jdk-24/hotspot/src/share/vm/opto/castnode.cpp

490 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/castnode.hpp"
#include "opto/connode.hpp"
#include "opto/matcher.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
#include "opto/type.hpp"
//=============================================================================
// If input is already higher or equal to cast type, then this is an identity.
Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
Node* dom = dominating_cast(phase);
if (dom != NULL) {
return dom;
}
if (_carry_dependency) {
return this;
}
return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
}
//------------------------------Value------------------------------------------
// Take 'join' of input and cast-up type
const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
const Type* ft = phase->type(in(1))->filter_speculative(_type);
#ifdef ASSERT
// Previous versions of this function had some special case logic,
// which is no longer necessary. Make sure of the required effects.
switch (Opcode()) {
case Op_CastII:
{
const Type* t1 = phase->type(in(1));
if( t1 == Type::TOP ) assert(ft == Type::TOP, "special case #1");
const Type* rt = t1->join_speculative(_type);
if (rt->empty()) assert(ft == Type::TOP, "special case #2");
break;
}
case Op_CastPP:
if (phase->type(in(1)) == TypePtr::NULL_PTR &&
_type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
assert(ft == Type::TOP, "special case #3");
break;
}
#endif //ASSERT
return ft;
}
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node. Strip out
// control copies
Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
}
uint ConstraintCastNode::cmp(const Node &n) const {
return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._carry_dependency == _carry_dependency;
}
uint ConstraintCastNode::size_of() const {
return sizeof(*this);
}
Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node *n, const Type *t, bool carry_dependency) {
switch(opcode) {
case Op_CastII: {
Node* cast = new CastIINode(n, t, carry_dependency);
cast->set_req(0, c);
return cast;
}
case Op_CastPP: {
Node* cast = new CastPPNode(n, t, carry_dependency);
cast->set_req(0, c);
return cast;
}
case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, carry_dependency);
default:
fatal("Bad opcode %d", opcode);
}
return NULL;
}
TypeNode* ConstraintCastNode::dominating_cast(PhaseTransform *phase) const {
Node* val = in(1);
Node* ctl = in(0);
int opc = Opcode();
if (ctl == NULL) {
return NULL;
}
// Range check CastIIs may all end up under a single range check and
// in that case only the narrower CastII would be kept by the code
// below which would be incorrect.
if (is_CastII() && as_CastII()->has_range_check()) {
return NULL;
}
for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
Node* u = val->fast_out(i);
if (u != this &&
u->Opcode() == opc &&
u->in(0) != NULL &&
u->bottom_type()->higher_equal(type())) {
if (phase->is_dominator(u->in(0), ctl)) {
return u->as_Type();
}
if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
// CheckCastPP following an allocation always dominates all
// use of the allocation result
return u->as_Type();
}
}
}
return NULL;
}
#ifndef PRODUCT
void ConstraintCastNode::dump_spec(outputStream *st) const {
TypeNode::dump_spec(st);
if (_carry_dependency) {
st->print(" carry dependency");
}
}
#endif
const Type* CastIINode::Value(PhaseGVN* phase) const {
const Type *res = ConstraintCastNode::Value(phase);
// Try to improve the type of the CastII if we recognize a CmpI/If
// pattern.
if (_carry_dependency) {
if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
Node* proj = in(0);
if (proj->in(0)->in(1)->is_Bool()) {
Node* b = proj->in(0)->in(1);
if (b->in(1)->Opcode() == Op_CmpI) {
Node* cmp = b->in(1);
if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
const Type* t = TypeInt::INT;
BoolTest test = b->as_Bool()->_test;
if (proj->is_IfFalse()) {
test = test.negate();
}
BoolTest::mask m = test._test;
jlong lo_long = min_jint;
jlong hi_long = max_jint;
if (m == BoolTest::le || m == BoolTest::lt) {
hi_long = in2_t->_hi;
if (m == BoolTest::lt) {
hi_long -= 1;
}
} else if (m == BoolTest::ge || m == BoolTest::gt) {
lo_long = in2_t->_lo;
if (m == BoolTest::gt) {
lo_long += 1;
}
} else if (m == BoolTest::eq) {
lo_long = in2_t->_lo;
hi_long = in2_t->_hi;
} else if (m == BoolTest::ne) {
// can't do any better
} else {
stringStream ss;
test.dump_on(&ss);
fatal("unexpected comparison %s", ss.as_string());
}
int lo_int = (int)lo_long;
int hi_int = (int)hi_long;
if (lo_long != (jlong)lo_int) {
lo_int = min_jint;
}
if (hi_long != (jlong)hi_int) {
hi_int = max_jint;
}
t = TypeInt::make(lo_int, hi_int, Type::WidenMax);
res = res->filter_speculative(t);
return res;
}
}
}
}
}
return res;
}
Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
if (progress != NULL) {
return progress;
}
// transform:
// (CastII (AddI x const)) -> (AddI (CastII x) const)
// So the AddI has a chance to be optimized out
if (in(1)->Opcode() == Op_AddI) {
Node* in2 = in(1)->in(2);
const TypeInt* in2_t = phase->type(in2)->isa_int();
if (in2_t != NULL && in2_t->singleton()) {
int in2_const = in2_t->_lo;
const TypeInt* current_type = _type->is_int();
jlong new_lo_long = ((jlong)current_type->_lo) - in2_const;
jlong new_hi_long = ((jlong)current_type->_hi) - in2_const;
int new_lo = (int)new_lo_long;
int new_hi = (int)new_hi_long;
if (((jlong)new_lo) == new_lo_long && ((jlong)new_hi) == new_hi_long) {
Node* in1 = in(1)->in(1);
CastIINode* new_cast = (CastIINode*)clone();
AddINode* new_add = (AddINode*)in(1)->clone();
new_cast->set_type(TypeInt::make(new_lo, new_hi, current_type->_widen));
new_cast->set_req(1, in1);
new_add->set_req(1, phase->transform(new_cast));
return new_add;
}
}
}
// Similar to ConvI2LNode::Ideal() for the same reasons
if (can_reshape && !phase->C->major_progress()) {
const TypeInt* this_type = this->type()->is_int();
const TypeInt* in_type = phase->type(in(1))->isa_int();
if (in_type != NULL && this_type != NULL &&
(in_type->_lo != this_type->_lo ||
in_type->_hi != this_type->_hi)) {
int lo1 = this_type->_lo;
int hi1 = this_type->_hi;
int w1 = this_type->_widen;
if (lo1 >= 0) {
// Keep a range assertion of >=0.
lo1 = 0; hi1 = max_jint;
} else if (hi1 < 0) {
// Keep a range assertion of <0.
lo1 = min_jint; hi1 = -1;
} else {
lo1 = min_jint; hi1 = max_jint;
}
const TypeInt* wtype = TypeInt::make(MAX2(in_type->_lo, lo1),
MIN2(in_type->_hi, hi1),
MAX2((int)in_type->_widen, w1));
if (wtype != type()) {
set_type(wtype);
return this;
}
}
}
return NULL;
}
uint CastIINode::cmp(const Node &n) const {
return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
}
uint CastIINode::size_of() const {
return sizeof(*this);
}
#ifndef PRODUCT
void CastIINode::dump_spec(outputStream* st) const {
ConstraintCastNode::dump_spec(st);
if (_range_check_dependency) {
st->print(" range check dependency");
}
}
#endif
//=============================================================================
//------------------------------Identity---------------------------------------
// If input is already higher or equal to cast type, then this is an identity.
Node* CheckCastPPNode::Identity(PhaseGVN* phase) {
Node* dom = dominating_cast(phase);
if (dom != NULL) {
return dom;
}
if (_carry_dependency) {
return this;
}
// Toned down to rescue meeting at a Phi 3 different oops all implementing
// the same interface. CompileTheWorld starting at 502, kd12rc1.zip.
return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
}
//------------------------------Value------------------------------------------
// Take 'join' of input and cast-up type, unless working with an Interface
const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
const Type *inn = phase->type(in(1));
if( inn == Type::TOP ) return Type::TOP; // No information yet
const TypePtr *in_type = inn->isa_ptr();
const TypePtr *my_type = _type->isa_ptr();
const Type *result = _type;
if( in_type != NULL && my_type != NULL ) {
TypePtr::PTR in_ptr = in_type->ptr();
if (in_ptr == TypePtr::Null) {
result = in_type;
} else if (in_ptr == TypePtr::Constant) {
const TypeOopPtr *jptr = my_type->isa_oopptr();
assert(jptr, "");
result = !in_type->higher_equal(_type)
? my_type->cast_to_ptr_type(TypePtr::NotNull)
: in_type;
} else {
result = my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
}
}
// This is the code from TypePtr::xmeet() that prevents us from
// having 2 ways to represent the same type. We have to replicate it
// here because we don't go through meet/join.
if (result->remove_speculative() == result->speculative()) {
result = result->remove_speculative();
}
// Same as above: because we don't go through meet/join, remove the
// speculative type if we know we won't use it.
return result->cleanup_speculative();
// JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
// FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
//
// Remove this code after overnight run indicates no performance
// loss from not performing JOIN at CheckCastPPNode
//
// const TypeInstPtr *in_oop = in->isa_instptr();
// const TypeInstPtr *my_oop = _type->isa_instptr();
// // If either input is an 'interface', return destination type
// assert (in_oop == NULL || in_oop->klass() != NULL, "");
// assert (my_oop == NULL || my_oop->klass() != NULL, "");
// if( (in_oop && in_oop->klass()->is_interface())
// ||(my_oop && my_oop->klass()->is_interface()) ) {
// TypePtr::PTR in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
// // Preserve cast away nullness for interfaces
// if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
// return my_oop->cast_to_ptr_type(TypePtr::NotNull);
// }
// return _type;
// }
//
// // Neither the input nor the destination type is an interface,
//
// // history: JOIN used to cause weird corner case bugs
// // return (in == TypeOopPtr::NULL_PTR) ? in : _type;
// // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
// // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
// const Type *join = in->join(_type);
// // Check if join preserved NotNull'ness for pointers
// if( join->isa_ptr() && _type->isa_ptr() ) {
// TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
// TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
// // If there isn't any NotNull'ness to preserve
// // OR if join preserved NotNull'ness then return it
// if( type_ptr == TypePtr::BotPTR || type_ptr == TypePtr::Null ||
// join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
// return join;
// }
// // ELSE return same old type as before
// return _type;
// }
// // Not joining two pointers
// return join;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* CastX2PNode::Value(PhaseGVN* phase) const {
const Type* t = phase->type(in(1));
if (t == Type::TOP) return Type::TOP;
if (t->base() == Type_X && t->singleton()) {
uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
if (bits == 0) return TypePtr::NULL_PTR;
return TypeRawPtr::make((address) bits);
}
return CastX2PNode::bottom_type();
}
//------------------------------Idealize---------------------------------------
static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
if (t == Type::TOP) return false;
const TypeX* tl = t->is_intptr_t();
jint lo = min_jint;
jint hi = max_jint;
if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
return (tl->_lo >= lo) && (tl->_hi <= hi);
}
static inline Node* addP_of_X2P(PhaseGVN *phase,
Node* base,
Node* dispX,
bool negate = false) {
if (negate) {
dispX = new SubXNode(phase->MakeConX(0), phase->transform(dispX));
}
return new AddPNode(phase->C->top(),
phase->transform(new CastX2PNode(base)),
phase->transform(dispX));
}
Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
int op = in(1)->Opcode();
Node* x;
Node* y;
switch (op) {
case Op_SubX:
x = in(1)->in(1);
// Avoid ideal transformations ping-pong between this and AddP for raw pointers.
if (phase->find_intptr_t_con(x, -1) == 0)
break;
y = in(1)->in(2);
if (fits_in_int(phase->type(y), true)) {
return addP_of_X2P(phase, x, y, true);
}
break;
case Op_AddX:
x = in(1)->in(1);
y = in(1)->in(2);
if (fits_in_int(phase->type(y))) {
return addP_of_X2P(phase, x, y);
}
if (fits_in_int(phase->type(x))) {
return addP_of_X2P(phase, y, x);
}
break;
}
return NULL;
}
//------------------------------Identity---------------------------------------
Node* CastX2PNode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
return this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* CastP2XNode::Value(PhaseGVN* phase) const {
const Type* t = phase->type(in(1));
if (t == Type::TOP) return Type::TOP;
if (t->base() == Type::RawPtr && t->singleton()) {
uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
return TypeX::make(bits);
}
return CastP2XNode::bottom_type();
}
Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
}
//------------------------------Identity---------------------------------------
Node* CastP2XNode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
return this;
}