
||
|
// volatile accesses in program order (but possibly non-volatile accesses).
|
||
|
// * MO_RELAXED: Relaxed atomic stores.
|
||
|
// - The stores are atomic.
|
||
|
// - Guarantees from volatile stores hold.
|
||
|
// * MO_RELEASE: Releasing stores.
|
||
|
// - The releasing store will make its preceding memory accesses observable to memory accesses
|
||
|
// subsequent to an acquiring load observing this releasing store.
|
||
|
// - Guarantees from relaxed stores hold.
|
||
|
// * MO_SEQ_CST: Sequentially consistent stores.
|
||
|
// - The stores are observed in the same order by MO_SEQ_CST loads on other processors
|
||
|
// - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order.
|
||
|
// - Guarantees from releasing stores hold.
|
||
|
// === Loads ===
|
||
|
// * MO_UNORDERED (Default): No guarantees
|
||
|
// - The compiler and hardware are free to reorder aggressively. And they will.
|
||
|
// * MO_VOLATILE: Volatile loads (in the C++ sense).
|
||
|
// - The loads are not reordered by the compiler (but possibly the HW) w.r.t. other
|
||
|
// volatile accesses in program order (but possibly non-volatile accesses).
|
||
|
// * MO_RELAXED: Relaxed atomic loads.
|
||
|
// - The stores are atomic.
|
||
|
// - Guarantees from volatile loads hold.
|
||
|
// * MO_ACQUIRE: Acquiring loads.
|
||
|
// - An acquiring load will make subsequent memory accesses observe the memory accesses
|
||
|
// preceding the releasing store that the acquiring load observed.
|
||
|
// - Guarantees from relaxed loads hold.
|
||
|
// * MO_SEQ_CST: Sequentially consistent loads.
|
||
|
// - These loads observe MO_SEQ_CST stores in the same order on other processors
|
||
|
// - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order.
|
||
|
// - Guarantees from acquiring loads hold.
|
||
|
// === Atomic Cmpxchg ===
|
||
|
// * MO_RELAXED: Atomic but relaxed cmpxchg.
|
||
|
// - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold unconditionally.
|
||
|
// * MO_SEQ_CST: Sequentially consistent cmpxchg.
|
||
|
// - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold unconditionally.
|
||
|
// === Atomic Xchg ===
|
||
|
// * MO_RELAXED: Atomic but relaxed atomic xchg.
|
||
|
// - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold.
|
||
|
// * MO_SEQ_CST: Sequentially consistent xchg.
|
||
|
// - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold.
|
||
|
const DecoratorSet MO_UNORDERED = UCONST64(1) << 5;
|
||
|
const DecoratorSet MO_VOLATILE = UCONST64(1) << 6;
|
||
|
const DecoratorSet MO_RELAXED = UCONST64(1) << 7;
|
||
|
const DecoratorSet MO_ACQUIRE = UCONST64(1) << 8;
|
||
|
const DecoratorSet MO_RELEASE = UCONST64(1) << 9;
|
||
|
const DecoratorSet MO_SEQ_CST = UCONST64(1) << 10;
|
||
|
const DecoratorSet MO_DECORATOR_MASK = MO_UNORDERED | MO_VOLATILE | MO_RELAXED |
|
||
|
MO_ACQUIRE | MO_RELEASE | MO_SEQ_CST;
|
||
|
|
||
|
// === Barrier Strength Decorators ===
|
||
|
// * AS_RAW: The access will translate into a raw memory access, hence ignoring all semantic concerns
|
||
|
// except memory ordering and compressed oops. This will bypass runtime function pointer dispatching
|
||
|
// in the pipeline and hardwire to raw accesses without going trough the GC access barriers.
|
||
|
// - Accesses on oop* translate to raw memory accesses without runtime checks
|
||
|
// - Accesses on narrowOop* translate to encoded/decoded memory accesses without runtime checks
|
||
|
// - Accesses on HeapWord* translate to a runtime check choosing one of the above
|
||
|
// - Accesses on other types translate to raw memory accesses without runtime checks
|
||
|
// * AS_NO_KEEPALIVE: The barrier is used only on oop references and will not keep any involved objects
|
||
|
// alive, regardless of the type of reference being accessed. It will however perform the memory access
|
||
|
// in a consistent way w.r.t. e.g. concurrent compaction, so that the right field is being accessed,
|
||
|
// or maintain, e.g. intergenerational or interregional pointers if applicable. This should be used with
|
||
|
// extreme caution in isolated scopes.
|
||
|
// * AS_NORMAL: The accesses will be resolved to an accessor on the BarrierSet class, giving the
|
||
|
// responsibility of performing the access and what barriers to be performed to the GC. This is the default.
|
||
|
// Note that primitive accesses will only be resolved on the barrier set if the appropriate build-time
|
||
|
// decorator for enabling primitive barriers is enabled for the build.
|
||
|
const DecoratorSet AS_RAW = UCONST64(1) << 11;
|
||
|
const DecoratorSet AS_NO_KEEPALIVE = UCONST64(1) << 12;
|
||
|
const DecoratorSet AS_NORMAL = UCONST64(1) << 13;
|
||
|
const DecoratorSet AS_DECORATOR_MASK = AS_RAW | AS_NO_KEEPALIVE | AS_NORMAL;
|
||
|
|
||
|
// === Reference Strength Decorators ===
|
||
|
// These decorators only apply to accesses on oop-like types (oop/narrowOop).
|
||
|
// * ON_STRONG_OOP_REF: Memory access is performed on a strongly reachable reference.
|
||
|
// * ON_WEAK_OOP_REF: The memory access is performed on a weakly reachable reference.
|
||
|
// * ON_PHANTOM_OOP_REF: The memory access is performed on a phantomly reachable reference.
|
||
|
// This is the same ring of strength as jweak and weak oops in the VM.
|
||
|
// * ON_UNKNOWN_OOP_REF: The memory access is performed on a reference of unknown strength.
|
||
|
// This could for example come from the unsafe API.
|
||
|
// * Default (no explicit reference strength specified): ON_STRONG_OOP_REF
|
||
|
const DecoratorSet ON_STRONG_OOP_REF = UCONST64(1) << 14;
|
||
|
const DecoratorSet ON_WEAK_OOP_REF = UCONST64(1) << 15;
|
||
|
const DecoratorSet ON_PHANTOM_OOP_REF = UCONST64(1) << 16;
|
||
|
const DecoratorSet ON_UNKNOWN_OOP_REF = UCONST64(1) << 17;
|
||
|
const DecoratorSet ON_DECORATOR_MASK = ON_STRONG_OOP_REF | ON_WEAK_OOP_REF |
|
||
|
ON_PHANTOM_OOP_REF | ON_UNKNOWN_OOP_REF;
|
||
|
|
||
|
// === Access Location ===
|
||
|
// Accesses can take place in, e.g. the heap, old or young generation and different native roots.
|
||
|
// The location is important to the GC as it may imply different actions. The following decorators are used:
|
||
|
// * IN_HEAP: The access is performed in the heap. Many barriers such as card marking will
|
||
|
// be omitted if this decorator is not set.
|
||
|
// * IN_HEAP_ARRAY: The access is performed on a heap allocated array. This is sometimes a special case
|
||
|
// for some GCs, and implies that it is an IN_HEAP.
|
||
|
// * IN_ROOT: The access is performed in an off-heap data structure pointing into the Java heap.
|
||
|
// * IN_CONCURRENT_ROOT: The access is performed in an off-heap data structure pointing into the Java heap,
|
||
|
// but is notably not scanned during safepoints. This is sometimes a special case for some GCs and
|
||
|
// implies that it is also an IN_ROOT.
|
||
|
const DecoratorSet IN_HEAP = UCONST64(1) << 18;
|
||
|
const DecoratorSet IN_HEAP_ARRAY = UCONST64(1) << 19;
|
||
|
const DecoratorSet IN_ROOT = UCONST64(1) << 20;
|
||
|
const DecoratorSet IN_CONCURRENT_ROOT = UCONST64(1) << 21;
|
||
|
const DecoratorSet IN_DECORATOR_MASK = IN_HEAP | IN_HEAP_ARRAY |
|
||
|
IN_ROOT | IN_CONCURRENT_ROOT;
|
||
|
|
||
|
// == Value Decorators ==
|
||
|
// * OOP_NOT_NULL: This property can make certain barriers faster such as compressing oops.
|
||
|
const DecoratorSet OOP_NOT_NULL = UCONST64(1) << 22;
|
||
|
const DecoratorSet OOP_DECORATOR_MASK = OOP_NOT_NULL;
|
||
|
|
||
|
// == Arraycopy Decorators ==
|
||
|
// * ARRAYCOPY_DEST_NOT_INITIALIZED: This property can be important to e.g. SATB barriers by
|
||
|
// marking that the previous value uninitialized nonsense rather than a real value.
|
||
|
// * ARRAYCOPY_CHECKCAST: This property means that the class of the objects in source
|
||
|
// are not guaranteed to be subclasses of the class of the destination array. This requires
|
||
|
// a check-cast barrier during the copying operation. If this is not set, it is assumed
|
||
|
// that the array is covariant: (the source array type is-a destination array type)
|
||
|
// * ARRAYCOPY_DISJOINT: This property means that it is known that the two array ranges
|
||
|
// are disjoint.
|
||
|
// * ARRAYCOPY_ARRAYOF: The copy is in the arrayof form.
|
||
|
// * ARRAYCOPY_ATOMIC: The accesses have to be atomic over the size of its elements.
|
||
|
// * ARRAYCOPY_ALIGNED: The accesses have to be aligned on a HeapWord.
|
||
|
const DecoratorSet ARRAYCOPY_DEST_NOT_INITIALIZED = UCONST64(1) << 24;
|
||
|
const DecoratorSet ARRAYCOPY_CHECKCAST = UCONST64(1) << 25;
|
||
|
const DecoratorSet ARRAYCOPY_DISJOINT = UCONST64(1) << 26;
|
||
|
const DecoratorSet ARRAYCOPY_ARRAYOF = UCONST64(1) << 27;
|
||
|
const DecoratorSet ARRAYCOPY_ATOMIC = UCONST64(1) << 28;
|
||
|
const DecoratorSet ARRAYCOPY_ALIGNED = UCONST64(1) << 29;
|
||
|
const DecoratorSet ARRAYCOPY_DECORATOR_MASK = ARRAYCOPY_DEST_NOT_INITIALIZED |
|
||
|
ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT |
|
||
|
ARRAYCOPY_DISJOINT | ARRAYCOPY_ARRAYOF |
|
||
|
ARRAYCOPY_ATOMIC | ARRAYCOPY_ALIGNED;
|
||
|
|
||
|
// The HasDecorator trait can help at compile-time determining whether a decorator set
|
||
|
// has an intersection with a certain other decorator set
|
||
|
template <DecoratorSet decorators, DecoratorSet decorator>
|
||
|
struct HasDecorator: public IntegralConstant<bool, (decorators & decorator) != 0> {};
|
||
|
|
||
|
namespace AccessInternal {
|
||
|
template <typename T>
|
||
|
struct OopOrNarrowOopInternal: AllStatic {
|
||
|
typedef oop type;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct OopOrNarrowOopInternal<narrowOop>: AllStatic {
|
||
|
typedef narrowOop type;
|
||
|
};
|
||
|
|
||
|
// This metafunction returns a canonicalized oop/narrowOop type for a passed
|
||
|
// in oop-like types passed in from oop_* overloads where the user has sworn
|
||
|
// that the passed in values should be oop-like (e.g. oop, oopDesc*, arrayOop,
|
||
|
// narrowOoop, instanceOopDesc*, and random other things).
|
||
|
// In the oop_* overloads, it must hold that if the passed in type T is not
|
||
|
// narrowOop, then it by contract has to be one of many oop-like types implicitly
|
||
|
// convertible to oop, and hence returns oop as the canonical oop type.
|
||
|
// If it turns out it was not, then the implicit conversion to oop will fail
|
||
|
// to compile, as desired.
|
||
|
template <typename T>
|
||
|
struct OopOrNarrowOop: AllStatic {
|
||
|
typedef typename OopOrNarrowOopInternal<typename Decay<T>::type>::type type;
|
||
|
};
|
||
|
|
||
|
inline void* field_addr(oop base, ptrdiff_t byte_offset) {
|
||
|
return reinterpret_cast<void*>(reinterpret_cast<intptr_t>((void*)base) + byte_offset);
|
||
|
}
|
||
|
|
||
|
template <DecoratorSet decorators, typename T>
|
||
|
void store_at(oop base, ptrdiff_t offset, T value);
|
||
|
|
||
|
template <DecoratorSet decorators, typename T>
|
||
|
T load_at(oop base, ptrdiff_t offset);
|
||
|
|
||
|
template <DecoratorSet decorators, typename T>
|
||
|
T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value);
|
||
|
|
||
|
template <DecoratorSet decorators, typename T>
|
||
|
T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset);
|
||
|
|
||
|
template <DecoratorSet decorators, typename P, typename T>
|
||
|
void store(P* addr, T value);
|
||
|
|
||
|
template <DecoratorSet decorators, typename P, typename T>
|
||
|
T load(P* addr);
|
||
|
|
||
|
template <DecoratorSet decorators, typename P, typename T>
|
||
|
T atomic_cmpxchg(T new_value, P* addr, T compare_value);
|
||
|
|
||
|
template <DecoratorSet decorators, typename P, typename T>
|
||
|
T atomic_xchg(T new_value, P* addr);
|
||
|
|
||
|
template <DecoratorSet decorators, typename T>
|
||
|
bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length);
|
||
|
|
||
|
template <DecoratorSet decorators>
|
||
|
void clone(oop src, oop dst, size_t size);
|
||
|
|
||
|
// Infer the type that should be returned from a load.
|
||
|
template <typename P, DecoratorSet decorators>
|
||
|
class LoadProxy: public StackObj {
|
||
|
private:
|
||
|
P *const _addr;
|
||
|
public:
|
||
|
LoadProxy(P* addr) : _addr(addr) {}
|
||
|
|
||
|
template <typename T>
|
||
|
inline operator T() {
|
||
|
return load<decorators, P, T>(_addr);
|
||
|
}
|
||
|
|
||
|
inline operator P() {
|
||
|
return load<decorators, P, P>(_addr);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Infer the type that should be returned from a load_at.
|
||
|
template <DecoratorSet decorators>
|
||
|
class LoadAtProxy: public StackObj {
|
||
|
private:
|
||
|
const oop _base;
|
||
|
const ptrdiff_t _offset;
|
||
|
public:
|
||
|
LoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {}
|
||
|
|
||
|
template <typename T>
|
||
|
inline operator T() const {
|
||
|
return load_at<decorators, T>(_base, _offset);
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
template <DecoratorSet decorators = INTERNAL_EMPTY>
|
||
|
class Access: public AllStatic {
|
||
|
// This function asserts that if an access gets passed in a decorator outside
|
||
|
// of the expected_decorators, then something is wrong. It additionally checks
|
||
|
// the consistency of the decorators so that supposedly disjoint decorators are indeed
|
||
|
// disjoint. For example, an access can not be both in heap and on root at the
|
||
|
// same time.
|
||
|
template <DecoratorSet expected_decorators>
|
||
|
static void verify_decorators();
|
||
|
|
||
|
template <DecoratorSet expected_mo_decorators>
|
||
|
static void verify_primitive_decorators() {
|
||
|
const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) | IN_HEAP |
|
||
|
IN_HEAP_ARRAY | MO_DECORATOR_MASK;
|
||
|
verify_decorators<expected_mo_decorators | primitive_decorators>();
|
||
|
}
|
||
|
|
||
|
template <DecoratorSet expected_mo_decorators>
|
||
|
static void verify_oop_decorators() {
|
||
|
const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
|
||
|
(ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
|
||
|
OOP_DECORATOR_MASK | MO_DECORATOR_MASK;
|
||
|
verify_decorators<expected_mo_decorators | oop_decorators>();
|
||
|
}
|
||
|
|
||
|
template <DecoratorSet expected_mo_decorators>
|
||
|
static void verify_heap_oop_decorators() {
|
||
|
const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
|
||
|
OOP_DECORATOR_MASK | (IN_DECORATOR_MASK ^
|
||
|
(IN_ROOT ^ IN_CONCURRENT_ROOT)) | // no root accesses in the heap
|
||
|
MO_DECORATOR_MASK;
|
||
|
verify_decorators<expected_mo_decorators | heap_oop_decorators>();
|
||
|
}
|
||
|
|
||
|
static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
|
||
|
static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
|
||
|
static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
|
||
|
static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
|
||
|
|
||
|
public:
|
||
|
// Primitive heap accesses
|
||
|
static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
|
||
|
verify_primitive_decorators<load_mo_decorators>();
|
||
|
return AccessInternal::LoadAtProxy<decorators>(base, offset);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline void store_at(oop base, ptrdiff_t offset, T value) {
|
||
|
verify_primitive_decorators<store_mo_decorators>();
|
||
|
AccessInternal::store_at<decorators>(base, offset, value);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
|
||
|
verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
|
||
|
return AccessInternal::atomic_cmpxchg_at<decorators>(new_value, base, offset, compare_value);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
|
||
|
verify_primitive_decorators<atomic_xchg_mo_decorators>();
|
||
|
return AccessInternal::atomic_xchg_at<decorators>(new_value, base, offset);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
|
||
|
verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
|
||
|
AS_DECORATOR_MASK>();
|
||
|
return AccessInternal::arraycopy<decorators>(src_obj, dst_obj, src, dst, length);
|
||
|
}
|
||
|
|
||
|
// Oop heap accesses
|
||
|
static inline AccessInternal::LoadAtProxy<decorators | INTERNAL_VALUE_IS_OOP> oop_load_at(oop base, ptrdiff_t offset) {
|
||
|
verify_heap_oop_decorators<load_mo_decorators>();
|
||
|
return AccessInternal::LoadAtProxy<decorators | INTERNAL_VALUE_IS_OOP>(base, offset);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline void oop_store_at(oop base, ptrdiff_t offset, T value) {
|
||
|
verify_heap_oop_decorators<store_mo_decorators>();
|
||
|
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
|
||
|
OopType oop_value = value;
|
||
|
AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
|
||
|
verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>();
|
||
|
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
|
||
|
OopType new_oop_value = new_value;
|
||
|
OopType compare_oop_value = compare_value;
|
||
|
return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset, compare_oop_value);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
|
||
|
verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
|
||
|
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
|
||
|
OopType new_oop_value = new_value;
|
||
|
return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
|
||
|
verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP | AS_DECORATOR_MASK>();
|
||
|
return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, dst_obj, src, dst, length);
|
||
|
}
|
||
|
|
||
|
// Clone an object from src to dst
|
||
|
static inline void clone(oop src, oop dst, size_t size) {
|
||
|
verify_decorators<IN_HEAP>();
|
||
|
AccessInternal::clone<decorators>(src, dst, size);
|
||
|
}
|
||
|
|
||
|
// Primitive accesses
|
||
|
template <typename P>
|
||
|
static inline P load(P* addr) {
|
||
|
verify_primitive_decorators<load_mo_decorators>();
|
||
|
return AccessInternal::load<decorators, P, P>(addr);
|
||
|
}
|
||
|
|
||
|
template <typename P, typename T>
|
||
|
static inline void store(P* addr, T value) {
|
||
|
verify_primitive_decorators<store_mo_decorators>();
|
||
|
AccessInternal::store<decorators>(addr, value);
|
||
|
}
|
||
|
|
||
|
template <typename P, typename T>
|
||
|
static inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) {
|
||
|
verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
|
||
|
return AccessInternal::atomic_cmpxchg<decorators>(new_value, addr, compare_value);
|
||
|
}
|
||
|
|
||
|
template <typename P, typename T>
|
||
|
static inline T atomic_xchg(T new_value, P* addr) {
|
||
|
verify_primitive_decorators<atomic_xchg_mo_decorators>();
|
||
|
return AccessInternal::atomic_xchg<decorators>(new_value, addr);
|
||
|
}
|
||
|
|
||
|
// Oop accesses
|
||
|
template <typename P>
|
||
|
static inline AccessInternal::LoadProxy<P, decorators | INTERNAL_VALUE_IS_OOP> oop_load(P* addr) {
|
||
|
verify_oop_decorators<load_mo_decorators>();
|
||
|
return AccessInternal::LoadProxy<P, decorators | INTERNAL_VALUE_IS_OOP>(addr);
|
||
|
}
|
||
|
|
||
|
template <typename P, typename T>
|
||
|
static inline void oop_store(P* addr, T value) {
|
||
|
verify_oop_decorators<store_mo_decorators>();
|
||
|
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
|
||
|
OopType oop_value = value;
|
||
|
AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value);
|
||
|
}
|
||
|
|
||
|
template <typename P, typename T>
|
||
|
static inline T oop_atomic_cmpxchg(T new_value, P* addr, T compare_value) {
|
||
|
verify_oop_decorators<atomic_cmpxchg_mo_decorators>();
|
||
|
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
|
||
|
OopType new_oop_value = new_value;
|
||
|
OopType compare_oop_value = compare_value;
|
||
|
return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr, compare_oop_value);
|
||
|
}
|
||
|
|
||
|
template <typename P, typename T>
|
||
|
static inline T oop_atomic_xchg(T new_value, P* addr) {
|
||
|
verify_oop_decorators<atomic_xchg_mo_decorators>();
|
||
|
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
|
||
|
OopType new_oop_value = new_value;
|
||
|
return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Helper for performing raw accesses (knows only of memory ordering
|
||
|
// atomicity decorators as well as compressed oops)
|
||
|
template <DecoratorSet decorators = INTERNAL_EMPTY>
|
||
|
class RawAccess: public Access<AS_RAW | decorators> {};
|
||
|
|
||
|
// Helper for performing normal accesses on the heap. These accesses
|
||
|
// may resolve an accessor on a GC barrier set
|
||
|
template <DecoratorSet decorators = INTERNAL_EMPTY>
|
||
|
class HeapAccess: public Access<IN_HEAP | decorators> {};
|
||
|
|
||
|
// Helper for performing normal accesses in roots. These accesses
|
||
|
// may resolve an accessor on a GC barrier set
|
||
|
template <DecoratorSet decorators = INTERNAL_EMPTY>
|
||
|
class RootAccess: public Access<IN_ROOT | decorators> {};
|
||
|
|
||
|
#endif // SHARE_VM_RUNTIME_ACCESS_HPP
|