jdk-24/src/hotspot/os_cpu/linux_ppc/os_linux_ppc.cpp

618 lines
23 KiB
C++
Raw Normal View History

/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "jvm.h"
#include "asm/assembler.inline.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "nativeInst_ppc.hpp"
#include "os_share_linux.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
// put OS-includes here
# include <sys/types.h>
# include <sys/mman.h>
# include <pthread.h>
# include <signal.h>
# include <errno.h>
# include <dlfcn.h>
# include <stdlib.h>
# include <stdio.h>
# include <unistd.h>
# include <sys/resource.h>
# include <pthread.h>
# include <sys/stat.h>
# include <sys/time.h>
# include <sys/utsname.h>
# include <sys/socket.h>
# include <sys/wait.h>
# include <pwd.h>
# include <poll.h>
# include <ucontext.h>
address os::current_stack_pointer() {
intptr_t* csp;
// inline assembly `mr regno(csp), R1_SP':
__asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
return (address) csp;
}
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
return (char*) -1;
}
void os::initialize_thread(Thread *thread) { }
// Frame information (pc, sp, fp) retrieved via ucontext
// always looks like a C-frame according to the frame
// conventions in frame_ppc64.hpp.
address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
// On powerpc64, ucontext_t is not selfcontained but contains
// a pointer to an optional substructure (mcontext_t.regs) containing the volatile
// registers - NIP, among others.
// This substructure may or may not be there depending where uc came from:
// - if uc was handed over as the argument to a sigaction handler, a pointer to the
// substructure was provided by the kernel when calling the signal handler, and
// regs->nip can be accessed.
// - if uc was filled by getcontext(), it is undefined - getcontext() does not fill
// it because the volatile registers are not needed to make setcontext() work.
// Hopefully it was zero'd out beforehand.
guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_get_pc in sigaction context");
return (address)uc->uc_mcontext.regs->nip;
}
// modify PC in ucontext.
// Note: Only use this for an ucontext handed down to a signal handler. See comment
// in ucontext_get_pc.
void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_set_pc in sigaction context");
uc->uc_mcontext.regs->nip = (unsigned long)pc;
}
intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
return (intptr_t*)uc->uc_mcontext.regs->gpr[1/*REG_SP*/];
}
intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
return NULL;
}
ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_fp) {
ExtendedPC epc;
const ucontext_t* uc = (const ucontext_t*)ucVoid;
if (uc != NULL) {
epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
} else {
// construct empty ExtendedPC for return value checking
epc = ExtendedPC(NULL);
if (ret_sp) *ret_sp = (intptr_t *)NULL;
if (ret_fp) *ret_fp = (intptr_t *)NULL;
}
return epc;
}
frame os::fetch_frame_from_context(const void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
return frame(sp, epc.pc());
}
bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
address pc = (address) os::Linux::ucontext_get_pc(uc);
if (Interpreter::contains(pc)) {
// Interpreter performs stack banging after the fixed frame header has
// been generated while the compilers perform it before. To maintain
// semantic consistency between interpreted and compiled frames, the
// method returns the Java sender of the current frame.
*fr = os::fetch_frame_from_context(uc);
if (!fr->is_first_java_frame()) {
assert(fr->safe_for_sender(thread), "Safety check");
*fr = fr->java_sender();
}
} else {
// More complex code with compiled code.
assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
CodeBlob* cb = CodeCache::find_blob(pc);
if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
// Not sure where the pc points to, fallback to default
// stack overflow handling. In compiled code, we bang before
// the frame is complete.
return false;
} else {
intptr_t* fp = os::Linux::ucontext_get_fp(uc);
intptr_t* sp = os::Linux::ucontext_get_sp(uc);
*fr = frame(sp, (address)*sp);
if (!fr->is_java_frame()) {
assert(fr->safe_for_sender(thread), "Safety check");
assert(!fr->is_first_frame(), "Safety check");
*fr = fr->java_sender();
}
}
}
assert(fr->is_java_frame(), "Safety check");
return true;
}
frame os::get_sender_for_C_frame(frame* fr) {
if (*fr->sp() == 0) {
// fr is the last C frame
return frame(NULL, NULL);
}
return frame(fr->sender_sp(), fr->sender_pc());
}
frame os::current_frame() {
intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
// hack.
frame topframe(csp, (address)0x8);
// Return sender of sender of current topframe which hopefully
// both have pc != NULL.
frame tmp = os::get_sender_for_C_frame(&topframe);
return os::get_sender_for_C_frame(&tmp);
}
// Utility functions
extern "C" JNIEXPORT int
JVM_handle_linux_signal(int sig,
siginfo_t* info,
void* ucVoid,
int abort_if_unrecognized) {
ucontext_t* uc = (ucontext_t*) ucVoid;
Thread* t = Thread::current_or_null_safe();
SignalHandlerMark shm(t);
// Note: it's not uncommon that JNI code uses signal/sigset to install
// then restore certain signal handler (e.g. to temporarily block SIGPIPE,
// or have a SIGILL handler when detecting CPU type). When that happens,
// JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
// avoid unnecessary crash when libjsig is not preloaded, try handle signals
// that do not require siginfo/ucontext first.
if (sig == SIGPIPE) {
if (os::Linux::chained_handler(sig, info, ucVoid)) {
return true;
} else {
// Ignoring SIGPIPE - see bugs 4229104
return true;
}
}
// Make the signal handler transaction-aware by checking the existence of a
// second (transactional) context with MSR TS bits active. If the signal is
// caught during a transaction, then just return to the HTM abort handler.
// Please refer to Linux kernel document powerpc/transactional_memory.txt,
// section "Signals".
if (uc && uc->uc_link) {
ucontext_t* second_uc = uc->uc_link;
// MSR TS bits are 29 and 30 (Power ISA, v2.07B, Book III-S, pp. 857-858,
// 3.2.1 "Machine State Register"), however note that ISA notation for bit
// numbering is MSB 0, so for normal bit numbering (LSB 0) they come to be
// bits 33 and 34. It's not related to endianness, just a notation matter.
if (second_uc->uc_mcontext.regs->msr & 0x600000000) {
if (TraceTraps) {
tty->print_cr("caught signal in transaction, "
"ignoring to jump to abort handler");
}
// Return control to the HTM abort handler.
return true;
}
}
JavaThread* thread = NULL;
VMThread* vmthread = NULL;
if (os::Linux::signal_handlers_are_installed) {
if (t != NULL) {
if(t->is_Java_thread()) {
thread = (JavaThread*)t;
} else if(t->is_VM_thread()) {
vmthread = (VMThread *)t;
}
}
}
// Moved SafeFetch32 handling outside thread!=NULL conditional block to make
// it work if no associated JavaThread object exists.
if (uc) {
address const pc = os::Linux::ucontext_get_pc(uc);
if (pc && StubRoutines::is_safefetch_fault(pc)) {
os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
return true;
}
}
// decide if this trap can be handled by a stub
address stub = NULL;
address pc = NULL;
//%note os_trap_1
if (info != NULL && uc != NULL && thread != NULL) {
pc = (address) os::Linux::ucontext_get_pc(uc);
// Handle ALL stack overflow variations here
if (sig == SIGSEGV) {
// Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see
// comment below). Use get_stack_bang_address instead of si_addr.
address addr = ((NativeInstruction*)pc)->get_stack_bang_address(uc);
// Check if fault address is within thread stack.
if (thread->on_local_stack(addr)) {
// stack overflow
if (thread->in_stack_yellow_reserved_zone(addr)) {
if (thread->thread_state() == _thread_in_Java) {
if (thread->in_stack_reserved_zone(addr)) {
frame fr;
if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
assert(fr.is_java_frame(), "Must be a Javac frame");
frame activation =
SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
if (activation.sp() != NULL) {
thread->disable_stack_reserved_zone();
if (activation.is_interpreted_frame()) {
thread->set_reserved_stack_activation((address)activation.fp());
} else {
thread->set_reserved_stack_activation((address)activation.unextended_sp());
}
return 1;
}
}
}
// Throw a stack overflow exception.
// Guard pages will be reenabled while unwinding the stack.
thread->disable_stack_yellow_reserved_zone();
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
} else {
// Thread was in the vm or native code. Return and try to finish.
thread->disable_stack_yellow_reserved_zone();
return 1;
}
} else if (thread->in_stack_red_zone(addr)) {
// Fatal red zone violation. Disable the guard pages and fall through
// to handle_unexpected_exception way down below.
thread->disable_stack_red_zone();
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
// This is a likely cause, but hard to verify. Let's just print
// it as a hint.
tty->print_raw_cr("Please check if any of your loaded .so files has "
"enabled executable stack (see man page execstack(8))");
} else {
// Accessing stack address below sp may cause SEGV if current
// thread has MAP_GROWSDOWN stack. This should only happen when
// current thread was created by user code with MAP_GROWSDOWN flag
// and then attached to VM. See notes in os_linux.cpp.
if (thread->osthread()->expanding_stack() == 0) {
thread->osthread()->set_expanding_stack();
if (os::Linux::manually_expand_stack(thread, addr)) {
thread->osthread()->clear_expanding_stack();
return 1;
}
thread->osthread()->clear_expanding_stack();
} else {
fatal("recursive segv. expanding stack.");
}
}
}
}
if (thread->thread_state() == _thread_in_Java) {
// Java thread running in Java code => find exception handler if any
// a fault inside compiled code, the interpreter, or a stub
// A VM-related SIGILL may only occur if we are not in the zero page.
// On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
// in the zero page, because it is filled with 0x0. We ignore
// explicit SIGILLs in the zero page.
if (sig == SIGILL && (pc < (address) 0x200)) {
if (TraceTraps) {
tty->print_raw_cr("SIGILL happened inside zero page.");
}
goto report_and_die;
}
CodeBlob *cb = NULL;
// Handle signal from NativeJump::patch_verified_entry().
if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
(!TrapBasedNotEntrantChecks && sig == SIGILL && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
if (TraceTraps) {
tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
}
stub = SharedRuntime::get_handle_wrong_method_stub();
}
else if (sig == ((SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? SIGTRAP : SIGSEGV) &&
// A linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults
// in 64bit mode (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6),
// especially when we try to read from the safepoint polling page. So the check
// (address)info->si_addr == os::get_standard_polling_page()
// doesn't work for us. We use:
((NativeInstruction*)pc)->is_safepoint_poll() &&
CodeCache::contains((void*) pc) &&
((cb = CodeCache::find_blob(pc)) != NULL) &&
cb->is_compiled()) {
if (TraceTraps) {
tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (%s)", p2i(pc),
(SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? "SIGTRAP" : "SIGSEGV");
}
stub = SharedRuntime::get_poll_stub(pc);
}
// SIGTRAP-based ic miss check in compiled code.
else if (sig == SIGTRAP && TrapBasedICMissChecks &&
nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
if (TraceTraps) {
tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
}
stub = SharedRuntime::get_ic_miss_stub();
}
// SIGTRAP-based implicit null check in compiled code.
else if (sig == SIGTRAP && TrapBasedNullChecks &&
nativeInstruction_at(pc)->is_sigtrap_null_check()) {
if (TraceTraps) {
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
}
// SIGSEGV-based implicit null check in compiled code.
else if (sig == SIGSEGV && ImplicitNullChecks &&
CodeCache::contains((void*) pc) &&
!MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
if (TraceTraps) {
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
}
#ifdef COMPILER2
// SIGTRAP-based implicit range check in compiled code.
else if (sig == SIGTRAP && TrapBasedRangeChecks &&
nativeInstruction_at(pc)->is_sigtrap_range_check()) {
if (TraceTraps) {
tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
}
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
}
#endif
else if (sig == SIGBUS) {
// BugId 4454115: A read from a MappedByteBuffer can fault here if the
// underlying file has been truncated. Do not crash the VM in such a case.
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
if (nm != NULL && nm->has_unsafe_access()) {
address next_pc = pc + 4;
next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
os::Linux::ucontext_set_pc(uc, next_pc);
return true;
}
}
}
else { // thread->thread_state() != _thread_in_Java
if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
// SIGILL must be caused by VM_Version::determine_features().
*(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
// flushing of icache is not necessary.
stub = pc + 4; // continue with next instruction.
}
else if (thread->thread_state() == _thread_in_vm &&
sig == SIGBUS && thread->doing_unsafe_access()) {
address next_pc = pc + 4;
next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
os::Linux::ucontext_set_pc(uc, pc + 4);
return true;
}
}
// Check to see if we caught the safepoint code in the
// process of write protecting the memory serialization page.
// It write enables the page immediately after protecting it
// so we can just return to retry the write.
if ((sig == SIGSEGV) &&
// Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see comment above).
// Use is_memory_serialization instead of si_addr.
((NativeInstruction*)pc)->is_memory_serialization(thread, ucVoid)) {
// Synchronization problem in the pseudo memory barrier code (bug id 6546278)
// Block current thread until the memory serialize page permission restored.
os::block_on_serialize_page_trap();
return true;
}
}
if (stub != NULL) {
// Save all thread context in case we need to restore it.
if (thread != NULL) thread->set_saved_exception_pc(pc);
os::Linux::ucontext_set_pc(uc, stub);
return true;
}
// signal-chaining
if (os::Linux::chained_handler(sig, info, ucVoid)) {
return true;
}
if (!abort_if_unrecognized) {
// caller wants another chance, so give it to him
return false;
}
if (pc == NULL && uc != NULL) {
pc = os::Linux::ucontext_get_pc(uc);
}
report_and_die:
// unmask current signal
sigset_t newset;
sigemptyset(&newset);
sigaddset(&newset, sig);
sigprocmask(SIG_UNBLOCK, &newset, NULL);
VMError::report_and_die(t, sig, pc, info, ucVoid);
ShouldNotReachHere();
return false;
}
void os::Linux::init_thread_fpu_state(void) {
// Disable FP exceptions.
__asm__ __volatile__ ("mtfsfi 6,0");
}
int os::Linux::get_fpu_control_word(void) {
// x86 has problems with FPU precision after pthread_cond_timedwait().
// nothing to do on ppc64.
return 0;
}
void os::Linux::set_fpu_control_word(int fpu_control) {
// x86 has problems with FPU precision after pthread_cond_timedwait().
// nothing to do on ppc64.
}
////////////////////////////////////////////////////////////////////////////////
// thread stack
// Minimum usable stack sizes required to get to user code. Space for
// HotSpot guard pages is added later.
size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
// Return default stack size for thr_type.
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
// Default stack size (compiler thread needs larger stack).
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
return s;
}
/////////////////////////////////////////////////////////////////////////////
// helper functions for fatal error handler
void os::print_context(outputStream *st, const void *context) {
if (context == NULL) return;
const ucontext_t* uc = (const ucontext_t*)context;
st->print_cr("Registers:");
st->print("pc =" INTPTR_FORMAT " ", uc->uc_mcontext.regs->nip);
st->print("lr =" INTPTR_FORMAT " ", uc->uc_mcontext.regs->link);
st->print("ctr=" INTPTR_FORMAT " ", uc->uc_mcontext.regs->ctr);
st->cr();
for (int i = 0; i < 32; i++) {
st->print("r%-2d=" INTPTR_FORMAT " ", i, uc->uc_mcontext.regs->gpr[i]);
if (i % 3 == 2) st->cr();
}
st->cr();
st->cr();
intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
st->cr();
// Note: it may be unsafe to inspect memory near pc. For example, pc may
// point to garbage if entry point in an nmethod is corrupted. Leave
// this at the end, and hope for the best.
address pc = os::Linux::ucontext_get_pc(uc);
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
print_hex_dump(st, pc - 64, pc + 64, /*instrsize=*/4);
st->cr();
}
void os::print_register_info(outputStream *st, const void *context) {
if (context == NULL) return;
const ucontext_t *uc = (const ucontext_t*)context;
st->print_cr("Register to memory mapping:");
st->cr();
// this is only for the "general purpose" registers
for (int i = 0; i < 32; i++) {
st->print("r%-2d=", i);
print_location(st, uc->uc_mcontext.regs->gpr[i]);
}
st->cr();
}
extern "C" {
int SpinPause() {
return 0;
}
}
#ifndef PRODUCT
void os::verify_stack_alignment() {
assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
}
#endif
int os::extra_bang_size_in_bytes() {
// PPC does not require the additional stack bang.
return 0;
}