397 lines
12 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright (c) 2002, 2009, Oracle and/or its affiliates. All rights reserved.
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
2007-12-01 00:00:00 +00:00
*
*/
// Forward declarations of classes defined here
class WorkGang;
class GangWorker;
class YieldingFlexibleGangWorker;
class YieldingFlexibleGangTask;
class WorkData;
// An abstract task to be worked on by a gang.
// You subclass this to supply your own work() method
class AbstractGangTask VALUE_OBJ_CLASS_SPEC {
2007-12-01 00:00:00 +00:00
public:
// The abstract work method.
// The argument tells you which member of the gang you are.
virtual void work(int i) = 0;
// Debugging accessor for the name.
const char* name() const PRODUCT_RETURN_(return NULL;);
int counter() { return _counter; }
void set_counter(int value) { _counter = value; }
int *address_of_counter() { return &_counter; }
// RTTI
NOT_PRODUCT(virtual bool is_YieldingFlexibleGang_task() const {
return false;
})
private:
NOT_PRODUCT(const char* _name;)
// ??? Should a task have a priority associated with it?
// ??? Or can the run method adjust priority as needed?
int _counter;
protected:
// Constructor and desctructor: only construct subclasses.
AbstractGangTask(const char* name) {
NOT_PRODUCT(_name = name);
_counter = 0;
}
virtual ~AbstractGangTask() { }
};
// Class AbstractWorkGang:
// An abstract class representing a gang of workers.
// You subclass this to supply an implementation of run_task().
class AbstractWorkGang: public CHeapObj {
// Here's the public interface to this class.
public:
// Constructor and destructor.
AbstractWorkGang(const char* name, bool are_GC_task_threads,
bool are_ConcurrentGC_threads);
2007-12-01 00:00:00 +00:00
~AbstractWorkGang();
// Run a task, returns when the task is done (or terminated).
virtual void run_task(AbstractGangTask* task) = 0;
// Stop and terminate all workers.
virtual void stop();
public:
// Debugging.
const char* name() const;
protected:
// Initialize only instance data.
const bool _are_GC_task_threads;
const bool _are_ConcurrentGC_threads;
2007-12-01 00:00:00 +00:00
// Printing support.
const char* _name;
// The monitor which protects these data,
// and notifies of changes in it.
Monitor* _monitor;
// The count of the number of workers in the gang.
int _total_workers;
// Whether the workers should terminate.
bool _terminate;
// The array of worker threads for this gang.
// This is only needed for cleaning up.
GangWorker** _gang_workers;
// The task for this gang.
AbstractGangTask* _task;
// A sequence number for the current task.
int _sequence_number;
// The number of started workers.
int _started_workers;
// The number of finished workers.
int _finished_workers;
public:
// Accessors for fields
Monitor* monitor() const {
return _monitor;
}
int total_workers() const {
return _total_workers;
}
bool terminate() const {
return _terminate;
}
GangWorker** gang_workers() const {
return _gang_workers;
}
AbstractGangTask* task() const {
return _task;
}
int sequence_number() const {
return _sequence_number;
}
int started_workers() const {
return _started_workers;
}
int finished_workers() const {
return _finished_workers;
}
bool are_GC_task_threads() const {
return _are_GC_task_threads;
}
bool are_ConcurrentGC_threads() const {
return _are_ConcurrentGC_threads;
2007-12-01 00:00:00 +00:00
}
// Predicates.
bool is_idle() const {
return (task() == NULL);
}
// Return the Ith gang worker.
GangWorker* gang_worker(int i) const;
void threads_do(ThreadClosure* tc) const;
// Printing
void print_worker_threads_on(outputStream *st) const;
void print_worker_threads() const {
print_worker_threads_on(tty);
}
protected:
friend class GangWorker;
friend class YieldingFlexibleGangWorker;
// Note activation and deactivation of workers.
// These methods should only be called with the mutex held.
void internal_worker_poll(WorkData* data) const;
void internal_note_start();
void internal_note_finish();
};
class WorkData: public StackObj {
// This would be a struct, but I want accessor methods.
private:
bool _terminate;
AbstractGangTask* _task;
int _sequence_number;
public:
// Constructor and destructor
WorkData() {
_terminate = false;
_task = NULL;
_sequence_number = 0;
}
~WorkData() {
}
// Accessors and modifiers
bool terminate() const { return _terminate; }
void set_terminate(bool value) { _terminate = value; }
AbstractGangTask* task() const { return _task; }
void set_task(AbstractGangTask* value) { _task = value; }
int sequence_number() const { return _sequence_number; }
void set_sequence_number(int value) { _sequence_number = value; }
YieldingFlexibleGangTask* yf_task() const {
return (YieldingFlexibleGangTask*)_task;
}
};
// Class WorkGang:
class WorkGang: public AbstractWorkGang {
public:
// Constructor
WorkGang(const char* name, int workers,
bool are_GC_task_threads, bool are_ConcurrentGC_threads);
2007-12-01 00:00:00 +00:00
// Run a task, returns when the task is done (or terminated).
virtual void run_task(AbstractGangTask* task);
};
// Class GangWorker:
// Several instances of this class run in parallel as workers for a gang.
class GangWorker: public WorkerThread {
public:
// Constructors and destructor.
GangWorker(AbstractWorkGang* gang, uint id);
// The only real method: run a task for the gang.
virtual void run();
// Predicate for Thread
virtual bool is_GC_task_thread() const;
virtual bool is_ConcurrentGC_thread() const;
2007-12-01 00:00:00 +00:00
// Printing
void print_on(outputStream* st) const;
virtual void print() const { print_on(tty); }
protected:
AbstractWorkGang* _gang;
virtual void initialize();
virtual void loop();
public:
AbstractWorkGang* gang() const { return _gang; }
};
// A class that acts as a synchronisation barrier. Workers enter
// the barrier and must wait until all other workers have entered
// before any of them may leave.
class WorkGangBarrierSync : public StackObj {
protected:
Monitor _monitor;
int _n_workers;
int _n_completed;
bool _should_reset;
Monitor* monitor() { return &_monitor; }
int n_workers() { return _n_workers; }
int n_completed() { return _n_completed; }
bool should_reset() { return _should_reset; }
2007-12-01 00:00:00 +00:00
void zero_completed() { _n_completed = 0; }
void inc_completed() { _n_completed++; }
2007-12-01 00:00:00 +00:00
void set_should_reset(bool v) { _should_reset = v; }
2007-12-01 00:00:00 +00:00
public:
WorkGangBarrierSync();
WorkGangBarrierSync(int n_workers, const char* name);
// Set the number of workers that will use the barrier.
// Must be called before any of the workers start running.
void set_n_workers(int n_workers);
// Enter the barrier. A worker that enters the barrier will
// not be allowed to leave until all other threads have
// also entered the barrier.
void enter();
};
// A class to manage claiming of subtasks within a group of tasks. The
// subtasks will be identified by integer indices, usually elements of an
// enumeration type.
class SubTasksDone: public CHeapObj {
jint* _tasks;
int _n_tasks;
int _n_threads;
jint _threads_completed;
#ifdef ASSERT
jint _claimed;
#endif
// Set all tasks to unclaimed.
void clear();
public:
// Initializes "this" to a state in which there are "n" tasks to be
// processed, none of the which are originally claimed. The number of
// threads doing the tasks is initialized 1.
SubTasksDone(int n);
// True iff the object is in a valid state.
bool valid();
// Set the number of parallel threads doing the tasks to "t". Can only
// be called before tasks start or after they are complete.
void set_par_threads(int t);
// Returns "false" if the task "t" is unclaimed, and ensures that task is
// claimed. The task "t" is required to be within the range of "this".
bool is_task_claimed(int t);
// The calling thread asserts that it has attempted to claim all the
// tasks that it will try to claim. Every thread in the parallel task
// must execute this. (When the last thread does so, the task array is
// cleared.)
void all_tasks_completed();
// Destructor.
~SubTasksDone();
};
// As above, but for sequential tasks, i.e. instead of claiming
// sub-tasks from a set (possibly an enumeration), claim sub-tasks
// in sequential order. This is ideal for claiming dynamically
// partitioned tasks (like striding in the parallel remembered
// set scanning). Note that unlike the above class this is
// a stack object - is there any reason for it not to be?
class SequentialSubTasksDone : public StackObj {
protected:
jint _n_tasks; // Total number of tasks available.
jint _n_claimed; // Number of tasks claimed.
jint _n_threads; // Total number of parallel threads.
jint _n_completed; // Number of completed threads.
void clear();
public:
SequentialSubTasksDone() { clear(); }
~SequentialSubTasksDone() {}
// True iff the object is in a valid state.
bool valid();
// number of tasks
jint n_tasks() const { return _n_tasks; }
// Set the number of parallel threads doing the tasks to t.
// Should be called before the task starts but it is safe
// to call this once a task is running provided that all
// threads agree on the number of threads.
void set_par_threads(int t) { _n_threads = t; }
// Set the number of tasks to be claimed to t. As above,
// should be called before the tasks start but it is safe
// to call this once a task is running provided all threads
// agree on the number of tasks.
void set_n_tasks(int t) { _n_tasks = t; }
// Returns false if the next task in the sequence is unclaimed,
// and ensures that it is claimed. Will set t to be the index
// of the claimed task in the sequence. Will return true if
// the task cannot be claimed and there are none left to claim.
bool is_task_claimed(int& t);
// The calling thread asserts that it has attempted to claim
// all the tasks it possibly can in the sequence. Every thread
// claiming tasks must promise call this. Returns true if this
// is the last thread to complete so that the thread can perform
// cleanup if necessary.
bool all_tasks_completed();
};
// Represents a set of free small integer ids.
class FreeIdSet {
enum {
end_of_list = -1,
claimed = -2
};
int _sz;
Monitor* _mon;
int* _ids;
int _hd;
int _waiters;
int _claimed;
static bool _safepoint;
typedef FreeIdSet* FreeIdSetPtr;
static const int NSets = 10;
static FreeIdSetPtr _sets[NSets];
static bool _stat_init;
int _index;
public:
FreeIdSet(int sz, Monitor* mon);
~FreeIdSet();
static void set_safepoint(bool b);
// Attempt to claim the given id permanently. Returns "true" iff
// successful.
bool claim_perm_id(int i);
// Returns an unclaimed parallel id (waiting for one to be released if
// necessary). Returns "-1" if a GC wakes up a wait for an id.
int claim_par_id();
void release_par_id(int id);
};